COMPUTER UNDERSTANDING OF MATHEMATICAL PROOFS

Vesko Marinov*

Institute for Mathematical

Studies

in the Social Sciences

Stanford University

Stanford,

Abstract

Mathematical proofs constitute a mixture of
formulas with a subset of natural language. They
can be represented as a sequence of lines express-
ible in the symbolism of predicate calculus. The
transition from step to step may depend on a
series of logical manipulations and/or on intri-
cate mathematical knowledge associated with the
domain of the proof. The organization of the
proof may depend on different conventions adopted
by mathematicians in communication with each other.
This paper deals with problems involved in follow-
ing the mathematical argument along those lines.
Some of the ideas were implemented as a part of a
system for teaching axiomatic set theory to col-
lege students. The most powerful and frequently
used rules of inference utilize a resolution the-
orem prover. To the best of our knowledge this
is the only resolution theorem prover, perhaps the
only general purpose theorem prover used in actual
production.

Key Words
Proof understanding,

ing, automatic theorem proving,
instruction.

automatic proof check-
computer assisted

Introduction

A mathematician writes down a proof of a
theorem on a piece of paper and hands it to a
colleague. The latter reads through it, usually
understands it, and all too frequently finds an

error, which means that at least in its present
form it is not a proof at all. Sometimes it takes
several readers until an existing error is de-

tected and on occasion it has taken many years to
discover errors in some difficult proofs. It
would be very useful if our mathematician could
type in the computer whatever he wrote and receive
some for of the response he received from the hu-
man reader. The paper examines problems encoun-
tered during initial efforts toward such a goal.

Furthermore, if one attempts to teach higher-
level mathematics by computer, as it is currently
being done for set theory at Stanford, it is es-

Present address: Department of Computer
Science, Oregon State University

Speclalized Systems-4:
851

California

94305

sential that the machine understands the proofs
of the students to the extent that it accepts
only the correct ones. The paper will discuss
some of the problems and experiences with the
proof checker which is the most important part of
the system for teaching axiomatic set theory
(named QUIP) developed at the Institute for Mathe-
matical Studies in the Social Sciences (IMSSS)
[6].

The CAl system has been used since the fall
quarter of 1974 to teach Philosophy 161, "Intro-
duction to Set Theory", at Stanford University.
The program was written in LISP and SAIL and runs
on the TENEX operating system for the DEC PDP-10
computer. The course is for upper-level under-
graduate students and presents axiomatic set
theory as developed in [9]. The examples here
are from proofs of theorems from the curriculum of
the course. All illustrations of the ideas em-

bodied in the mechanism for handling the proofs
are as of the time the author left IMSSS. There
have been some improvements since.

This paper will focus on the issues involved
in understanding mathematical proofs. To improve

his understanding of the examples a reader un-
familiar with proof checking should consult Suppes
[8] where the logical system underlining the proof
checker of QUIP is explained. Furthermore, due to
lack of space an explanation of the organization,
features and performance of the entire CAl system
cannot be included. It is available in [6].

Natural Language Part

There are two major problems facing computer
understanding of mathematical proofs. First, the
language of mathematics is not that of predicate
calculus. It usually is a mixture of formulas
with natural language. Thus, one of the problems
theoretically approximates that of understanding
natural language. In fact, this is not so, as
some preliminary results on the language of sets
[6] indicate that the language of mathematics,
being a very restricted subset of natural lan-
guage, will probably be handled much more easily.

A mathematical argument can be represented as
a sequence of separate steps. Our opinion is that
the best internal representation of the formulas
describing a step in a proof is predicate calculus.
In this view the main effort of the natural lan-

Marinov

guage processing will be spent in correct trans-
lation of the steps in the argument, although it
will also affect the structure of the proof and
the choice of how to go about making a step in the
proof. The remaining problem, to which this paper
is devoted, is how to follow the logical steps in
the proof.

