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Abstract

We investigate several methods of inductive
reasoning in the domain of difference equations,
including the method of generalization with beliefs,
the method of successive refinement, and temporal
methods based on comparisons with previously solved
problems.

1. Introduction

We begin a study of inductive reasoning in
mathematics. Inductive reasoning in mathematics
differs from inductive reasoning in the empirical
sciences in that there is an ultimate test although
not necessarily a decision procedure, which can be
used to determine what is a correct induction.
Namely, that if what is induced is true, that is:
if it can be deduced by one's deductive system
then it must be correct. Because of this relation-
ship between induction and deduction one of our
goals is to classify what instances of reasoning
are inductive and what are deductive.

Our main goal however, is to create a taxonomy
of feasible inductive methods. Such a goal is not
unrelated to the work of the mathematician: G. Polya,
[1967, 1968A, 1968B], it is just more detailed. In
particular, we try to carry out the analysis of
each method to a level detailed enough so as to be
programmed. Also, where necessary, we relate the
inductive methods to the level and capabilities of
contemporary deductive systems. Due to this re-
quirement for detail we shall restrict our atten-
tion to a particular, but significant domain.

1.1 Our Problem Domain

We consider the problem of trying to find by
inductive reasoning a closed-form solution, that
is an algebraic solution, to a recursive function.
That is, from a set K of equations of the form*:
wi (n,fn,f(n-h) ,f(n-2h) . . .)=0 or rather:

fn = wk (n,f(n-h),f(n-2h),...)
we wish to find an equation of the form:
Vn fn - @n where f does not occur in @.
For example, given the recursive equation for

the Fibonacci function:

F(n+2) = F(n+1)+Fn

FI =1

Fo =0

We would like to find a theorem of the form:

Vn Fn = gm

where @n is a sentence constructed from algebraic
symbols such as numerals, plus (+), times (*),
power (), minus (-), division (/), logarithm (In),

* Our convention for parenthesizing complex sub-
expressions is to place the left parenthesis be-
fore the function symbol as is done in EVAL-LISP.
Thus we write (F n) and (a + b) not F(n) and

(@) + (b).
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sine (sin) and cosine (cos).

Or as another example, given the recursive
equations for the minimum number of moves that must
be made in the Tower of Hanoi puzzle of n discs (a
description of this puzzle may be found in Luger
[19761.)

H(n+1) = 2(Hn)+I

HO =0

we would like to find a closed form solution:
Vn Hn = gn.

1.2 A definition of "Inductive Reasoning"

Of course if we, or rather our program al-
ready "knew" a closed form solution gn for a re-
cursive function such as F or H then we would not
want to call the method by which that en was pro-
duced: "inductive reasoning". The problem then
of defining just which methods of producing en are
examples of inductive reasoning, and which are not
- resides in the question as to what it means for
a system to "know" something. For example if the
system had;

Vn Hn = gn

explicitly stored as an axiom we would clearly say
that the system knew that Vn Hn = @n. Further-
more, if the system could apply a sequence of items
(i.e. axioms, lemmas, axiom schemas and lemma
schemas, written say in LISP) which transformed Hn
into gn, then if the system knew that each applic-
ation of an item in that sequence produced a cor-
rect result, then again we would say that the
system knew that (Vn Hn = gn) .

So far this is an omnipotent sense of knowledge:
We know whatever is deducible. We would like to
modify it by the further requirement of feasibility.
That is, any sequence of application of items must
not be so long as to exhaust the system's resources
or our patience. In regard to feasibility, it is
pointed out that we don't strictly speaking have
to "know" that each application of an item is cor-

rect, (for after all, proofs from axioms only are
very long), but rather all that is needed is the
possibility of "knowing" that our items are correct

in the sense of an extensible deductive system
(Brown [1976A]), coupled with the "belief"* that
our items are correct in at least the sense of never
having been refuted (i.e. shown to be incorrect)
(Popper[1968]) .

