
INDUCTIVE REASONING IN MATHEMATICS 

F. Mal loy Brown a: 
Department o f A r t i f i c i a l I n t e l l i g e n c e 

U n i v e r s i t y o f Edinburgh 
Scot land 

Abs t rac t 

We i n v e s t i g a t e severa l methods of i n d u c t i v e 
reasoning in the domain o f d i f f e r e n c e equa t ions , 
i n c l u d i n g the method o f g e n e r a l i z a t i o n w i t h b e l i e f s , 
the method of successive re f inement , and temporal 
methods based on comparisons w i t h p rev i ous l y solved 
problems. 

1 . I n t r o d u c t i o n 

We begin a study of i n d u c t i v e reasoning in 
mathematics. I nduc t i ve reasoning in mathematics 
d i f f e r s from i n d u c t i v e reasoning i n the emp i r i ca l 
sciences i n t h a t there i s an u l t i m a t e t e s t a l though 
not necessa r i l y a dec i s i on procedure, which can be 
used to determine what is a c o r r e c t i n d u c t i o n . 
Namely, t h a t i f what i s induced i s t r u e , t h a t i s : 
i f i t can be deduced by one 's deduct ive system 
then i t must be c o r r e c t . Because o f t h i s r e l a t i o n ­
sh ip between i n d u c t i o n and deduct ion one of our 
goals i s to c l a s s i f y what ins tances o f reasoning 
are i n d u c t i v e and what are deduc t i ve . 

Our main goa l however, is to c rea te a taxonomy 
of f e a s i b l e i n d u c t i v e methods. Such a goal is not 
un re la ted to the work of the mathemat ic ian: G. Polya, 
[1967, 1968A, 1968B], i t i s j u s t more d e t a i l e d . In 
p a r t i c u l a r , we t r y to ca r r y out the ana l ys i s o f 
each method to a l e v e l d e t a i l e d enough so as to be 
programmed. A l so , where necessary, we r e l a t e the 
i n d u c t i v e methods to the l e v e l and c a p a b i l i t i e s o f 
contemporary deduct ive systems. Due to t h i s r e ­
quirement f o r d e t a i l we s h a l l r e s t r i c t our a t t e n ­
t i o n to a p a r t i c u l a r , but s i g n i f i c a n t domain. 

1.1 Our Problem Domain 
We consider the problem of t r y i n g to f i n d by 

i n d u c t i v e reasoning a c losed- form s o l u t i o n , t h a t 
i s an a l geb ra i c s o l u t i o n , to a recu rs i ve f u n c t i o n . 
That i s , from a set K of equat ions of the f o r m * : 
ψk ( n , f n , f (n-h) ,f (n-2h) . . .) =0 or r a t h e r : 

fn = ψ k ( n , f ( n - h ) , f ( n - 2 h ) , . . . ) 
we wish to f i n d an equat ion of the form: 
Vn fn - øn where f does no t occur in ø. 

For example, g iven the recu rs i ve equat ion f o r 
the F ibonacc i f u n c t i o n : 
F(n+2) = F(n+1)+Fn 
F l = 1 
Fo = 0 
We would l i k e to f i n d a theorem of the form: 
Vn Fn = øm 
where øn is a sentence cons t ruc ted from a lgeb ra i c 
symbols such as numerals, p lus (+ ) , t imes ( * ) , 
power ( ) , minus ( - ) , d i v i s i o n ( / ) , l oga r i t hm ( I n ) , 
* Our convent ion f o r pa ren thes i z i ng complex sub­
expressions i s t o p lace the l e f t parenthes is be­
fo re the f u n c t i o n symbol as is done in EVAL-LISP. 
Thus we w r i t e (F n) and (a + b) not F(n) and 
(a) + (b ) . 
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s ine (s in) and cosine (cos) . 
Or as another example, g iven the recu rs i ve 

equat ions f o r the minimum number of moves t h a t must 
be made in the Tower of Hanoi puzzle of n d iscs (a 
d e s c r i p t i o n of t h i s puzzle may be found in Luger 
[19761.) 
H(n+1) = 2(Hn)+l 
HO = 0 
we would l i k e to f i n d a c losed form s o l u t i o n : 
Vn Hn = øn. 

1.2 A d e f i n i t i o n of " I n d u c t i v e Reasoning" 
Of course i f we, o r r a t h e r our program a l ­

ready "knew" a c losed form s o l u t i o n øn f o r a r e ­
cu rs i ve f u n c t i o n such as F or H then we would not 
want to c a l l the method by which t h a t øn was p r o ­
duced: " i n d u c t i v e reason ing" . The problem then 
of d e f i n i n g j u s t which methods of producing øn are 
examples of i n d u c t i v e reason ing , and which are not 
- res ides in the ques t ion as to what i t means f o r 
a system to "know" something. For example i f the 
system had; 
Vn Hn = øn 
e x p l i c i t l y s to red as an axiom we would c l e a r l y say 
t h a t the system knew t h a t Vn Hn = øn. F u r t h e r ­
more, i f the system cou ld apply a sequence of i tems 
( i . e . axioms, lemmas, axiom schemas and lemma 
schemas, w r i t t e n say in LISP) which t ransformed Hn 
i n t o øn, then i f the system knew t h a t each a p p l i c ­
a t i o n of an i tem in t h a t sequence produced a c o r ­
r e c t r e s u l t , then again we would say t h a t the 
system knew t h a t (Vn Hn = øn) . 