Formal and Informal Proofs

In communications among mathematicians or
between a teacher of mathematics and his students
the steps in the proofs are as large as it is op-
timal for understanding. They are large enough to
avoid obvious but tedious details which would
usually make the proof less clear. On the other
hand, they are small enough to make it possible
for the reader to follow the proof without having
to discover it himself. The size of the steps
varies widely with different proofs and in some
cases only a very general outline is given, thus
requiring a greater effort on the part of the
reader. In any event, that is what we call an in-
formal proof. In addition, the concepts of being
essential, unfamiliar, or trivial in a proof are
not precise at all. This very vagueness of the
criteria governing informal proofs is a primary
justification for a precise definition of a formal
proof [8].

Formal proofs require precise rules for jus-
tifying each step. In that respect they are some-
what algorithmic in character. It is no wonder
that automatic proof checking is almost as old as
artificial intelligence itself [5]. One of the
first computer proof checkers was that of Abrahams
[1], which implemented an extension of the logical
system of Suppes [8]. IMSSS at Stanford has of-
fered a CAl course in symbolic logic using a proof
checker based on Suppes' system since 1963. A
later implementation is described in [2].

Size of the Steps

The problem with such formal proofs is that
their steps are quite small. A proof of somewhat
greater difficulty in set theory (or other mathe-
matical theory) could easily go up into several
hundred steps. Such proofs cannot be used for
teaching axiomatic mathematics and hardly for any
other purpose. This problem has been resolved to
a large degree in the proof checker of QUIP.

Before discussing the techniques used in
accepting larger steps we shall illustrate some
of the points made above with a comparative exam-
ple. First is the proof of Theorem 53 on page 112
in [9], Then follows the proof of the same theo-
rem as it was accepted by QUIP. K(A) is the car-
dinal number of a set A, while = means equi-
pollent. Axioms, definitions, and theorems ref-
erenced in example proofs are given in the appen-
dix. The command to the proof checker precedes
each line. Some of the commands may seem long but
are not entirely typed by the user, since the sys-
tem has a recognition feature (see [6]). The QUIP
proof below is presented as listed by the command
"Review". In doing the first three steps a bit of

Specialize Systems-4:

additional typing is required where the user in-
dicates that he wants to specify variables upon
which the system asks him what values to assign.
In the last two steps the lines have to be typed
after the command.

A proof from "Axiomatic Set Theory" by P.
Suppes:

Theorem 53. There are sets A and B such that
(i) AAB = 0, (ii) KA) = m, (iii) K(B) = n.

Proof. In view of Definition 7 (Cardinal
Number), there are sets Al and Bl such that K(A1)=
m and K(B1) = n, and by virtue of Theorem 9 there
are sets A and B such that ANB = 0, A=AIl, and
B=B1. By the axiom for cardinals, then, K(A) =
m and K(B) = n. Q.E.D.

Proof of the same theorem as accepted by the
proof checker:

Theorem 5.1.1
Derive: (3A,B)(ANB = 0AK(A) = mAK({(B) = n)

Df. of Cardinal Number
(1} K(Al) = m
Df. of Cardinal Number
(2) K(Bl) = n
Theorem 3.8.9
(3) Alf2AABIaZBAAAB = 0
I, 2, 3, Axiom for Cardinals VERIFY
{(4) K{A) = mAK{B) = n
3, 4 VERIFY
{(5) & ABY(ANE = DAK(A) = mAK{B))=n
Q.E.D.

Notice that the steps of the QUIP proof fol-
low exactly the informal proof from the book. In
the first three steps a definition and a theorem
are invoked as the appropriate instantiations are
made. The system has sorted variables and the
letters m and n are among those used for cardinals.
This enables us for example to get Line 1 directly
from the definition of cardinal number. The QUIP
proof requires Line 5 to obtain a formula which is
a variant in terms of bound variables (in this
case identical) to the statement of the theorem.
The informal proof quits at Step 4. This is one
of the many shortcuts used in informal proofs,
some of which will be discussed below. They will
eventually present the greatest problem in accept-
ing informal text proofs and will require a large
amount of additional information to be stored with
the internal representation of a line.