In summary then we will call any method of
producing a closed-form solution @n, which is not
"known" to be the closed-form solution, inductive
reasoning. For example, enumeration of all poss-
ible algebraic functions or random guessing would
count as inductive reasoning (albeit poor inductive

* We speak of "knowledge" as true "belief". The
point is that although we hope that our deductive
system is sound, there does not seem to be anyway
to absolutely guarantee this fact.
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reasoning) because as items of a deductive system
they would quickly be refuted by producing false
results.

2. Elementary Inductive Methods

We first describe two basic methods of in-
ductive reasoning, and then compare them.

2.1 The Method of Generalization with Beliefs

One popular theory of inductive reasoning
(Meltzer [1969], Plotkin[1969, 1971],Popplestone
[1969], Feldman[1969], Hardy[1976]) suggests that
it is basically generalization.* Consider for
example the Tower of Hanoi problem. Using the
recursive equations we can deduce closed-form solu-
tions for numerical instances of Hn.

HO =0

HI = HO+1 = 2.04-1=1
H2 - 2H1+1 = 2.1+1 = 3
H3 - 2H2+1 = 2.3+1 =7
H4 = 2H3+1 =2.7+1-15
H5 - 2H4+1 = 2.15+1 = 31
H6 - 2H5+1 = 2.31+1 = 63

| suspect the reader has already induced a closed-
form solution for Hn, but let us investigate how
this might be done. From

HO=0 HI=1 H2=3 H3=7 H4=15 H5=31

we wish to find**
¥Yn Hn = 7

H6=63

First let us note that a least general general-
ixation method such as Plotkin [1969,1971] does not
work because the least general generalization:

Yo Ym HL = m is false.

Furthermore,even if we include an algebraic
matching facility similar to that used in Feldman
[1969] and Hardy [1976]***which allows us to try to
relate the arguments of the Hn function to its val-
ues by adding,multiplying,subtracting,and dividing,
we still would not obtain a solution. For example,
adding one to the sequence of values of Hn gives:

HO+1=1 HI+1=2 H2+|=4 H3+|=8 H4+|=16 H5+I=32 H6+1=64

¥n Hn = ?

But still the
is false.
So how can the closed form solution be induced?
Let us suppose that the inductive system has avail-
able a belief that any function which produces the
sequence of values 1, 2, 4, 8, 16, 32, for the
arguments O, 1, 2, 3, 4, 5, is probably equal to
the exponential function of base 2:
(Belief 1, 2, 4, 8, 16, 32 is probably 2")
Then given this belief a system might try to com-
pare the sequence 1, 2, 4, 8, 16, 32 to the se-
quence of values given by the recursive function
by applying various algebraic operations pairwise
* We consider analogy to be an essential component
of the method of generalization as here described,
and hence do not define a separate: method of
analogy.
** 'V is our symbol for all.
*** |In our case, however, we work directly on the
numbers themselves rather than applying algebraic
operations to the number of occurrences of symbols
such as: the successor symbol.

remaining least general generalization

to the elements of each sequence. For example,in
the case of Hn we might subtract from each element
of the belief sequence, the corresponding element
generated by Hn, obtaining
124816 32
-013715 31
1111 1 3%

a sequence of ones. This would give us the know-

ledge fhat
HO = 21 -1
H] = 22 -1
H2 = 23 -1
Hl = 24 -1
H4 = 25 -1
HS « 27 - 1
and via our belief, we induce that:
Hh = 2" - 1
which in fact is true.
There is, however, another inductive method
which, other than for possibly the triggering of

the belief that the closed form solution might in-
volve an expenential function of base 2, does not
really need to produce those instances of the Hn
function. Nor does it need to go through any
generalization steps. We call this method, the
Method of Successive Refinement.