So f a r t h i s is an omnipotent sense of knowledge: 
We know whatever is deduc ib le . We would l i k e to 
modify i t b y the f u r t h e r requirement o f f e a s i b i l i t y . 
That i s , any sequence of a p p l i c a t i o n of i tems must 
no t be so long as to exhaust the system's resources 
o r our pa t i ence . I n regard t o f e a s i b i l i t y , i t i s 
po in ted out t h a t we d o n ' t s t r i c t l y speaking have 
to "know" t h a t each a p p l i c a t i o n o f an i tem is c o r ­
r e c t , ( f o r a f t e r a l l , p roo fs from axioms on ly are 
very l o n g ) , bu t ra the r a l l t h a t i s needed i s the 
p o s s i b i l i t y o f "knowing" t h a t our i tems are c o r r e c t 
in the sense of an ex tens ib l e deduct ive system 
(Brown [1976A] ) , coupled w i t h the " b e l i e f " * t h a t 
our i tems are co r rec t in at l e a s t the sense of never 
having been r e f u t e d ( i . e . shown to be i n c o r r e c t ) 
(Popper[1968]) . 

In summary then we w i l l c a l l any method of 
producing a c losed- fo rm s o l u t i o n øn, which is not 
"known" to be the c losed- fo rm s o l u t i o n , i n d u c t i v e 
reason ing . For example, enumeration o f a l l poss­
i b l e a lgeb ra i c f u n c t i o n s or random guessing would 
count as i n d u c t i v e reasoning ( a l b e i t poor i n d u c t i v e 

* We speak of "knowledge" as t r u e " b e l i e f " . The 
p o i n t is t h a t a l though we hope t h a t our deduct ive 
system is sound, the re does not seem to be anyway 
t o abso lu te l y guarantee t h i s f a c t . 
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reasoning) because as i tems of a deduct ive system 
they would q u i c k l y be r e f u t e d by producing f a l s e 
r e s u l t s . 

2. Elementary I nduc t i ve Methods 

We f i r s t descr ibe two bas ic methods of i n ­
duc t i ve reason ing , and then compare them. 

2 .1 The Method of Gene ra l i za t i on w i t h B e l i e f s 
One popular theory of i n d u c t i v e reasoning 

(Mel tzer [ 1969 ] , P l o t k i n [ 1 9 6 9 , 1971],Popplestone 
[1969 ] , Feldman[1969], Hardy[1976]) suggests t h a t 
i t i s b a s i c a l l y g e n e r a l i z a t i o n . * Consider f o r 
example the Tower of Hanoi problem. Using the 
recu rs i ve equat ions we can deduce c losed- fo rm s o l u ­
t i o n s f o r numer ical ins tances o f Hn. 
HO = 0 
HI = HO+1 = 2.04-1 = 1 
H2 - 2H1+1 = 2.1+1 = 3 
H3 - 2H2+1 = 2.3+1 = 7 
H4 = 2H3+1 = 2 . 7 + 1 - 1 5 
H5 - 2H4+1 = 2.15+1 = 31 
H6 - 2H5+1 = 2.31+1 = 63 
I suspect the reader has a l ready induced a c l osed -
form s o l u t i o n f o r Hn, bu t l e t us i n v e s t i g a t e how 
t h i s might be done. From 
H0=0 Hl=1 H2=3 H3=7 H4=15 H5=31 H6=63 

we wish to f i n d * * 

to the elements of each sequence. For example, in 
the case of Hn we might sub t rac t from each element 
of the b e l i e f sequence, the corresponding element 
generated by Hn, o b t a i n i n g 

This would g ive us the know-

and v i a our b e l i e f , we induce t h a t : 
Hn = 2 n - 1 
which i n f a c t i s t r u e . 

There i s , however, another i n d u c t i v e method 
which, o the r than f o r poss i b l y the t r i g g e r i n g o f 
the b e l i e f t h a t the c losed form s o l u t i o n might i n ­
vo lve an expenent ia l f u n c t i o n of base 2, does no t 
r e a l l y need to produce those ins tances of the Hn 
f u n c t i o n . Nor does i t need to go through any 
g e n e r a l i z a t i o n s teps . We c a l l t h i s method, the 
Method of Successive Refinement. 