Step 4 is the most interesting in this proof.
It is achieved by a call to a resolution theorem
prover giving it the lines 1, 2, and 3 plus the
axiom for cardinals as references. Below is the
continuation of the proof in the formal system of
Suppes [8] as implemented in [2]. Preceding each
line to the left are the rules of inference as
typed by the user. In the brackets to the right
their names are expanded.

Axiom for Cardinals

(4) K(A1) = KA) <> A1=A
3 LC [Left Conjunct]

(5) A1=A

Marlnov

4,5 RQ [Replace Equivalence]
(6) K(Al) = K(A)
1,6 RE [Replace Equals]
(7) KA =m
Axiom for Cardinals
(8) K(Bl) = K(B) <> Bl==B
RC [Right Conjunct]
(9) Bl2=BAANB =0

9 LC [Left Conjunct]
(10) Bl=sB
5,10 RQ [Replace Equivalence]

(11) K(B1) = K(B)

2,11 RE [Replace Equals]
{12) K{(B) = n

7,12 FC [Form Conjunction]
{13) K(A) =maK(B) =n

As shown above, Step 4 requires 10 elementary
steps. Yet the informal proof only says it fol-
lows "by the axiom for cardinals". For the mathe-
matician this is an "obvious" step. In [9] one
frequently finds lines in proofs that follow by
sentential logic (p. 29, p. 52) or by quantifier
logic (p. 45, p.60). When a step is justified by
sentential logic it is decidable and one can safe-
ly lean on a tautology checker. It is our belief
that the most efficient mechanical way to confirm
a tautology is to check the truth table and thus
QUIP has a TAUTOLOGY rule based on that principle.
Steps justified by logical manipulations involving
quantifiers are undecidable in general and conse-
quently represent a much harder problem to be ver-
ified mechanically. For this purpose we employ a
resolution theorem prover with equality replace-
ment.

Resolution Theorem Prover in Action

The experience with QUIP shows that a well-
organized resolution theorem prover gets most of
the inferences seen intuitively by the user while
working on a proof. This is not quite true for
proofs involving equality, where some improvements
to the prover are needed. The user has no inter-
action with the theorem prover except for asking a
formula to be verified and supplying the refer-
ences, from which he thinks the formula follows.
An idea about the power of the theorem prover can
be gained from the following theorems from the
chapter on finite and infinite sets in QUIP's cur-
riculum, which were proved in one step.

Theorem 4.1.24 Finite(A)JABCA + BZA
Follows from:
1) Df. of Proper Subset
(WA,B)(ACB «—> ASBAALD)
2) Th. 5.9.2 (VA,B)[A B~>A B)
I} Th. 3.9.16 (WA,B)(A B *>pA B A B)
4) Th. 4.1.23 (vA)(Finite (A) -+ Dfinite(A))
5) Df. of Dedekind finite
(¥ A) (Dfinite (A) <> ™ (JCI(CCAACTA)

The above theorem was proved in 7.4 seconds
of CPU time.

Theorem 4.3.2
(3 A,B)(Infinite(A) Alnfinite(BYAA 7&'5]

Follows from:
1) Df. of Infinite Set
(WA) (Infinite (A) <> = Finite {A})
2) Th. 4.3.1 (3A) Infinite (A}
3) Th. 3.9.17 (¥ A) A<P(A)
4) Th. 3.9.13 (VA,B)(A%B +» B £A)

5) Th. 3.9.1 (WwA,B)(A=B » AL B)
6) Th. 3.8.2 (¥A,B)(A=B > B=A)
7) Th. 4.1.17 (¥ A) (Finite(P(A))+*Finite(A))

It was proved in 3.7 seconds of CPU times.