2.2 The .Method of Successive Refinement
The basic idea of the Method of Success Re-

finement is to make an initial (incorrect) guess
as to what is the closed form solution, let a
theorem prover try to prove this guess, and when

it fails to prove it, go back and try to modify
each branch of the protocol on which " had been
produced. For example, let us suppose that we
believe a solution to Hn might involve an exponent-
ial function to a power of two:

(Belief Hn involves 2")
In other words, let us first form the hypothesis
that;

Hn - 2"
and see what a deductive system will do to this
expression. Inducting on n we get*:

Hn = 27

Ho = 2° 4 T gn e 2% (nal) =2
HO = 1 .
O=1 :

n |

Already we are in trouble as the deductive system
shows that our hypothesis is false, on the base
case. Can we modify our hypothesis to induce a
better one? Analysing our proof we see that if
the expression 0 =1 were replaced by 0 = 1 - 1,
then o and not n would be produced. This means that

HO m 1 would have to be HO = 1 - 1,
HO = 2 would have to be HO = 2 - 1, and
Hn = 2" would have to be hn = 2" - 1.

Giving our new hypothesis to a
get:

deductive system we

* m is our symbol for true; a is our symbol for
false, and >-is our symbol for implication. The
left branch is the base of the induction, and the

right branch is the induction step.
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Hn = 2" -1
-
go =201 % (fin) =218 (n+1) m2"* 11
HO=1 -1 2= (Hn) +1+8 (n41)=2-27-1
HO = O H{n+1)=2 ({En}+1)~1
0=0 Hin+l)=2 (Hn)+2-1
a H{n+1)=2 (Hn)+1
2(Hn)+1e2 (Hn}+1

]
which we deduce to be true.
We see then that we can obtain a proof by mod-
ifying a previous unsuccessful attempt at proving

a theorem. This leads naturally to the question
as to what is the space of all such modifications?
Although, potentially this space may be quite large,

we will only consider two simple modifications:

1) addition of a constant to an equation in order
to make it true

2) multiplication of a constant to an additive part
of an equation in order to make it true.

We have just seen an example of (1) in obtaining a

solution to the Hanoi function. An example of

(2) applied to the false equation

1-/5 would be to multiply /5 by 1//5

and an example of (2) applied to an additive part
of the false equation

0-1+1/5

would be to multiply the additive part 1 by - 1//5

Note that modifications are only made to the
right hand side of an equation. The reason for
this is that that side contains the closed-form
solution whereas the other side merely contains
the recursive function.

The reader will see in the method of success-
ive refinement an echo of Meltzer's [1969] hypo-
thesis that inductive reasoning is inverse deduc-
tion. But in our case, this is not so much a
semantical hypothesis: if A>B then A may be in-
duced from B, as it is a notion of search strategy
in the sense that if B is deduced from A by apply-
ing the item* A -> B to A, then A is induced from
B by applying the item in the opposite direction.

We have seen how the closed-form solution for
Hn may be obtained from the belief that the solu-
tion involves an exponential function of base two.
Note that this belief is stronger than what is

necessary, and that the belief that some arbitrary
exponential function a is involved suffices: That
is, if 2 is replaced by a in the previous protocols,

essentially the same result will be obtained.

2.3 Comparison of the two Methods

So far, we have found that simple generaliza-
tion methods are not sufficient and that sophisti-
cated beliefs seem to be used in inductive reason-
ing. We have cast doubt on the suggestion that
inductive reasoning is only generalization by de-
scribing another technique, the method of success-
ive refinement, which seems to be more powerful
(because it needs a weaker belief to produce the
solution).

One advantage of the generalization method is
the possibility of triggering the 2" belief by an
algebraic matching of the 1, 2, 4, 8, 16, 32, se-
quence to the sequence generated by the Hanoi
function: Hn. A second advantage is that it is
*<-> s our symbol for iff (if and only if).

quite easy to explain how the belief, that a func-
tion whose initial instances are 1, 2, 4, 8, 16,
32, is the exponential of base 2:

(Belief 1, 2, 4, 8, 16, 32 is probably 2" n

was produced by simply instantiating n in 2 to
successively 0, 1, 2, 3, 4, 5 whereas it does not
seem quite as easy to explain the production of
the initial hypothesis that Hn involved some ex-
ponential function:

(Belief Hn involves a")

Are we for example to believe that the closed-form
solution of every recursive function involves an
exponential function or what?

