
ELECTRICAL DESIGN
A PROBLEM FOR ARTIFICIAL INTELLIGENCE RESEARCH

Gerald Jay Sueeaan
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, USA

Abstract:
This raport outlines the problem of intelligent failure

recovery in • problem-solver for electrical design. We want our
problem solver to learn as much as it can from its mistakes. Thus
we cast the engineering design process in terms of Problem
Solving by Debugging Almost-Right Plans, a paradigm for
automatic problem solving based on the belief that creation and
removal of "bugs" is an unavoidable part of the process of
solving a complex problem. The process of localization and
removal of bugs called for by the PSBOARP theory requires an
approach to engineering analysis in which every result has a
justification which describes the exact set of assumptions it
depends upon. We have developed a program based on Analysis
by Propagation of Constraints which can explain the basis of its
deductions. In addition to being useful to a PSBDARP designer,
these justifications are used in Dependency-Directed
Backtracking to limit the combinatorial search in the analysis
routines.

Although the research we will describe is explicitly
ebout electrical circuits, we believe that similar principles and
methods ere employed by other kinds of engineers, including
computer programmers.

Introduction:
Engineers combine, analyze, debug, and explain

structures in the course of design. They decide how simple
structures may be combined to achieve particular goals. They can
predict the behavior of complex structures by combining the
behaviors of the substructures out of which they were formed.
This analysis is critical for debugging plausible designs which do

not quite work, for constraining the possible design decisions, and
for ruling out unfeasible plans. Finally, an engineer must be able
to explain the devices which he has designed. An explanation is
often a description of how the behavior of the composite device
can be attributed to the combined behaviors of its parts. The
ability to explain is crucial to analysis and design. It is much
easier to analyze a system if we know the intended operation of
the parts.

This paper outlines our project to construct an
electrical circuit designer program as part of an effort to
understand the fundamental mechanisms involved in reasoning
about complex, deliberately constructed systems. Parts of this
program already exist, other parts are being developed and
others ere still in the planning stage. Essential ideas from the
recent theses of Allen Brown on the localization of failures in
radio circuits <Brown 1975> and Drew McDermott on a ru le-
based system of hierarchical design <McDermott 1976> are being
incorporated into this project.

A Theory of the Engineering Design Process:

Innumerable hours can be spent tracking down a "bug"
in a computer program, an electronic device, or a mathematical
proof. At such times it may seem that a bug is at best a nuisance
and at worst a disaster. We believe that many bugs are just
manifestations of powerful strategies of creative thinking — that
creation and removal of bugs are necessary steps in the normal
process of solving a complex problem. Following the work of
Poly a <Polya 1962>, recent research <Fahlman 1973> <Sussman
1973> <Gold$tein 1974> predicated on this belief has resulted in
the development of a paradigm for problem solving which we cell
Problem Solving by Debugging Almost-Right Plans (PSBDARP).
We believe that the PSBDARP theory is a good foundation for
building expert problem-solving systems for such diverse kinds
of engineering as circuit design and computer programming.

The PSBDARP Theory:
Figure 1 displays the structure of a PSBDARP problem

solver. When the problem solver is given a problem it f irst
checks its Answer Library to determine if there is an answer
available whose pattern of applicability matches the problem

A p p l i c a t i o n s - 2 : Sussman
894

statement. If so, the proposed answer is tested make sure that it
really works and if it passes the test it is returned as the answer
to the problem posed. But suppose the answer is not
immediately available. The problem solver next examines a set of
problem decompositions to see if any are appropriate for
breaking the problem into more manageable chunks. If so, the
problem solver remembers the decomposition rule chosen and
recursively calls itself to solve each subproblem separately. If
this is possible, the solutions returned are combined according to
the decomposition rule used to break the problem up and the
resulting proposal is sent off to be tested. If there are no
decomposition rules available which match the problem statement,
the problem solver next checks to see if there are any changes
of representation which can be applied to the problem statement
to put it into a form more amenable to solution. If so, the
problem is considered in terms of the alternate representation.
If no representation changes are appropriate, the problem solver
has failed on this problem and reports its failure. A failure may
cause backtracking and search.