2.2 The .Method of Successive Refinement 
The bas ic idea of the Method of Success Re­

f inement is to make an i n i t i a l ( i n c o r r e c t ) guess 
as to what is the c losed form s o l u t i o n , l e t a 
theorem prover t r y to prove t h i s guess, and when 
i t f a i l s t o prove i t , g o back and t r y t o modify 
each branch of the p r o t o c o l on which n had been 
produced. For example, l e t us suppose t h a t we 
be l i eve a s o l u t i o n to Hn might i n v o l v e an exponent­
i a l f u n c t i o n to a power o f two: 

( B e l i e f Hn i nvo l ves 2n) 
I n o the r words, l e t us f i r s t form the hypothesis 
t h a t ; 

Hn - 2 n 

and see what a deduct ive system w i l l do to t h i s 
express ion . I nduc t i ng on n we g e t * : 

Al ready we are in t r o u b l e as the deduct ive system 
shows t h a t our hypothes is is f a l s e , on the base 
case. Can we modi fy our hypothesis to induce a 
b e t t e r one? Ana lys ing our p roo f we see t h a t i f 
the expression 0 = 1 were rep laced by 0 = 1 - 1, 
then o and not n would be produced. This means t h a t 
HO ■ 1 would have to be HO = 1 - 1, 
HO = 2 would have to be HO = 2 - 1, and 
Hn = 2n would have to be hn = 2n - 1. 
G iv ing our new hypothes is to a deduct ive system we 
g e t : 

* ■ is our symbol f o r t r u e ; a is our symbol f o r 
f a l s e , and >- is our symbol f o r i m p l i c a t i o n . The 
l e f t branch i s the base o f the i n d u c t i o n , and the 
r i g h t branch i s the i n d u c t i o n s tep . 
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F i r s t l e t us note t h a t a l e a s t genera l g e n e r a l -
i x a t i o n method such as P l o t k i n [1969,1971] does no t 
work because the l e a s t genera l g e n e r a l i z a t i o n : 

Furthermore,even i f we i nc lude an a lgeb ra i c 
matching f a c i l i t y s i m i l a r t o t h a t used i n Feldman 
[1969] and Hardy [ I 9 7 6 ] * * * w h i c h a l lows us to t r y to 
r e l a t e the arguments o f the Hn f u n c t i o n to i t s v a l ­
ues by a d d i n g , m u l t i p l y i n g , s u b t r a c t i n g , a n d d i v i d i n g , 
we s t i l l would no t o b t a i n a s o l u t i o n . For example, 
adding one to the sequence of va lues of Hn g i v e s : 

HO+1=1 Hl+1=2 H2+l=4 H3+l=8 H4+l=16 H5+l=32 H6+1=64 

But s t i l l the remaining l e a s t genera l genera l i za t ion 
i s f a l s e . 

So how can the c losed form s o l u t i o n be induced? 
Let us suppose t h a t the i n d u c t i v e system has a v a i l ­
able a b e l i e f t h a t any f u n c t i o n which produces the 
sequence o f va lues 1 , 2 , 4 , 8 , 16, 32, f o r the 
arguments O, 1 , 2 , 3 , 4 , 5 , i s p robab ly equal to 
the exponent ia l f u n c t i o n of base 2: 
( B e l i e f 1 , 2 , 4 , 8 , 16, 32 is p robab ly 2n) 

Then g iven t h i s b e l i e f a system might t r y to com­
pare the sequence 1, 2, 4, 8, 16, 32 to the se ­
quence of va lues g iven by the r ecu r s i ve f u n c t i o n 
by app ly ing va r ious a lgeb ra i c opera t ions pa i rw i se 
* We cons ider analogy to be an e s s e n t i a l component 
of the method of g e n e r a l i z a t i o n as here desc r i bed , 
and hence do not de f i ne a separa te : method of 
analogy. 
* * V i s our symbol f o r a l l . 
* * * In our case, however, we work d i r e c t l y on the 
numbers themselves r a t h e r than app ly ing a lgeb ra i c 
opera t ions to the number o f occurrences of symbols 
such as : the successor symbol. 



which we deduce to be t r u e . 
We see then t h a t we can ob ta in a proof by mod­

i f y i n g a prev ious unsuccessful at tempt at p rov ing 
a theorem. This leads n a t u r a l l y to the ques t ion 
as to what is the space of a l l such mod i f i ca t i ons? 
A l though, p o t e n t i a l l y t h i s space may be q u i t e l a rge , 
we w i l l on ly consider two simple m o d i f i c a t i o n s : 
1) a d d i t i o n of a constant to an equat ion in order 

t o make i t t r u e 
2) m u l t i p l i c a t i o n of a constant to an a d d i t i v e p a r t 

o f an equat ion in order to make i t t r u e . 
We have j u s t seen an example of (1) in o b t a i n i n g a 
s o l u t i o n to the Hanoi f u n c t i o n . An example of 
(2) app l ied to the f a l s e equat ion 

1 - / 5 would be to m u l t i p l y /5 by 1//5 
and an example of (2) app l ied to an a d d i t i v e p a r t 
o f the f a l s e equat ion 
0 - 1 + /5 
would be to m u l t i p l y the a d d i t i v e p a r t 1 by - 1//5 

Note t h a t mod i f i ca t i ons are on ly made to the 
r i g h t hand s ide of an equat ion . The reason f o r 
t h i s i s t h a t t h a t s ide conta ins the c losed- form 
s o l u t i o n whereas the o ther s ide merely conta ins 
the recu rs i ve f u n c t i o n . 