Theorem 4.1.22 Finite(A) A “¥Finite(B) + A<B
Follows from:
1) Th. 3.9.16 (vA,B) (A8 «> AxBvALB)
2) Th. 4.1.19

{WwA,B)(Finite {A)A A=»B -» Finite (B})
3) Th. 4.1.20

(¥ A,B}(Finite (A)A B<A -» Finite (B))
4) Th. 4.1.21

{A,B) (Finite {A) + A<Bv A=REvB<A)

A student proof of the last theorem usually
looks more like the following:

Derive: Finite (A)A "TFinite (B) + A 4B
Hypothesis
(1} Finite (A)A —Winite (B)
1C1, Th. 4.1.21 TIMPLIES [1Cl: Line 1,
Conjunct 1]
(2) A<BVAmBVB~<A

Assume
(3) AxB

1,3, Th. 4.1.19 CONTRADICTION
(4) A%EB

Assume
(5) B<A

5, Th. 3.9.16 VERIFY
(6) B=A

1,6, Th. 4.1,20 CONTRADICTION
(7} B£A

2,4,7 TAUTOLOGY
(8} A<B

1,8 Conditional Proof
{9) Finite (A)A—IFinite (B) - A<B
Q.E.D

This proof should be transparent even to
those unfamiliar with Suppes' logical system [8].
The theorem can be proved in one step, yet the
user usually sees the exact references on which
this step depends only after developing the proof
in the latter form. Furthermore, this form is
more like the way mathematicians prove theorems.
Still notice that the resolution prover was called
upon for Steps 4, 6, and 7.

The prover is used primarily for the rules
VERIFY and CONTRADICTION. While using VERIFY the
user has to type the line, whose negation together
with the references is passed to the prover. If
the prover is able to confirm the inference it
signals the proof checker to accept the line. For
the CONTRADICTION rule the user merely points to
the references which he believes form an incon-
sistency. If such is detected by the prover, the
proof checker returns the negation of the last
assumption on which the references depend. (Pre-
sumably there must be an incorrect assumption in
order to reach a contradiction).

Specialized Systems-4: Marlnov
853

Implementation and Strategy

The main reason for selecting a resolution
theorem prover was our belief that for the same
generality and the same power it can be designed
in @ much more compact way than a heuristic theo-
rem prover. For the purposes we are using it,
simply a mechanical tool is needed and resolution
seems to be exactly that. Later we shall discuss
the possibility of a heuristic coupler to the
proof checker, which would make the prover serve
better the needs of understanding informal proofs.
The prover was written in UCI-LISP. Together with
the converter of the formulas into clausal form it
is about 10 pages of pretty-printed code.

The prover employs the MU strategy. It con-
sists mainly of keeping only resolvents containing
merge literals or having a unit parent. It is
shown in [3] that if in a refutation there are re-
solvents not satisfying the above restriction,
there always exists another refutation from the
same input set where such resolvents are obtained
first. With this in view the strategy occasion-
ally allows for a round of general resolution
after which the restriction is imposed.

Ore thing that has plagued work on resolution
in the past has been preoccupation with complete-
ness. Recognizing that a prover is working in an
undecidable domain it is obvious that completeness
is going to be restricted by the real factors of
time and space. The main objective in choosing a
strategy and tuning a prover's parameters is op-
timizing the number of inferences it gets. It is
the author's conviction that in this context in-
completeness is a feature, rather than a drawback.
Thus, completeness in our prover is restricted
severely in many different ways.

Experiments with different strategies for
resolution, carried out earlier by the author at
the University of Texas have shown the MU strategy
to be quite efficient in the set-theoretical do-
main. One property of the MU strategy, coupled
with a limit on the depth of functional nesting in
the resolvents, is that it usually runs quickly
out of possibilities to resolve when given a sat-
isfiable set of clauses (i.e., insufficient ref-
erences). This is very important because one very
frequent error of the student users has been to
supply insufficient or incorrect references. In
such a case it is very desirable that the prover
detects this fact as soon as possible, rather than
grind until the time limit is reached. This pro-
perty has strongly influenced the selection of the
MU strategy.