Suppose that a composite solution is eventually
proposed and tested. If it is found to work it is returned as the
answer, but often the proposal has a bug. A bug may manifest
by a contradiction among the constraints of the modules which
are the solutions to the subproblems. The composite solution is
also analyzed to see if it actually achieves the goal. If there is a
bug the next step is to localize the cause of the failure. Since
the solution is a composite of correct solutions to subproblems,
the bug must be the result of some unanticipated interaction
between the parts of the proposed solution. In any case the
problem solver must construct a subproblem whose solution
would fix the bug. This problem is then solved (by a recursive
call to the problem solver) and the resulting patch is installed in
the proposed solution. The corrected solution must then be
retested against the original criteria.

Why are there bugs?
One might imagine a problem-solver based on Figure 1

which produced only correct solutions to problems -- that is, one
in which the question "Does it work?" is always answered "Yes".
The. problem with this idea is that a crucial part of the problem-
solving strategy is the decomposition of problems into
presumably independent subproblems. There is no guarantee
that this is possible in general, but even when it is not possible,
there are often general strategies for approximating a solution to
a problem by composing the solutions to almost independent
subproblems. Often one can make progress on the solution to a
hard problem by considering the solution of a simplified version
of the problem which is similar in some essential aspect to the
original one but which differs from it in detail. But even in those
cases where a decomposition into completely independent
subproblems is possible, it is not always feasible. In order to be
sure that the solutions to the subproblems are really independent
it is necessary to understand the problem and the possible
implementations of subsolutions so completely that one must
effectively solve the entire problem before choosing the correct
decomposition. This compromises the decomposition strategy.
Another difficulty is that in order to allow "perfect" solutions, the
decompositions and possible answers to problems must be
specified more precisely. This leads to a proliferation of stored
answers and decompositions which differ in only some minor
aspect and thus hide the power of generalization.

Superficially, PSBDARP is a kind of Means-Ends
analysis <Ernst & Newell 1969> but it is not profitable to merge
the concepts. In Means-Ends analysis the problem solver
considers the current state of the problem solution and the goal
being approached and attempts to apply an operator which will
move the solution in the direction of the goal. Often the operator
wil l decompose the problem Into subproblems which can be
achieved separately, to be combined into a solution of the overall
problem. At this point the PSBDARP philosophy diverges. In
Means-Ends analysis the process Is now iterated. In debugging,

the original goal may be ignored because many bugs manifest in
terms of destructive interactions among the solutions of
subprobiems.

In PSBDARP there is a specific phase of the solution
process where debugging knowledge is applied. This knowledge
is relatively domain independent and is concerned with notions of
causality, teleology and simultaneous constraints. The debugging
phase is far more concerned with the structure of the plan
produced by the decomposition phase than it is with the goal that
evoked the plan. For example, localization of a bug in an
electrical circuit or in a computer program may involve such
strategies as "tracing" — examination of the conditions at various
module boundaries to determine how the expected conditions
compare with those that actually occur.

An Example of Synthesis:
Consider a concrete problem of engineering synthesis.

Suppose we want an electrical network with a specified system
function; perhaps a network having a voltage-transfer ratio
whose magnitude varies with frequency as follows:

We recognize that the encoding of these requirements is not
obvious — part of the research is to determine appropriate
languages for such description. The designer first checks the bag
of tricks for a plan fragment (an answer or decomposition) whose
pattern of applicability matches the goal. (An expert engineer
would probably have an answer on tap for so simple a problem.)
"Matches" is a rather complex idea — features must be extracted
such as the "flat response" between wl and w2, the fall off at
frequencies above w2 and below w l , the positions of the
"elbows", etc. In this case we assume that the designer does not
have a plan fragment for synthesis of the required network, so it
has to look for a transformation of the problem. (In McDermott's
terminology, we enter the "Rephrasing Protocol".) In this case,
there is a good transformation available ~ from a magnitude
graph to a pole - zero plot. (This is an algorithmic transformation
which requires careful measurement of the parameters of the
magnitude plot.)
We get:

A p p l i c a t i o n s - 2 : Sussman
895

Notice that this plan fragment it more generally applicable than
just in the domain of electrical circuits. It is appropriate to any
domain in which the "stuff" being manipulated (in this case signal
represented as voltages) "flows* from process to process. Note
that this plan fragment assumes that the flow is unilateral; we wil l
see that this causes a bug! The system hes other generalized
decomposition rules as well. For example, if the system function
hed been e sum of terms, we could use a different plan for
decomposition:

In fact, if our "bag of tricks" includes some techniques of
elgebreic manipulation we can turn our product into a sum by a
part ial-fraction expansion.

We next t ry to expand and instantiate the plan
fragment's parts. We are forced to solve 2 subproblems:

(How will our system Know to break it up this way? — It won't
particularly, in that this depends upon how the algebraic
expression matcher works. But in any case, if one decomposition
fails to be realizable we can expect to back up and t ry another.)

We also see that we have conveniently forgotten about K,
which was deferred for later because it is not a constraint. We
know that it is always easy to make a scaler if the problem
specification does not require that the result be passive.

Next, we recursively attempt to instantiate the
subproblems. In this case, we have (at least) two matches in the
answer l ibrery. The voltage transfer ratios with one real pole or
wi th one reel pole and a zero at the origin can be reelized as
resistor-capacitor voltage dividers.

The problem solver must now check the proposed
result. Here circuit analysis is employed. If the problem were
one of program design, we might run the proposed program in
CAREFUL mode <Sussman 1973>; or we might t ry to Meta-
evaluate the program <Hewitt ft Smith 1975>, or even prove that
the program is correct.

In this case analysis discovers a bug. Our analysis of

Nl as a voltage divider was contingent on the assumption that no
current would be drawn from the midpoint of the divider. Our
analysis of N2 was contingent on it drawing a significant current.
These assumptions are contradicted by connecting the output of
Nl to the input of N2. This contradiction is apparent from local
evidence in the structure of the proposed solution independent
of the goal of the overall circuit. We have caught ttr\
unanticipated destructive interaction between the subproblem
solution modules. This particular kind of bug, called loading is
common and should be considered whenever ports are connected
together.

The statement of this bug — that we have a port
voltage which we cant draw a current from, connected to a port
which wants to draw a current at that voltage -- can easily be
turned into a statement of a problem whose solution is an
appropriate patch for this bug. Wishful thinking tells us that if
we hed e voltage-controlled voltage source inserted between Nl
end N2 everything would be OK.

A p p l i c a t l o n s - 2 :
896

Sussman

We now have e good place to absorb our constant K, thus solving
the problem given:

Suppose we were using pure means-ends analysis
rather then a debugging strategy. At point * * * above we would
then analyze our current circuit and compere it with the result
we expected (the goat). In this case, analysis leads to the
following result:

The difference between the answer we got and the answer we
wanted is just that there is an extra term (R1C2)in the second
coefficient of the denominator. Why is this term present? Allen
Brown <Brown 1975> has developed methods for localizing bugs
using causal and tepeological reasoning about a circuit but it is
certainly a more difficult problem to pursue this path than the
one we have.

The Propagation Theory of Engineering Analysis:

It is important that the bug localization process have
access to the assumptions on which the bug manifestation is
based. This depends upon analysis being able to explain its
answers. In this section we will describe progress that has been
made on an analysis program that reasons qualitatively about
circuits and can explain its results.