Although it is easier to explain the origins
of a belief of the form:
(Belief 1, 2, 4, 8, 16, 32 is probably 2")

than of the form:
(Belief Hn involves a )
we note that if a recursive function is not actu-
ally equal to a simple algebraic function such as
2 then it is quite improbable that the necessary
belief of this first form could be available to be
used in obtaining the closed-form solution. We
will now give an example of such a function and
suggest that the closed-form solutions of most re-
cursive functions are of this character. This
example is interesting because it supports the view
that inductive reasoning based only on the method
of generalization even with sophisticated beliefs,
is not sufficient, and that other methods are also
needed.

Our example is the Fibonacci function.
its recursive equations we deduce:

Using

FO =0

F1 =1

F2 =FI +FO=1+0=1
F3=F2 +Fl=1+1=2
FA =F3 +F2=2+1=3
F5 =F4 +F3-3+2=25
F6 = F5 + F4 =5 + 3 =8
F7 = F6 + F5 = 8 + 5 = 13
Thus from

FO=0 Fl=I F2-1 F3=2 F4=3 F5=5 F6=8 F7=13
we wish to find:

Fn = ?
But there is no simple algebraic function which
produces an initial sequence anything like 0, 1,1,
2, 3, 5, 8, 13. In other words there could not
be any belief of the form:
(Belief aq....am is probably a )

which would be helpful in solving this problem.
For after all we cannot expect to have beliefs
about every algebraic function in our system;
the simple ones. We can see that the closed-form
solution is not simple, by actually exhibiting it.
Concurrently we will take the opportunity to show
how this closed-form solution could be obtained
by the method of successive refinement using the
belief that the solution involves two exponential
functions:
(Belief Fn involves a , b )
where a # 0 can b # 0.

From this belief we form an initial hypothesis

only

that:

Fn = a" + b"

and see what our deductive system will do to this
expression. Inducting on n twice, because Fn
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does not recurse on Fn+1, we obtain;

Jalbvn Fq‘ﬁ_an +b"
s ’
Fo=a°+b° Fn=an+bn+F (n+l) --».aM1+brl+1
FOm]+l a"=Fn-b"+F {n+1) -aan+bn+1
FO=2 F (n+1)=a (Fn-b") 4771
o2 F(n+l)=a (Fn)+{b-a)b"
[
o ] I

- . R '
F (n+1) =aFn+ (b-a) b'>F {n+2) =aF (n+1) +{b-a) b L

(bra) B =F (n+1) ~aFn~F {n+2) =aF (n+1}+(b-a)b"b
’ F{n+2)=aF (n+l)+F{n+l)-aFnlb
F{n+2)=aF {n+l) +bF (n+1} ~abFn
F{n+2)={a+b}F(n+l)-abFn

ol
F1=aFO+ (b~a)b®

Fl=a-0O+(b-a}"l

Fl=0+b-a F(n+1)+Fn = (a+b)F (n+l)
Fl=b-a {a+b=1)F {n+1) - (a~b+]) Fn=G
1=b-at a+b=1=0 A a*b+1=0
L R L) .
N2 2
i *
J ”»
u_l%—s- a+b~1=0 a'b+1=0
. a=l-b ..., {1-b)-b+l=0
1=v5 -
. ; .
8 .a=l:£§. h—b2+1=0
v 2 2
b ~b-1=0
1-v5
2
[ ]

The induction step seems to be true, but the
two base cases are false. Can we modify our hypo-
thesis to induce a better one?

Analysing the Fl base case we see that if the

in (1 = /5) had been divided by 5 then m would
have been produced. This means that the base
case would have had to have looked something like:
Fl=aFO+((b-a)//5)b
Fl=a-0+((b-a)/5)-I
FI-0+(b-a)/V5

Fl=(b-a)//5
1= (b-a)/V5

1= ((1-N5)/2-(14+V 5)/2)/V 5
1= 2V5/2V5

1-1

D

* In contemporary deductive systems (Brown [1976B,
1977], Boyer [1975]) the equality or unification
items would end up replacing all occurrences of say
"a" by b-1. A system used in successive refine-
ment should not do this because if Fn = a” + b" is
false a might not equal b - 1, and then we would
not want to propagate this falsity into the branch
of the proof which is the induction step which may
after all be true as in this example. The reason
we prefer to have n derived on the branch of the
proof which is the induction base rather than the
induction step is that it is a simpler branch and
will be easier to analyse why it produced n, in
order to induce a hypothesis.