The reader w i l l see in the method of success­
ive ref inement an echo of M e l t z e r ' s [1969] hypo­
t h e s i s t h a t i nduc t i ve reasoning i s inverse deduc­
t i o n . But in our case, t h i s is not so much a 
semant ical hypothes is : if A->B then A may be i n ­
duced from B, as i t is a no t i on of search s t ra tegy 
in the sense t h a t i f B is deduced from A by app ly ­
i ng the i t em* A -> B to A, then A is induced from 
B by app ly ing the i tem in the opposi te d i r e c t i o n . 

We have seen how the c losed- form s o l u t i o n f o r 
Hn may be obta ined from the b e l i e f t h a t the s o l u ­
t i o n i nvo l ves an exponent ia l f unc t i on of base two. 
Note t h a t t h i s b e l i e f i s s t ronger than what i s 
necessary, and t h a t the b e l i e f t h a t some a r b i t r a r y 
exponent ia l f u n c t i o n a is i nvo lved s u f f i c e s : That 
i s , i f 2 i s rep laced by a in the prev ious p r o t o c o l s , 
e s s e n t i a l l y the same r e s u l t w i l l be ob ta ined . 

2.3 Comparison of the two Methods 
So f a r , we have found t h a t simple gene ra l i za ­

t i o n methods are not s u f f i c i e n t and t h a t s o p h i s t i ­
cated b e l i e f s seem to be used in i n d u c t i v e reason­
i n g . We have cas t doubt on the suggest ion t h a t 
i nduc t i ve reasoning i s on ly g e n e r a l i z a t i o n by de­
s c r i b i n g another techn ique, the method of success­
ive re f inement , which seems to be more power fu l 
(because i t needs a weaker b e l i e f to produce the 
s o l u t i o n ) . 

One advantage of the g e n e r a l i z a t i o n method is 
the p o s s i b i l i t y o f t r i g g e r i n g the 2 n b e l i e f by an 
a lgebra ic matching o f the 1 , 2 , 4 , 8 , 16, 32, se­
quence to the sequence generated by the Hanoi 
f u n c t i o n : Hn. A second advantage i s t h a t i t i s 
*<-> i s our symbol f o r i f f ( i f and on ly i f ) . 

q u i t e easy to exp la in how the b e l i e f , t h a t a func­
t i o n whose i n i t i a l instances are 1 , 2 , 4 , 8 , 16, 
32, is the exponent ia l o f base 2: 
(Be l i e f 1 , 2 , 4 , 8 , 16, 32 is probably 2n) n 
was produced by s imply i n s t a n t i a t i n g n in 2 to 
success ive ly 0 , 1 , 2 , 3 , 4 , 5 whereas i t does not 
seem q u i t e as easy to exp la in the p roduc t ion of 
the i n i t i a l hypothesis t h a t Hn invo lved some ex­
ponen t i a l f u n c t i o n : 
(Be l i e f Hn invo lves an) 
Are we f o r example to be l i eve t h a t the c losed- form 
s o l u t i o n o f every recu rs i ve f u n c t i o n invo lves an 
exponent ia l f u n c t i o n or what? 

Al though i t i s eas ier t o exp la i n the o r i g i n s 
of a b e l i e f o f the form: 
( B e l i e f 1, 2, 4, 8, 16, 32 is probably 2n) 
than of the form: 
(Be l i e f Hn invo lves a ) 
we note t h a t i f a recu rs i ve f u n c t i o n is not a c t u ­
a l l y equal to a simple a lgebra ic f u n c t i o n such as 
2 then i t i s q u i t e improbable t h a t the necessary 
b e l i e f o f t h i s f i r s t form could be a v a i l a b l e to be 
used in ob ta in ing the c losed- form s o l u t i o n . We 
w i l l now give an example of such a f u n c t i o n and 
suggest t h a t the c losed- form so lu t i ons o f most r e ­
cu rs i ve func t i ons are o f t h i s charac te r . This 
example i s i n t e r e s t i n g because i t supports the view 
t h a t i n d u c t i v e reasoning based on ly on the method 
o f g e n e r a l i z a t i o n even w i t h soph i s t i ca ted b e l i e f s , 
is not s u f f i c i e n t , and t ha t o ther methods are a lso 
needed. 