As part of the development of the PSBDARP circuit
designer, we have developed EL, a new Kind of electrical network
enalysis program <Sussman ft Staliman 1975>. The literature is
full of powerful and useful circuit analysis systems which
implement the formal methods. What is novel about this program
it its rule-based approach to network analysis and its consequent
ability to explain the basis of its deductions.

EL is implemented in ARS (Antecedent Reasoning
System), a problem-solving language which implements rules as
demons with multiple patterns of invocation monitoring an
associative data base <Stallman & Sussman 1976>. It performs
ell deductions in an antecedent manner, threading the deduced
facts with Justifications which mention the antecedent facts used
end the rule of inference applied. These justifications may be
examined by the user to gain insight into the operation of the
system of rules as they epply to a problem. The same
justifications are employed by the system to determine the
currently active data-base context for reasoning in hypothetical

situations. Justifications are also used in the analysis of blind
alleys to extract information which will limit future search.

EL is a set of ARS rules for electronic circuit analysis.
This set of rules encodes familiar approximations to physical laws
such as Kirchoff's laws and Ohm's law as well as models for more
complex devices such as transistors. Facts, which may be given
or deduced, represent data such as the circuit topology, device
parameters, voltages and currents. The antecedent reasoning of
ARS gives analysis by EL a "cetch-es-catch-can" flavor
suggestive of the behavior of a circuit expert. The justifications
prepared by ARS allow an EL user to examine the basis of its
conclusions. This is useful in understanding the operation of the
circuit as well as in debugging the EL rules. For example, a
device parameter not mentioned in the derivation of a voltage
value has no part in determining that value. If a user changes
some part of the circuit specification (a device parameter or an
imposed voltage or current), only those facts depending on the
changed fact need be "forgotten" and re-deduced, so small
changes in the circuit may need only a small amount of new
analysis. Finally, the search-limiting combinatorial methods
supplied by ARS lead to efficient analysis of circuits with
piecewise-linear models.

The style of analysis performed by EL, which we call
the method of propagation of constraints, requires the
introduction and manipulation of some symbolic quantities.
Though the system has routines for symbolic algebra, they can
handle only linear relationships. Nonlinear devices such as
transistors are represented by piecewise-linear models that
cannot be used symbolically; they can be applied only after one
has guessed a particular operating region for each nonlinear
device in the circuit. Trial and error can find the right regions,
but this method of assumed states is potentially combinatorially
explosive. ARS supplies dependency-directed backtracking, a
scheme which limits the search as follows: The system notes a
contradiction when it attempts to solve an impossible algebraic
relationship, or when discovers that a device's operating point is
not within the possible range for its assumed region. The
antecedents of the contradictory facts are scanned to find which
nonlinear device state guesses (more generally, which
backtrackable choicepoints) are relevant) ARS nenr tries that
combination of guesses again. A short list of relevant
choicepoints eliminates from consideration a large number of
combinations of answers to all the other (irrelevant) choices. The
fact that the set of assumptions leading to the contradiction is
inconsistent is summarized and recorded with antecedents being
that part of the support of the contradiction which are
independent of the assumptions. These summaries are examined
whenever a choice has to be made, thus preventing rechoosing of
an inconsistent set of assumptions. Thus the justifications (or
dependency records) are used to extract and retain more
information from each contradiction than a chronological
backtracking system. A chronological backtracking system would
often have to t ry many more combinations, each time wasting
much labor rediscovering the original contradiction.

Jon Doyle is now engaged in further research on the
uses of dependency information in the control of reasoning
<Doyle 1976>. 1 De Kleer, Jon Doyle, Guy Steele and this author
have been developing an even more powerful rule-besed
language we call AMORD in which the EL rules can be expressed
in e more hierarchical form.