Working upwards we see that the five previous lines
in the proof must have been something like:
Fman+§n//5
- —
e T
4 Fg-nn+b://5 *—F(n+l}-an+i+bn:i//5
: a"wFn-b" /5 + F(n+l)=a+a +b“+1/ls

? F(n+1)=a (Fn-b"/v5) +b“n Vs
F (n+1)=aPnH(b-a) /V5)b
»> T
» ?

So far we have been able to induce a new hypothesii
which will probably make the Fl-base branch of the
proof result in But, does this change the re-
sult of we had previously obtained in the in-
duction step branch of the proof? Since induct-
ing on Fin+l}~= aFn+ (b-a) /v5 - b glves:

+
Fn+1=aFn+(g—a)//5bn*Fn+2=aFn+l+(b—a}//5 hE 1
{b~a)/V/5 b =Fn+l-Fn +Fn+2=aFn+l+(b-a)/¥5 b b

Fn+2=aFn+l+(Fn+l-aFn)b
and since the third line is identical to our prev-
ious third line we see that the induction step
branch of our proof will still result in m.

Of course we don't actually have to analyse
our proofsteps downward, as we could simply apply
our deductive system to such a step and see what
it does. For example, to see that
Fn+1 = aFn +((b-a)// 5)b" results in = all we need
do is to apply our deductive system to it.

We have now produced a modification which re-
sults in a on both the FI base, and induction step
branches of our proof. Only the FO base step re-
mains. The FO base branch resulted in o, so we
know that some sort of modification is what was
needed to make the FO base branch result in m:

We first check to see if the modification induced
from the FI base branch will suffice to make this
branch result in

Fn o= a" + bn/n/S
FQ = ao + bO//5
FO = 1 + 1%
0=1+ 1/v5

o
So there is still a problem. I1f, however,
0=1+L1//5S were 0 = 1/¥/5 - 1//5 then 0 = D, ®
would have been deduced. For this to be the case
FO=1+1/¢/5  would have to be FO=1//5 - 1/V5

FO=a +b"/¥5 would have to be FO=a®/vs - bC//s
and finally:

Fn=(an—bn)/»f’5 would have to be Fn=a -b'//S
and then our deductive system would easily be able
to deduce thatnthisnnew hypothesis:

Jalb ¥n Fn = 22
fr

is true.

Replacing a and b by the algebraic terms that
we have found them to be in our proof we find that
the closed form solution for the Fibonacci func-
tion is:
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1+v5.7 1~ /50

¥n Fn = 2 o= 2
Vs

Thus we see that although it is plausible that we
might be able to induce this solution by the in-
ductive method of successive refinement, it is not
very plausible that we could have induced this
solution by the generalization method. The reason
for this, as will be recalled, is because the gen-
eralization method would require prior beliefs
that:

(Belief:1,1.618,2.616,4,236,6.854,11.0%0 is

prabably --; /5"

(Belief:1,-.618 .382 -.236 .146 -.09C is n
V5

probably —]L-;—
And it simply does not seem plausible that such
beliefs would be available.

2.4 The Supplementary Method of Existential
Functions

We have one final point to make about the
Fibonacci example: If we had a slightly more
sophisticated belief as to what the closed-form
solution might be, then our deductive system would
be able to obtain the solution in a very direct
manner. Let us suppose that we have the belief
that the closed-form solution of the Fibonacci in-
volves a linear combination of two non-zero func-
tions :
(Belief Fn involves a a, + Bb")
Then the hypothesis is: 3Jadglaib VmeFn = +Bb"
A solution is obtained by inducting twice on n:

jaigdadb vn Fn = gan + 8"

0475 o 41, n+l
POmoa +Bb Fn-ann+8bn-+F (n+1}-aan +an

FOmo+1+8+1  aa"=Pn-AbTF (n+l)=aa a+ap" '