Our example is the Fibonacci f u n c t i o n . Using 
i t s recu rs i ve equat ions we deduce: 
FO = 0 
F1 = 1 
F2 = F l + FO = 1 + 0 = 1 
F3 = F2 + F l = 1 + 1 = 2 
F4 = F3 + F2 = 2 + 1 = 3 
F5 = F4 + F3 - 3 + 2 = 5 
F6 = F5 + F4 = 5 + 3 = 8 
F7 = F6 + F5 = 8 + 5 = 13 
Thus from 
F0=0 F l = l F2-1 F3=2 F4=3 F5=5 F6=8 F7=13 
we wish to f i n d : 

Fn = ? 
But there is no simple a lgebra ic f u n c t i o n which 
produces an i n i t i a l sequence anyth ing l i k e 0 , 1 , 1 , 
2, 3, 5, 8, 13. In o ther words there could not 
be any b e l i e f of the form: 
(Be l i e f a 1 . . . . a m is probably a ) 

which would be h e l p f u l in s o l v i n g t h i s problem. 
For a f t e r a l l we cannot expect to have b e l i e f s 
about every a lgeb ra i c f unc t i on in our system; on ly 
the simple ones. We can see t h a t the c losed- form 
s o l u t i o n i s not s imp le , b y a c t u a l l y e x h i b i t i n g i t . 
Concurrent ly we w i l l take the oppo r t un i t y to show 
how t h i s c losed- form s o l u t i o n cou ld be obta ined 
by the method of successive ref inement us ing the 
b e l i e f t h a t the s o l u t i o n invo lves two exponent ia l 
f u n c t i o n s : 
( B e l i e f Fn invo lves a , b ) 
where a # 0 can b # 0. 

From t h i s b e l i e f we form an i n i t i a l hypothesis 
t h a t : 
Fn = an + bn 

and see what our deduct ive system w i l l do to t h i s 
express ion . I nduc t i ng on n t w i c e , because Fn 
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does not recurse on Fn+1, we o b t a i n ; Working upwards we see t h a t the f i v e prev ious l i n e s 
in the p roo f must have been something l i k e : 

The i nduc t i on 
two base cases are 
t hes i s to induce a 

step seems to be t r u e , but the 
f a l s e . Can we modify our hypo-
b e t t e r one? 

Analys ing the Fl base case we see t h a t i f the 

in (1 = /5) had been d i v i ded by √ 5 then ■ would 
have been produced. This means t h a t the base 
case would have had to have looked something l i k e : 
F l=aFO+((b-a) / /5 )b 
F l = a - 0 + ( ( b - a ) / 5 ) - l 
Fl -0+(b -a ) /√5 
F l = ( b - a ) / / 5 
1= (b-a)/√5 
1= ( ( l - √ 5 ) / 2 - ( l + √ 5 ) / 2 ) / √ 5 
1= 2√5/2√5 
1-1 

D 

* In contemporary deduct ive systems (Brown [1976B, 
1977] , Boyer [1975]) the e q u a l i t y or u n i f i c a t i o n 
i tems would end up rep lac ing a l l occurrences of say 
" a " by b - 1 . A system used in successive r e f i n e ­
ment should not do t h i s because if Fn = an + bn is 

Fn+2=aFn+l+(Fn+l-aFn)b 
and since the t h i r d l i n e i s i d e n t i c a l to our p rev ­
ious t h i r d l i n e we see t h a t the i nduc t i on step 
branch o f our p roo f w i l l s t i l l r e s u l t i n ■ . 

Of course we d o n ' t a c t u a l l y have to analyse 
our proofs teps downward, as we could simply apply 
our deduct ive system to such a step and see what 
i t does. For example, to see t h a t 
Fn+1 = aFn + ( ( b - a ) / / 5 )b n r e s u l t s in = a l l we need 
do is to apply our deduct ive system to i t . 

We have now produced a m o d i f i c a t i o n which r e ­
s u l t s in a on both the F l base, and i nduc t i on step 
branches of our p roo f . Only the FO base step r e ­
mains. The FO base branch resu l t ed in o, so we 
know t h a t some s o r t of m o d i f i c a t i o n is what was 
needed to make the FO base branch r e s u l t in ■: 
We f i r s t check to see i f the m o d i f i c a t i o n induced 
from the F l base branch w i l l s u f f i c e to make t h i s 
branch r e s u l t in : 

f a l s e a might not equal b - 1, and then we would 
not want to propagate t h i s f a l s i t y i n t o the branch 
of the proo f which is the i n d u c t i o n step which may 
a f t e r a l l be t r ue as in t h i s example. The reason 
we p r e f e r to have n der ived on the branch of the 
p roo f which is the i n d u c t i o n base ra the r than the 
i n d u c t i o n step i s t h a t i t i s a s impler branch and 
w i l l be eas ier to analyse why i t produced n , in 
order to induce a hypothes is . 
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i s t r u e . 
Replacing a and b by the a lgebra ic terms t h a t 

we have found them to be in our p roo f we f i n d t h a t 
the c losed form s o l u t i o n f o r the F ibonacci func ­
t i o n i s : 