History of this Project and Relation to other work:
The PSBDARP theory of design has many

antecedents. The idea of successive refinement of plans appears
as a key dogma of "Structured Programming" <Dijkstra 1970>
<Wirth 1971> <Dahl et el 1972>, although it also appears in the
Artificial Intelligence problem-solving literature. The idea of
relaxation of a hierarchy of constraints comes from <Freeman ft
Newell 1971> There are also versions of GPS <Ernst ft Newell
1969> which were purported to do reasoning in a hierarchy of

A p p l i e a t i o n s - 2 : S u s s m a n
8 9 7

abstraction spaces. ABSTRIPS <Sacerdoti 1973> showed how
refinement of abstract plans could be used to guide a problem
solver past problems which would otherwise be combinatorially
explosive. Recently the NOAH system <Sacerdoti 1975> has
developed this idea to great depth. The major difference we
have with successive refinement is our emphasis on engineering
analysis and debugging. We are sure that it is impossible to build
systems which can deal with complex real world problems without
making and removing bugs. PSBOARP is a descendent of the
HACKER <Sussman 1973> and MYCROFT <Goldstein 1974>
debugging systems. One might consider that GPS already
embodied the idea of debugging in that one may take a problem
solver with a debugging strategy to be a special case of a
problem solver which first attempts to eliminate the main
difference between the given and the goal and then reevaluates
the situation after a step. This is true in principle, but GPS was
never used for debugging. Poly a <Polya 1945> had developed a
theory of problem solving which included debugging but GPS only
captured the reduction and rephrasing aspects of Polya's theory.

Recently Allen L Brown Jr. finished a PhD thesis at
MIT <Brown 1975> which explored the use of causal and
teleologies! reasoning in the troubleshooting of complex electrical
systems. In this thesis Brown developed a set of linguistic
conventions for the representation of the plan of a complex,
hierarchically-structured system. Brown's methods depend on,
and inspired the construction of the EL analysis system
<Sussman & Stallman 1975> which uses constraint propagation
and can explain how a result depends on assumptions. Brown
needed analysis by propagation of constraints to predict the
consequences of a hypothesized fault in a component. These
consequences are compared with the measured values as a test
of the fault theory. The explanations are critical in determining
the faulty assumptions. Johan de Kleer also uses this technique
in his debugging program INTER <de Kleer 1976>. A related
process of relaxation of symbolic constraints has been applied to
the labelling of line drawings of visual scenes <Muffman 1970>. A
beautiful exposition of this technique can be found in <Waltz
1972>. Some theoretical analysis of this technique appears in
<Freuder 1976>.

TOPLE <McDermott 1974> was an early attempt to
record the interactions among deductions for the purpose of
deciding what is currently believed to be true. McDermott used
this information to help decide which of several assumptions must
be thrown out in order to keep a consistent data base when a
new fact conflicted with existing ones. MYCIN <Shortliffe 1974>
<Davis 1976> use dependency information to produce
explanations but do not use it for any control purposes. The SRI
Computer Based Consultant <Fikes 1975> makes use of
dependencies to determine the logical support of facts in a
manner similar to ARS but does not use them to control search.

Two other recent research efforts at MIT have
developed these ideas further. Drew V. McDermott finished a
PhD thesis <Mc Dermott 1976> concerning the design of such
systems. Drew developed a rule-based language, called NASL, in
which it is possible to express strategies, tactics, and advice for
design. He used this language to encode some general design
strategies and some specific strategies for the design of
electrical systems. Howie Shrobe and Charles Rich <Rich &
Shrobe 1976> designed and mostly implemented a system which
"understands" a limited class of LISP programs. They have
developed set of linguistic constructs for attaching a set of
structured comments to a program which relate it to its plan.
These plans look very much like the plans of Brown. They have
also developed a system which reasons about the program in
terms of its plan, and which can check that a program in fact
implements its goals. In effect their system employs the
teleological information in the plan about the parts of the
program being checked, as an outline for the verification of the
program.