FOma+8 Fin+1)= (Fn-Bb") a+gp™"!
Oma+8 F(n+1)=aFn+ (b-a}gb"
a=—f e

{a=1/V/5) .-

-

k)

| Fin+1)=aFn+ (b-3) Bb"F (n+2) =aF (n+1) + (b—a) gb" 2

{b-a) Bb"=F (n+1) -aFn+F (n+2) =aF {n+1}+ (b-a) 8b"b
F(n+2)=aF (n+1)+F (n+l) -aFnlb

t
Fi+aPQO+ (b-a) Bbo F (n+2)=aF (n+1) +bF {n+1) ~abFn
Fl=a+O+{-a)B-1 F(n+2)=(a+b)F(n+l}-abFn
Flago+ {b~a) 8 F(n+l)+Fn= (a+b}F (n+l)~abFn
Fl={b-a)8 {a+b-1)F{n+l}-{a*b+l)Fn=0
1={b-a)8 a+h~1=0 Aas b+1=0
fm— > s
b-a a+b-1=0 arb+l=0
1 a =l-b..,{1-b) b+l
(B ]
V15 - 14/ DS 200
2 4 \ ¢ b =b=1=0
(8= -7-2 1-/5
=~2v5 ! b-—é—

. 1\

B= =~
(B= 2 75
This technique of using existential functions has
been used by Bibel [1976](in our case constants:
a,b,a,B).Because it is so powerful that we shall
raise it to the status of a third inductive method
which we shall call: The supplementary method of
existential functions. It should be noted that
this technique is no substitute for the more gen-
eral method of successive refinement, for its power
depends on knowledge possessed by the deductive
system. In the protocols using the method of
existential functions we have assumed the ability
to solve equations of the form:

f-0
for an arbitrary existential constant. This
knowledge was not assumed when not using this
method. We shall see more of this method in sec-
tion 3.

2.5 Summary
In summary then we have described two basic

inductive methods and one supplementary method; and
have shown that the effectiveness of each method
depends on the availability of particular beliefs.
We have suggested that the beliefs needed by the
generalization method would only be available if
the recursive function is equal to some very simple
algebraic function, such as is the case with the
Tower of Hanoi function. For most other recursive
functions such as the Fibonacci functions we have
suggested that the beliefs needed by the generaliz-
ation method would not be available.

In section 3 we describe how the beliefs need-
ed by the method of successive refinement might be
automatically produced.

3. Temporal Inductive Methods

We now describe methods of inductive reasoning
based on information obtained from the solutions of
previously solved problems. Such methods are call-
ed temporal inductive methods. There are two
temporal inductive methods, distinguished by the
type of information on which they are based. The
first temporal method is based solely on informa-
tion obtained from the theorem which expresses a
previously solved problem, whereas the second
temporal method is based on information obtained
from the proof of a previously solved problem.

Referring back to section 2.5 we shall see in
section 3.2 how the second temporal method may be
applied to producing the kind of beliefs needed by
the method of successive refinement.

3.1 The Temporal Method based on Theorems

The basic idea of the temporal method based on
theorems is for any given problem F to try to find
a similar problem H which has already been solved,
and then to use something similar to the solution
for H as a hypothesis for the solution of F.

For example let H be the Tower of Hanoi prob-
lem whose solution we discovered in Section 2, and
let F be the Fibonacci function whose solution we
are trying to find. The theorem which expresses
the solution to the Hanoi problem is then:

(Vn H(n+l)=2(Hn)+IAHOO0) -> Hn=2"-1
and the (as yet incomplete) theorem which expresses
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the Fibonacei problem is then:

{¥nP (n+2)»F {n+l)+Fn AFla)l APO=0) + Fna?

We now try to compare these two thsorems in oyxder
to produce a guess as to what ? should be;

{(¥n Hin+tl)=2Hn + 1 A HO = Q)+ Hn-Zn_l
¥m F(m+2)=F(m+l]) + Fm Fl=l1l’'FfO=2D~+>Famw?