Deficiencies

Probably the most frustrating property of the
prover from a CAl point of view has been the fact
that thus far it has been impossible to charac-
terize the class of theorems accepted by the
prover despite substantial effort on the part of
members of the IMSSS staff. This is most likely
a consequence of the unnatural way in which reso-
lution works. Sometimes the prover is able to

verify steps much larger than the user can see,
while other times it fails at steps which the user
expects to be accepted. It would have been nice
if one could give the users some more accurate
idea what to expect from the prover.

Inferences which are missed by the prover,
while being obvious to the user, are largely due
to the fact that resolution breaks down the form-
ulas to the atomic level before it can find a
proof. For example, the inference

(¥ mn,p,A,B){ANB=0 A K(A}=m A K(B)=n
AKAUB)=p = m + n = p}

from
m,n,p){ (T A,BAABD A K(A)=m AK(B)=n
A X(AUB)}=p] €=~ 1 + n = p}

cannot be verified by the prover. The human user,
though, with his well-developed abstraction capa-
bilities quickly sees that the left side of the
implication can be looked at as @(m,n,p,A,B) .
Hence the inference becomes:

Hmln’plA,B}[¢(mln’plaJB} +m+n = p]

from
(¢m,n,p)((74,8)2(m,n,p,A,B) > m + n = pl.

Of course, seen this way, the inference is
immediate for the prover, too. There is a pro-
vision in the program for the user to pass to the
prover the abstracted form of the formulas. What
would be desirable here is to have a heuristic
coupler between the prover and the proof checker
which looks at the possibilities of abstraction
in the set of formulas.

Implication Rule

Proofs in axiomatic systems frequently in-
clude transformations of formulas justified by the
application of definitions, axioms, or theorems.
Almost always these inferences include quantifiers
and would fall within the domain of the theorem
prover. However, such inferences are determin-
istic and one potentially loses power in taking a
chance with the prover. Many definitions are by
equivalence, which is a simple connective for the
human, but the worst one for resolution. Further-
more, for the rules VERIFY and TAUTOLOGY the
formula must be typed in, which the users are not
very enthusiastic about.

All these considerations led to the develop-
ment of the IMPLIES rule. Variables bound by an
universal quantifier containing the main connec-
tive of the justifying formula within its scope
are matched to any terms in the formula to be
transformed. For example, let

(1) f'C&fD
be a line in a proof (f"C means the image of the
set C under the function f). From it we can
infer the line

(2) (Wxi(xe £'C+x e £'D)
just by referring to the definition of subset:

(WA,B)(ASE = (Wx){x e A~+Xx € B)).

In a case like this, which happens most fre-

Specialized Systems-4: Marlnov

quently, the rule is equivalent to universal spec-
ification and modus ponens. The rule also allows
for (1) to be inferred from (2) by the definition
of subset. In some cases the matching is much
more intricate than in the example above. The
matching algorithm utilizes a subset of unifica-
tion. The same algorithm is used in matching
terms for replacements by equality in the proof.
More details can be found in [4].

Matching of Schemas

A more sophisticated application of the
matching algorithm is the matching of theorem
schemas. Sometimes axioms and theorems contain
formula schemas which can be matched to any form-
ula satisfying some variable constraints. For
example, the theorem

(3) (3B){(V¥x){x £ B +> FM(x))

+ (Wy)(y ¢ {x:FM(x}} <> FM(y))
will match the proof line

() 302z eC+—= zEM
and return
(5) (w¥){yr £ {x:xED} « y €£D).

Here, FM is matched to z&D, while the match be-
tween the designated variakle x of the schema
FM{x) and =z 1is carried along.