Finally, there have been many books about the
strategies of the design process (for example <Alexander 1964>,

<Asimow 1962>, <Buhl 1962>, <Glegg 1973>) but these are
mostly simple advice about how to avoid overlooking a good
approach when working out a hard problem. They offer l itt le
help in how to propose new solutions to new problems. Artificial
intelligence researchers have been interested in the design
process as a model of creativity. Computer Science in general
has been interested in design because of the "complexity
barr iers" apparent in the design of large systems. Herbert Simon
<Simon 1969> wrote a delightful and insightful book which relates
computer science to general engineering design and to cognitive
theory. At Carnegie-Mellon University, for example, Grason
<Grason 1970> wrote a PhD thesis on the relaxation of
architectural constraints, and Hanley <Hanley 1968> wrote a PhD
thesis on computer-aided design of computer instruction sets.

One would expect the CAD literature to deal
extensively with systems to save an engineer time and effort. A
survey of this literature (see <Kuo & Magnuson 1969> <Furman
1970> <Dertouzos 1972> <Vlietstra & Wielinga 1973>
<Rosenbrock 1974>) shows that the thrust of CAD development
has been in the development of interactive graphics packages,
libraries of special purpose programs, and mathematically
sophisticated programs aimed at analysis or optimization of
synthesis. Only a small amount of work has been done in the
field of synthetic reasoning, and then only in restricted domains
where algorithms are available to solve a small class of problems.
Such approaches have been partially successful in the problem of
printed-circuit layout (e.g. <Fletcher 1974>) and filter design (e.g.
<Chohan A Fidler 1974>). Director <Director 1974> describes a
circuit design program which assumes a full-graph impedance
network and then optimizes the network for the behavior
desired. In the process, many component values become zero
and are thus discarded? The CAD literature is almost completely
ignorant of non-numerical techniques (except <Powers 1973>)
and would benefit from an infusion of these new ideas. Besides
our work, the TROPIC system <Latombe 1976> is one other
application of artificial intelligence ideas to CAD. John S. Brown
<Brown & Burton 1975> (at Bolt, Beranek and Newman,
Cambridge, Massachusetts) has been applying both artificial
intelligence ideas and CAD ideas to the problem of computer-
aided instruction of circuit debugging skills for technicians. We
expect that the work of his group will contribute to the
understanding of AI issues in CAD.

Conclusions:
A major problem confronting builders of automatic

problem-solving systems is that of the combinatorial explosion of
search-spaces. One way to attack this problem is to build
systems that effectively use the results of failures to reduce the
search space — that learn from their exploration of blind alleys.
In simple cases, as in analysis of circuits, various automatic
techniques such as the dependency-directed backtracking of ARS
can go a long way toward controlling the search. In more
complex situations, as in design, it is necessary to constrain the
search as rapidly as possible — even if that sometimes
overconstrains the problem and causes a bug. At least we can
hope that the debugging problem is easier than the search
problem. In either case it is necessary to build problem solvers
so that they can remember and explain their reasoning. Both
dependency-directed backtracking and problem solving by
debugging almost-right plans depend on the ability to manipulate
the justification of a conclusion as well as the ability to deduce it.

Saving justifications for the intermediate results of a
computation has other merits. It is very difficult to debug
programs containing large amounts of knowledge. The complexity
of the interactions between the "chunks" of knowledge makes it
difficult to ascertain what is to blame when a bug manifests itself.
A program which can explain the reasons for its beliefs is more
convincing when right, and it is easier to debug when wrong.

A p p l i c a t i o n s - 2 : Sussman
898

Acknowledgement:
1 would like to thank the many people who have

contributed to this project. Richard (RMS) Stallman, Drew
McDermott, Allen Brown, Guy (QUUX) Steele, Jon Doyle, Johan de
Kleer, Marilyn Matz and Gerald Roylance have worked with me on
it. Chuck Rich, Howie Shrobe, Scott Fahlman, Marvin Minsky,
Seymour Papert, Louis Braida, Paul Penfield, Kurt Vanlehn,
Richard Fikes, John Allen, David Marr, Pat Winston, and Earl
Sacerdoti provided good advice and important ideas.