We see that there is no reasonable analogy that we
can make which will help us to solve F. For ex-
ample, if we form the analogy that mis n - 1 from
(Hn+1 Fm+2), then we might conjecture that:
Fm=2"" -1
which is false. In any case, so much syntax has
been left unexplained by this analogy (for example
the 2. , +1, HO = 0, +Fm, and Fl = 1) that we can
have no confidence in this conjecture anyway.
Furthermore even if our generalization system
were sophisticated enough to rewrite the H theorem
as the equivalent theorem:
(VnH(n+2)=2H(n+I)+l 'HI«I"HO=0) + Hn=2"-1
(VroF(m+2)-F(ra+l)+Fm / FI-1 > FO=0) + Fm=?
The closest analogy would still not explain the 2*,
+1, and +Fm.
The problem here is that H and F are so dis-
similar that no immediate analogy can be made.

3.2 Temporal Method based on Proofs

The basic idea of the temporal method based
on proofs is as follows:
1) First using the temporal method based on theor-
ems find a problem H which is similar to the prob-
lem F you are trying to solve and conjecture a
solution for F.
2) Using the deductive system produce the proof of
H and a protocol of F with that hypothesis.
3) Finally compare the proof with the protocol to
find out why no solution was obtained, and form a
new hypothesis.
Suppose, now that we are trying to find a solution
to the Fibonacci function F, given that we already
know the solution to the Tower of Hanoi function H.
We shall use the proof of the solution of H which
is given as described in section 2.2,starting with:
3a Vn Hn = a"- 1
The hypothesis for the solution of F is
3a Vn Fn - a"-1
(We could throw in a few existential constants, for
example: Fn = a.a" -3, but it won't make any dif-
ference at this stage.)

Using our deductive system we obtain the fol-
lowing protocol:

ja ¥n anan—l

. =
Fo=a®-1 Fnea”-1+¥ (n+1)ma® 1o
FOs1-1 al= (Fn) +1+F (n+l)=asa’-1
FQmD Fin+l)=a- {{Fn)+1)=1
o=0 F{n+L)=a(Fn) +a-1

g —

Fl=aFO+a-1 F(n+l)=aFn+a-1+F (n+2)=aF {(n+l)+a-1

Fl=a+O+a-1  a(Fn)+1=F{n+l) +1+F {n+2) maF (n+1)}+a-1

Fi=O+a-1 Fintl}+

Fl=a-1 .._{_f{‘?n}.;?%_ =F{n+2)ma (F{ntl}+1) -1
1=a=1 F(n+2) (En+2)+1)2 L
2=a (Fn)+1

-
.
.

We now compare this protocol with the proof of Hn.
We see that in both cases the induction principle

Specialized

was first applied. We then see that the steps in
the base case of proof and protocol were the same,
and that the first few steps on the induction step
branch of the proof and protocol were the same. In
fact we find that they differ exactly where H(n+1)
is replaced by 2(Hn)+I
H{n+l)=a{Hn)+a-1 F(n+l}wa(Fn)+a-1
+

2*H({n+l)=a{Hn)+a-1 Fl=aFO+a-1

F(n+l)=a {Fn)+a~1+F (n+2)=a {Fn}+l+a-1

This then is the problem. On F the theorem prover
inducts because it can't recurse, because F recurses
on n+2 not n+1, whereas H immediately recurses to
obtain a solution.

So granted that F recurses on n+2 and that the
theorem proven inducts twice the question, is: why
is not a solution obtained after the second induc-
tion? Let us compare the steps beginning with the
second induction in F to the steps in Hn:
3a Vn Hn = a" - 1 3a Vn. F(n+1) = aFn+a - 1
We see that Hn involves some term "a" exponentiated
by the induction variable n. Comparing Hn to Fn+1
this leads us to suspect that Fn+1 might also in-
volve some term exponentiated by the induction term

n+1. Thus we would hypothesize that Fn+1 involves
some term b or rather than Fn involves some
term b The reader should bear in mind that the

hypothesis is not a for this a would clash with
the bound variable a already occuring in the above
Fibonacci expression. The point is that the "a"
in the Hanoi expression and "a" in the Fibonacci
expression are two distinct bound variables,which
do not necessarily refer to the same number.