Occasionally it is not straightforward to
determine which variable to match with the desig-
nated variable of the schema. Then one has to
look at which quantifier matched the innermost
quantifier over the designated variable. Since
the latter is always quantified, the algorithm
would succeed if there is a possible match. Then,
when the rule is returning, the current designated
variable is substituted for the value of the vari-
able of the same schema when the match was first
made. (Of course, any subsequent conflict would
have failed the match). Thus at the point of re-
covering the value of FM(y) from (3), y is
substituted for z in z&D (the match to AV)
and y€D is returned as seen in (5). Recall
that x was associated with z when z®D was
matched to FM(x) and now y corresponds to x.

Embodiment of Mathematical Knowledge

Some lines in proofs are produced by mathe-
maticians without references to the justifying
definitions or theorems. They usually express
well-understood and well-organized domains of
knowledge shared by the workers in a particular
field. Exact references in such cases would ob-
struct rather than facilitate communication. A
very simple example from set theory is the line

6) ASC A B£C -> AVBSC.

To justify this line one should really refer to
the definitions of subset and union, although no
student of set theory does so once he has grasped
the Boolean operations and relations between sets.
More complicated examples could easily be found in
proofs on set theory, for example, in treating
functions, Cartesian products, etc.

It would be desirable if "bags" of such know-
ledge were embodied in decision methods. A good
example is the BOOE rule, which is a part of QUIP

Specialize

[7], This rule uses a decision method by Quine
and converts the Boolean operations and relations
between sets into propositional connectives, after
which a tautology check is applied.

This rule could possibly be extended to cover
more of the set-theoretical knowledge, and other
similar rules could be developed. However, it is
not clear how much of set theory could be embodied
in decision methods. There certainly will be need
for some heuristic knowledge, organized as well as
possible. In fact, such embodiments would be a
very important part of any completed system han-
dling some domain of mathematics.

Goal Hierarchy

Informal proofs employ many conventions,
assumptions, and shortcuts not explicitly mention-
ed in the proof. They largely depend on the do-
main of the theory in which the theorem is being
proven, although there are many conventions which
apply generally to mathematics. For example, it
is customary when one wants to show

(7) AESB

to assume
(8) xeA

and eventually derive
(9) x ¢ B.

Thus the proof (or part of proof) is terminated,
but the implicit assumptions are

(10) (¥ x)(x e A->x ¢ B),
and that (7) follows from (10) and the definition

of subset.

We propose that this be dealt with in the
following way. If the user wants to prove some-
thing in the form of (10), while making the as-
sumption (8) he also states the goal (9). When
the goal is legitimately achieved, the proof moni-
tor generates formula (10) and associates it with
the line (9). (At the present time a lot of addi-
tional information is being associated with each
line, i.e., free variables, dependencies, etc.).
Then if a reference to that line is made there
will be no ambiguity, since the form (9) depended
on (8) and is no longer available. (The working
premise (8) was discarded -- see [8] -- and all
lines depending on it are not available).

In more complicated proofs the user will have
to state goals on different levels in the proof.
Thus the monitor will deal with a hierarchy of
embodied goals. It would be better if the goals
were declared automatically, but at the present
time we do not foresee any reasonable way of im-
plementing the goal hierarchy handling without the
user stating the goals. Top-level goals would not
need to be explicitly mentioned.

An Informal Proof

We try to illustrate some of the above dis-
cussion with the informal proof of a simple theo-
rem. The definition of image in the proof below
is:

Systems-4 Marinov

855

(WVR,AY)(y € R'A + {Ax){x e AA <x,y> € R)).

Theorem C&%D + £'C&f'D
Proof.
Assume

{1 y £ f'C

By the definition of image
(2) (Ix)(x e CA<x,y> e f}
From (2}, the hypothesis of the theorem, and
the definition of subset it follows that
(3) (3Fx}Hx e D A <x,y> ¢ f)
Whence by the definition of image
(4) y e f'D
Q.E.D

The proof checker handles the steps as they
are given here. Of course, accepting this proof
would require stronger natural language processing
capabilities than there currently are available in
the program. The semantic analysis of the text
should show that steps (2) and (4) are applica-
tions of the IMPLIES rule, while step (3) requires
a call to the prover via VERIFY.