Bibliography:

Alexander, C. (1964) Notes on the Synthesis of Form, Cambridge:
Harvard University Press.

Asimow, M. (1962) Introduction to Design, Englewood Cliffs, NJ:
Prentice-Hall, Inc.

Brown, Allen (1975) Qualitative Knowledge, Causal Reasoning, and
the Localization of Failures, Cambridge: unpublished MIT
Ph.D. thesis.

Brown, John Seely and Richard R. Burton (1975) "Multiple
Representations of Knowledge for Tutorial Reasoning" in
Daniel Bobrow and Allan Collins (Eds.), Representation
and Understanding: Studies in Cognitive Science, New
York: Academic Press.

Buhl, H.R. (1962) Creative Engineering Design, Ames, Iowa: The
Iowa State University Press.

Chohtn, V.C and IK . Fidler (1974) "Computer Aided Design of
Filters for Data Transmission Using Frequency
Modulation" Proceedings of the International Conference
on Computer Aided Design, 1974.

Dahl, OJ., E.W. Dijkstra and CAR. Hoare (1972) Structured
Programming, London: Academic Press.

Davis, Randall (1976) Applications of Meta Level Knowledge to the
Construction, Maintenance, and Use of Large Knowledge
Bases, Stanford, CA: Stanford University Artificial
Intelligence Laboratory Memo 283.

de Kleer, Johan (1976) Local Methods for Localization of Faults in
Electronic Circuits, Cambridge: MIT Artificial Intelligence
Laboratory Memo 394.

Dertouzos, Michael (1972) "CIRCAL-2: General-Purpose On-Line
Circuit Design", Proceedings of the IEEE, Vol. 60, pp. 3 9 -
48, Jan. 1972.

Di jkt tra, Edsgar (1970) "Structured Programming" in Software
Engineering Techniques, JLN. Buxton and B. Randell (Eds.),
NATO Scientific Affairs Division, Bruseels, Belgium, 1970.

Director, S.W. (1974) Towards Automatic Design of Integrated
Circuits", in William R. Spiders (Ed.) Basic Questions of
Design Theory, New York: American Elsevier Publishing
Company, Inc., p. 303.

Doyle, Jon (1976) The Use of Dependency Relationships in the
Control of Reasoning, Cambridge: MIT Artificial
Intelligence Laboratory Working Paper133.

Ernst, George W. and Allen Newell (1969) GPS: A Case Study in
Generality end Problem-Solving, New York: Academic
Press.

Fahlman, Scott (1973) A Planning System for Robot Construction
Tasks, Cambridge: MIT Master's Thesis.

Fikes, Richard (1975) Deductive Retrieval Mechanisms for State
Description Models, Menlo Park, CA: Stanford Research
Institute Artificial Intelligence Center Technical Note 106.

Fletcher, A.J. (1974) "EUREKA - A System for the Automatic
Layout of Single-Sided Printed Circuit Boards,"
Proceedings of the ZIInternational Conference on
Computer Aided Design, 1974.

Freeman, P. and Allen Newell (1971) "A Model for Functional
Reasoning in Design," Proceedings of International Joint
Conference on Artificial Intelligence I I , p. 621.

Freuder, Eugene (1976) Synthesizing Constraint Expressions,
Cambridge: MIT Artificial Intelligence Lab Memo 360.

Furman, TA (1970) (Ed.) The Use of Computers in Engineering
Design, London: English Universities Press.

Glegg, Gordon Lindsay (1973) The Science of Design, Cambridge,
Eng.: Cambridge University Press.

Goldstein, Ira (1974) "Summary of MYCROFT: A System for
Understanding Simple Picture Programs," Artificial
Intelligence, Vol. 6, No. 3, Fall, 1975, pp. 249-288.

Grason, Jason (1970) Methods for the Computer-Implemented
Solution of a Class of "Floor Plan" Design Problems,
unpublished Ph.D. dissertation, Pittsburgh: Carnegie-
Mellon University.