There are two other indications that Fn in-
volves a term of the form b Inducting on n in
each ca"se we get respectively the base cases:

HO = 2~ - 1 Fl = aFO+ a - 1
HO=1-1 Fl=a0+a-1
A0 = © Fl=0+a-1
0=0 Fi=a-~-1
| le=na-1
2 c=an

Note that in the proof of H a skolem function dis-
appears by having a replaced by 1 whereas in the
protocol of F no skolem function disappears in
this manner. Here then is a second indication that
a term of the form b or rather b is needed in the
Fibonacci protocol.
Finally, by comparing the induction steps of
H and F we note that in H the equality item re-
placed a by an expression, whereas in F it merely
replaced "a" by an expression. Here then is a
third indication that Fn involves an expression of
the form b (where b is not necessarily equal to a).
F{n+l)=a(Fn)+a~1+F(n+2)=aF (n+l)+a-1
a{Fn)+1=F (n+l)+1+F (n+2) =aF (n+l) +a-1

L(EnrLI41) F(n+2) »a (F (n+1)+1)-1

(Fn)+1
{(Fp+l)+1)° - 1
Hnma®-1+H (n+1)=a "Tio] Fns2) =y +1

+

ae (Hn) +1+H (n+l)=a a"-1 :
Hin+l)=a {(Hn)+1)-1

-
Thus, for three reasons we are lead to the belief
that Fn involved some term b where b is not neces-
sarily a. We now go back and modify our original

Systems-4: Brown
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belief: that Fn involves a

(Belief Fn involves a )

to the new belief that Fn involves both a
(Belief Fn involves a + b )

And this new belief, as we have already seen in
section 2.3, sufficies to find the closed-form solu-
tion to the Fibonacci function.

and b

3.3 Summary
In summary we have described two temporal in-

ductive methods, one based on comparing the state-
ment of a problem with the statement of a similar
previously solved problem, and the other based on
comparing the unsuccessful attempts to solve a
problem with the proof of an analogous problem. In
either case we have found that inductive reasoning
depends on the ability to make use of previous solu-
tions.

We have also seen how the type of belief need-
ed to apply the method of succession refinement to
the Fibonacci problem might be generated.

4. Conclusion

We have investigated and described several
feasible methods of inductive reasoning which are
useful in the domain of solving difference equations.
We stress that these methods use no mathematical
knowledge in terms of lemmas, strategies or rules
other than that which would be available to a simple
algebra theorem prover which has only the following
rules®.

1) Rules to simplify algebraic expressions.

2) The logical rules needed to put formulas in
conjunctive and disjunctive normal form.

3) The two equality rules:

(¥ x = ¥y + ¢x) < ¢y

Ax X = ¥ A dx} =+ py
4) A mathematical induction principle.

5) Rules to equate the coefficients of various types
of expressions. (This ability is needed by the
method of existential functions)

Of course, if we were to allow the use of sophis-

ticated mathematical techniques we could easily

solve the problems we have considered in this paper.

In particular, we could implement a theorem prover

based either on the rules of the finite difference

calculus (Spiegel [1971], Jordan [1965]), or on

the method of generating functions (Lin [1968],

Bekenbach [1964], Knuth [1969], Jordan [1965]).

But this is just what we do not want to do,for
this would not explain how the mathematical
knowledge embedded in these techniques was actually
created. In our view of mathematics, we see that
this knowledge is basically created by trying to
solve a number of problems using only one's general
inductive abilities and the current status of one's
deductive abilities. Then one generalizes and
organizes the methods that one has found useful in
solving these problems into some sort of deductive
calculus, such as for example the theory of finite
difference equations or the method of generating
functions. One then adds this calculus to one's
deductive abilities, henceforth making what were
difficult problems quite easy, thus allowing one

* These rules are embedded in an algebra theorem
prover which one of the authors (Brown) implemented
about a year ago.

Snpcialized Svstems-4:

to try to solve problems in more difficult domains
by repeating this process.
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