Future Directions

The problems facing future work on under-
standing informal proofs may be best illustrated
by considering another comparative example. A
proof of Theorem 37 on page 104 in [9] is present-
ed below as it is accepted by QUIP. (To fully
benefit from the comparison the reader should look
at the proof in the book).

Derive: Finite (A)A(JEf)}f : A SURJ B ~ Finite {B)

Hypothesis
{1) Finite (A) A(3F)f : A SURI B
12 ES [Line 1, Conjunct 2, Exist. Specific.]
(2) £: ASUIRI B
Axiom of Separation
(3) Wx)(x £ K == x £ P{A) A Finite(f"x))
Th., 1.6, Th. 1.7, Th. Image VERIFY
(4) 0 = 0
4, Th. 4.1.1 VERIFY
{5} Finite{f"0)
3,5 Th. 1.48 VYERIFY
(6 0 e K
Assume
(7)) x e AACEAAC £ K
7, Th. Singleton, Df. Subset VERIFY
(8) (xl €A
7C3, Th. Concretion IMPLIES
{9) CEA A Finite(F'0)
BOOLE UG
(10) (¢A,B,CY(AEC ABEC + AUB E()
8,9,10 VERIFY
{11) cWix} € &
2,7, Th. 3.2.35, Df. Surjection, Df. Map VERIFY
(12) (IY)E(Ix}) = {y}
12, Th. 4.1.2 VERIFY
(13) Finite(f*{x})
9,13, Th. 4.1.6 VERIFY
(14) Finite(f"C V {x})
14, Th. 3.2,29 RE [Replace by Equalityl
(15) Finite(C W {x})

Specialized Systems-4:

%,11,15, Th. Power Set VERIFY
(16) CW{x} c K
7,16 CP UG [Cond. Proof and Univ. Generaliz.]
(17) (VC,x)(x e AAC E K+ CWU{x) e K)
1C1,6,17, Th. 4.1.11 IMPLIES
(18) A E K
18,4 IMPLIES
{19 A £ P(A) A Finite{f"A)
2, Df. Surjection, Df. Map, Th. 3.2.20 VERIFY
(20} f'A =B
19,20 VERIFY
{21} Finite{B}
1,21 CpP
(22} Finite{A) A { Af)(f:A SURJ B) + Finite(B)
Q.E.D.

The proof in the book is given in a very com-
pact form and requires a lot of thinking from the
reader in order to follow it in detail. Many
readers would probably agree with it after glanc-
ing through, but when asked for the justification
of a certain step they might have difficulties in
explaining it. Even a simple thing as defining
the set K by abstraction really appeals to the
axiom of separation to make sure that the set
exists.

Yet in view of the applications we have in
mind the proof checker of QUIP is more like the
kind of system one needs. First, it is an im-
portant part of the task of a proof reader to make
sure that all steps in a proof were properly jus-
tified. Second, in teaching axiomatic mathemat-
ics it is important to insure that the student
understands the exact justification of a proof he
might read in a book.

The knowledge necessary for understanding a
proof as the one above will be distributed over
the machinery for making large steps, the goal
monitor, and the semantics of the mathematical
language processor. Procedural knowledge about
different ways of organizing proofs will be
needed.

Most notably the QUIP proof in the last exam-
ple seems to be organized in reverse order of the
book proof. The latter first states that induc-
tion is needed to show f"A ¢ K, whence B is finite,
since f"A = B, and then proceeds to develop the
induction conditions. The QUIP proof works out
the induction by Theorem 4.1.11 (Step 18) and then
shows the finiteness of B. In fact, the proof
includes several occurrences of the same phenomen-
on on a smaller scale.