So f a r we have been able to induce a new hypothesi i 
which w i l l probably make the Fl-base branch of the 
proo f r e s u l t in . But , does t h i s change the r e ­
s u l t o f we had p rev i ous l y obtained in the i n ­
duc t ion step branch of the proof? Since i n d u c t -



Thus we see t h a t a l though i t is p l a u s i b l e t h a t we 
might be able to induce t h i s s o l u t i o n by the i n ­
duc t i ve method o f successive re f inement , i t i s not 
very p l a u s i b l e t h a t we cou ld have induced t h i s 
s o l u t i o n by the g e n e r a l i z a t i o n method. The reason 
f o r t h i s , as w i l l be r e c a l l e d , i s because the gen­
e r a l i z a t i o n method would requ i re p r i o r b e l i e f s 
t h a t : 

And i t s imply does not seem p l a u s i b l e t h a t such 
b e l i e f s would be a v a i l a b l e . 

2.4 The Supplementary Method of E x i s t e n t i a l 
Funct ions 

We have one f i n a l p o i n t to make about the 
Fibonacci example: If we had a s l i g h t l y more 
s o p h i s t i c a t e d b e l i e f as to what the c losed- form 
s o l u t i o n might be, then our deduct ive system would 
be able to ob ta in the s o l u t i o n in a very d i r e c t 
manner. Let us suppose t h a t we have the b e l i e f 
t h a t the c losed- form s o l u t i o n o f the Fibonacci i n ­
vo lves a l i n e a r combinat ion of two non-zero func ­
t i o n s : 
( B e l i e f Fn invo lves α an + βbn ) 
Then the hypothesis i s : = αan +βbn 

A s o l u t i o n is obta ined by i nduc t i ng tw ice on n: 

Th is technique of us ing e x i s t e n t i a l f unc t i ons has 
been used by B ibe l [ 1976 ] ( i n our case cons tan ts : 
a,b,α,β) .Because i t i s so power fu l t h a t we s h a l l 
r a i s e i t t o the s ta tus o f a t h i r d i n d u c t i v e method 
which we s h a l l c a l l : The supplementary method of 
e x i s t e n t i a l f u n c t i o n s . I t should be noted t h a t 
t h i s technique is no s u b s t i t u t e f o r the more gen­
e r a l method o f successive re f inement , f o r i t s power 
depends on knowledge possessed by the deduct ive 
system. In the p ro toco l s us ing the method of 
e x i s t e n t i a l f unc t i ons we have assumed the a b i l i t y 
to solve equat ions o f the form: 

f - 0 
f o r an a r b i t r a r y e x i s t e n t i a l cons tan t . This 
knowledge was not assumed when not us ing t h i s 
method. We s h a l l see more of t h i s method in sec­
t i o n 3 . 

2.5 Summary 
In summary then we have descr ibed two bas ic 

i n d u c t i v e methods and one supplementary method; and 
have shown t h a t the e f fec t i veness of each method 
depends on the a v a i l a b i l i t y o f p a r t i c u l a r b e l i e f s . 
We have suggested t h a t the b e l i e f s needed by the 
g e n e r a l i z a t i o n method would on ly be a v a i l a b l e i f 
the recu rs i ve f unc t i on is equal to some very simple 
a lgebra ic f u n c t i o n , such as is the case w i t h the 
Tower of Hanoi f u n c t i o n . For most o ther recu rs i ve 
func t ions such as the F ibonacci func t ions we have 
suggested t h a t the b e l i e f s needed by the g e n e r a l i z ­
a t i o n method would not be a v a i l a b l e . 

In sec t ion 3 we descr ibe how the b e l i e f s need­
ed by the method of successive ref inement might be 
au toma t i ca l l y produced. 

3. Temporal I nduc t i ve Methods 

We now descr ibe methods of i n d u c t i v e reasoning 
based on i n fo rma t ion obta ined from the so lu t i ons of 
p rev ious l y solved problems. Such methods are c a l l ­
ed temporal i n d u c t i v e methods. There are two 
temporal i n d u c t i v e methods, d i s t i n g u i s h e d by the 
type of i n fo rma t i on on which they are based. The 
f i r s t temporal method is based s o l e l y on in fo rma­
t i o n obta ined from the theorem which expresses a 
p rev ious l y solved problem, whereas the second 
temporal method is based on i n fo rma t i on obta ined 
from the p roo f of a p rev ious l y solved problem. 

Re fe r r i ng back to sec t ion 2.5 we s h a l l see in 
sec t i on 3.2 how the second temporal method may be 
app l i ed to producing the k i n d o f b e l i e f s needed by 
the method of successive re f inement . 

3 .1 The Temporal Method based on Theorems 
The basic idea of the temporal method based on 

theorems is f o r any g iven problem F to t r y to f i n d 
a s i m i l a r problem H which has a l ready been so lved , 
and then to use something s i m i l a r to the s o l u t i o n 
f o r H as a hypothesis f o r the s o l u t i o n of F. 