Processing the wide variety of ways of ex-
pression seen in the mathematical literature is a
formidable problem. It will require continuous
work for time to come. But by putting some re-
straints on the form of presenting proofs one
might soon be able to make good use of a computer
system for the purposes outlined in the beginning
of this paper.

Marinov

Acknowledgements

Many of the presented ideas were formed in

conversations with P. Suppes, L. Blaine, H. Graves,

and R. Smith. Also, W. Bledsoe has made many
helpful suggestions. The research has been sup-
ported by the U.S. National Science Foundation
under Grant EC43997 to Stanford University.

References

1. Abrahams, P., "Machine Verification of Mathe-
matical Proof", 1963, Doctoral Dissertation,
MIT.

2. Goldberg, A., "A Generalized Instructional
System for Teaching Elementary Mathematical
Logic", Tech.Rep.No.179, 1971, IMSSS, Stanford
University.

3. Marinov, V., "Maximal Clause Length Resolu-
tion", 1973, Doctoral Dissertation, University
of Texas at Austin.

4. Marinov, V., "Replace Formula", 1974, IMSSS
internal memo, Stanford University.

5. McCarthy, J., "Computer Programs for Checking
Mathematical Proofs", 1961, Proc.Amer.Math.
Soc. on Recursive Function Theory, New York.

6. Smith, R., Graves, H., Blaine, L.

and Marinov,

V. 1975. "Computer Assisted Axiomatic Mathe-
matics: Informal Rigor." In: Computers in
Education, 0. Lecarne and R. Lewis, eds. |IFIP

Second World Conference on Computer Education.
North Holland, Amsterdam, pp.803-809.

7. Smith, R., "BOOLE--A Decision Method", 1974,
IMSSS internal memo, Stanford University.

8. Suppes, P., Introduction to Logic, 1957, Van
Nostrand, Princeton, N.J.
9. Suppes, P., Axiomatic Set Theory, 1972, Dover,

New York.

Appendix

Axioms, Definitions, and Theorems References in
the Proofs.

Ax. Separation
WCI(FBY(VWX)(x £ CapxcB A FM(X))

Ax. Cardinals

(WA,B)(K(A) = K(B) «>» A=B)

Df, Subset

(VA,B)(AGE %» (¥x)(x € A+ x € B)

Df. Map

0% £,A,B) (f:A + B ¢ Func(f) AD{f)=A A R(f)EB}
Df. Surjection

(W £,A,B)(f:A SURJ B &3 f:A + B A R(f)=B)
Df. Cardinal Number

(¥ x) (Cardinal (x) 4= (JA)(K(A} = x))
Th. 1.6

(¢x)(x £ 0)

Th. 1.7
WA((YxI(x £ A) em A= ()

Specialized Systems-4:

Th. Concretion
(wy)(y € {x:M(x)} + FM{y))

Th. Singleton

(Mx,¥)(y € Ix} ey = x}

Th. Power Set

(W A,B)(B £ P(A) <+ BSA)

Th. 1.48

(dAY(D € P(A))

Th. 3.2.20

(¢ A,B,R}I(R\ANBE = R\ANR\B)

Th. Image

(WA, By}y e A"Be=>({Ix)Ex,y> € A A x £ B)}
Th. 3.2.29

(¥ R,A,BY(R"{AWB) = R"A W R"B)

Th. 3.2.35

(v £,x)(Func(f) AaxeD(f) + (A¥)(FM{x} ={y})
Th. 3.8.9

(VA B (AC,D){(A=C A BxD A CHD=0)

Th. 4.1.1

Finite(0)

Th. 4.1.2

(¥ x) Finite(x)

Th. 4.1.6

(v A,B}(Finite{A) A Finite(B) + Finite(AUB))

Th. 4.1.11
(¥A,D)(IF Finite(A) AD E DA (VB X){x € A A
BSAAB £ D+ BM{x} £ D) THEN A £ D)

Marinov