For example l e t H be the Tower of Hanoi p rob ­
lem whose s o l u t i o n we d iscovered in Sect ion 2, and 
l e t F be the F ibonacci f u n c t i o n whose s o l u t i o n we 
are t r y i n g to f i n d . The theorem which expresses 
the s o l u t i o n to the Hanoi problem is t hen : 
(Vn H(n+ l )=2(Hn)+ lAHO0) -> Hn=2n-1 
and the (as y e t incomplete) theorem which expresses 

S p e c i a l i z e d Systems-4: Brown 
848 



We see t h a t there is no reasonable analogy t h a t we 
can make which w i l l he lp us to solve F. For ex­
ample, if we form the analogy t h a t m is n - 1 from 
(Hn+1 Fm+2), then we might con jec tu re t h a t : 
Fm=2m-1 -1 
which is f a l s e . In any case, so much syntax has 
been l e f t unexplained by t h i s analogy ( f o r example 
the 2. , + 1 , HO = 0, +Fm, and Fl = 1) t h a t we can 
have no conf idence in t h i s con jec ture anyway. 

Furthermore even i f our g e n e r a l i z a t i o n system 
were soph i s t i ca ted enough to r e w r i t e the H theorem 
as the equ iva len t theorem: 
(VnH(n+2)=2H(n+l)+l 'H l « l ^HO=0) + Hn=2n-1 
(VroF(m+2)-F(ra+l)+Fm / F l - 1 > FO=0) + Fm=? 
The c loses t analogy would s t i l l not exp la in the 2* , 
+ 1 , and +Fm. 

The problem here is t h a t H and F are so d i s ­
s i m i l a r t h a t no immediate analogy can be made. 

3.2 Temporal Method based on Proofs 
The bas ic idea of the temporal method based 

on p roo fs is as f o l l o w s : 
1) F i r s t us ing the temporal method based on t heo r ­
ems f i n d a problem H which is s i m i l a r to the p rob ­
lem F you are t r y i n g to solve and con jec ture a 
s o l u t i o n f o r F . 
2) Using the deduct ive system produce the proof of 
H and a p r o t o c o l of F w i t h t h a t hypothes is . 
3) F i n a l l y compare the proo f w i t h the p r o t o c o l to 
f i n d out why no s o l u t i o n was ob ta ined , and form a 
new hypothes is . 
Suppose, now t h a t we are t r y i n g to f i n d a s o l u t i o n 
to the F ibonacc i f u n c t i o n F, g iven t h a t we a l ready 
know the s o l u t i o n to the Tower of Hanoi f unc t i on H. 
We s h a l l use the p roo f of the s o l u t i o n of H which 
i s g iven as descr ibed i n sec t i on 2 . 2 , s t a r t i n g w i t h : 
3a Vn Hn = a n - 1 
The hypothesis f o r the s o l u t i o n of F is 
3 a Vn Fn - a n - l 
(We could throw in a few e x i s t e n t i a l cons tan ts , f o r 
example: Fn = a.an - 3 , but i t won ' t make any d i f ­
ference a t t h i s s tage. ) 

Using our deduct ive system we ob ta in the f o l ­
lowing p r o t o c o l : 

was f i r s t a p p l i e d . We then see t h a t the steps in 
the base case of p roo f and p ro toco l were the same, 
and t h a t the f i r s t few steps on the i nduc t i on step 
branch of the p roo f and p r o t o c o l were the same. In 
f a c t we f i n d t h a t they d i f f e r exac t l y where H(n+1) 
is rep laced by 2(Hn)+l 
H(n+l )=a(Hn)+a- l 

This then is the problem. On F the theorem prover 
inducts because i t c a n ' t recurse , because F recurses 
on n+2 not n+1 , whereas H immediately recurses to 
ob ta in a s o l u t i o n . 

So granted t h a t F recurses on n+2 and t h a t the 
theorem proven inducts tw ice the ques t i on , i s : why 
is not a s o l u t i o n obta ined a f t e r the second induc­
t i on? Let us compare the steps beginning w i t h the 
second i nduc t i on in F to the steps in Hn: 
3a Vn Hn = an - 1 3a Vn. F(n+1) = aFn+a - 1 
We see t h a t Hn invo lves some term "a " exponent iated 
by the i nduc t i on v a r i a b l e n. Comparing Hn to Fn+1 
t h i s leads us to suspect t h a t Fn+1 might a lso i n ­
vo lve some term exponent iated by the i nduc t i on term 
n+1 . Thus we would hypothesize t h a t Fn+1 invo lves 
some term b or ra the r than Fn invo lves some 
term b . The reader should bear in mind t h a t the 
hypothesis is not a f o r t h i s a would c lash w i t h 
the bound v a r i a b l e a a l ready occur ing in the above 
Fibonacci express ion. The p o i n t i s t h a t the " a " 
in the Hanoi expression and " a " in the Fibonacci 
expression are two d i s t i n c t bound va r iab les ,wh ich 
do not necessar i l y r e f e r to the same number. 

There are two o ther i n d i c a t i o n s t h a t Fn i n ­
volves a term of the form b . I nduc t ing on n in 
each ca^se we get r e s p e c t i v e l y the base cases: 

Note t h a t in the p roo f of H a skolem f unc t i on d i s ­
appears by having a rep laced by 1 whereas in the 
p r o t o c o l of F no skolem f u n c t i o n disappears in 
t h i s manner. Here then is a second i n d i c a t i o n t h a t 
a term of the form b or ra the r b is needed in the 
Fibonacci p r o t o c o l . 

F i n a l l y , by comparing the i nduc t i on steps of 
H and F we note t h a t in H the e q u a l i t y i tem r e ­
placed a by an express ion , whereas in F it merely 
replaced " a " by an express ion. Here then is a 
t h i r d i n d i c a t i o n t h a t Fn invo lves an expression o f 
the form b (where b is not necessar i l y equal to a ) . 

We now compare t h i s p r o t o c o l w i t h the proof of Hn. 
We see t h a t in both cases the i n d u c t i o n p r i n c i p l e 

Thus, f o r three reasons we are lead to the b e l i e f 
t h a t Fn invo lved some term b where b is not neces­
s a r i l y a. We now go back and modify our o r i g i n a l 
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b e l i e f : t h a t Fn invo lves a : 
(Be l i e f Fn invo lves a ) 
to the new b e l i e f t h a t Fn invo lves both a and b : 
(Be l i e f Fn invo lves a + b ) 
And t h i s new b e l i e f , as we have a l ready seen in 
sec t ion 2 .3 , s u f f i c i e s t o f i n d the c losed- form s o l u ­
t i o n t o the F ibonacc i f u n c t i o n . 

3.3 Summary 
In summary we have descr ibed two temporal i n ­

duc t i ve methods, one based on comparing the s t a t e ­
ment of a problem w i t h the statement of a s i m i l a r 
p rev ious l y solved problem, and the other based on 
comparing the unsuccessful at tempts to solve a 
problem w i t h the p roo f of an analogous problem. In 
e i t h e r case we have found t h a t i nduc t i ve reasoning 
depends on the a b i l i t y to make use of prev ious s o l u ­
t i o n s . 

We have a lso seen how the type of b e l i e f need­
ed to apply the method of succession ref inement to 
the F ibonacc i problem might be generated. 

4. Conclusion 

4) A mathematical i nduc t ion p r i n c i p l e . 
5) Rules to equate the c o e f f i c i e n t s of var ious types 

of express ions. (This a b i l i t y is needed by the 
method o f e x i s t e n t i a l func t ions) 

Of course, i f we were to a l low the use of soph is ­
t i c a t e d mathematical techniques we could e a s i l y 
solve the problems we have considered in t h i s paper. 
In p a r t i c u l a r , we could implement a theorem prover 
based e i t h e r on the ru les o f the f i n i t e d i f f e r e n c e 
ca lcu lus (Spiegel [1971 ] , Jordan [1965 ] ) , or on 
the method of generat ing func t ions (L in [1968 ] , 
Bekenbach [1964 ] , Knuth [1969] , Jordan [ 1965 ] ) . 

But t h i s is j u s t what we do not want to d o , f o r 
t h i s would not exp la in how the mathematical 
knowledge embedded in these techniques was a c t u a l l y 
c rea ted . In our view of mathematics, we see t h a t 
t h i s knowledge i s b a s i c a l l y created by t r y i n g to 
solve a number of problems using on ly one's general 
i nduc t i ve a b i l i t i e s and the cu r ren t s ta tus o f one's 
deduct ive a b i l i t i e s . Then one genera l izes and 
organizes the methods t h a t one has found use fu l in 
so lv ing these problems i n t o some s o r t of deduct ive 
ca l cu lus , such as f o r example the theory of f i n i t e 
d i f f e rence equat ions or the method of generat ing 
func t i ons . One then adds t h i s ca lcu lus to one's 
deduct ive a b i l i t i e s , hencefor th making what were 
d i f f i c u l t problems q u i t e easy, thus a l low ing one 

to t r y to solve problems in more d i f f i c u l t domains 
by repea t ing t h i s process. 
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We have i nves t i ga ted and descr ibed severa l 
f e a s i b l e methods of i nduc t i ve reasoning which are 
use fu l in the domain of so l v i ng d i f f e r e n c e equations. 
We s t ress t h a t these methods use no mathematical 
knowledge in terms of lemmas, s t r a t eg i es or r u l es 
o ther than t h a t which would be ava i l ab l e to a simple 
a lgebra theorem prover which has on ly the f o l l o w i n g 
r u l e s * . 
1) Rules to s i m p l i f y a lgebra ic express ions. 
2) The l o g i c a l r u les needed to put formulas in 

con junc t i ve and d i s j u n c t i v e normal form. 
3) The two e q u a l i t y r u l e s : 