Hanley, Frederick (1968) Using a Computer to Design Computer
Instruction Sets, Pittsburgh: Carnegie-Mellon University
Computer Science Department Ph.D. thesis.

Hewitt, Carl and Brian Smith (1975) Towards a Programming
Apprentice, Cambridge: MIT Artificial Intelligence
Laboratory Working Paper 90.

Huffman, David (1970) "Impossible Objects as Nonsense
Sentences," in Machine Intelligence 6, Edinburgh, UK.:
Edinburgh University Press (1970).

Kuo, F.F. and W.G. Magnuson (1969) (Eds.) Computer-Oriented
Circuit Design, Englewood Cliffs, NJ: Prentice-Hall, Inc.

Latombe, Jean-Claude (1976) Artificial Intelligence in Computer -
Aided Design: The Tropic System, Menlo Park, CA:
Stanford Research Institute Artificial Intelligence Center
Technical Note 125.

McDermott, Drew (1974) Assimilation of New Information by a
Natural Language Understanding System, Cambridge: MIT
Department of Electrical Engineering and Computer
Science Master's Thesis.

McDermott, Drew (1976) Flexibility and Efficiency in a Computer
Program for Designing Circuits, Cambridge: MIT
Department of Electrical Engineering and Computer
Science Ph.D. Thesis.

Polyt , George (1945) How to Solve It, Princeton, NJ: Princeton
University Press,

Polya, George (1962) Mathematical Discovery: on Understanding.
Learning, and Teaching Problem Solving, Vols. I and II.
New York: John Wiley and Sons, Inc.

A p p l i c a t i o n s - 2 : Sussman
899

3. The STATUS t r a n s i t i o n , if any (e . g . ,
"PRL.XM.S" can occur only if the defendant is
in the "Mag i s t r a te ' s Proceedings" s ta tus , and
the event w i l l not cause a s ta tus change),

4. The formal parameters necessary to speci fy
the data contents of the event (e . g . ,
"PRL.XM.S" requ i res tha t the scheduled date
of the examination be supp l i ed) ,

5. The Speedy T r i a l t ime accounting act ions
necessary as a r e s u l t of post ing the event,

6. Any spec ia l precondi t ions tha t must be
s a t i s f i e d in order fo r the event to be
posted,

7. Any spec ia l semantic act ions that must be
performed upon post ing the event,

8. The t e x t tha t is to be p r i n t ed on a docket
sheet when t h i s event is repor ted .

In a d d i t i o n to the event sequencing
cons t ra in t s represented by the status diagram,
a r b i t r a r y sequenc ing r e l a t i o n s h i p s may be
spec i f i ed to con t ro l the order in which events may
be pos ted w i t h i n any g i ven s t a t u s . These
r e l a t i o n s h i p s are r e p r e s e n t e d g r a p h i c a l l y as
SEQUENCE DIAGRAMS and extend the f i n i t e s ta te
nature of the STATUS DIAGRAM. In add i t i on to
s t r i c t event sequences, SEQUENCE DIAGRAMS may
denote forks and j o i n s , opt iona l sequences, and
p a r a l l e l paths. The s ta te of any given subject
w i t h respect to the progress of a case may be
described as the STATUS conta in ing the subject-
p l u s a v e c t o r o f "program c o u n t e r " va lues
i n d i c a t i n g the s u b j e c t ' s p o s i t i o n a long each
poss ib le p a r a l l e l path in the SEQUENCE DIAGRAM
which f u r t h e r def ines the STATUS.

F igure 2 depic ts a s i m p l i f i e d event sequence
diagram f o r de fendant s u b j e c t s i n the
"Mag i s t r a te ' s Proceedings" s t a tus , showing the
a l l o w a b l e sequences f o r S e t t i n g , H o l d i n g , and
Cont inuing p re l im ina ry examinat ions. The { }
i n d i c a t e t h a t the enc losed sequence may be
repeated zero or more t imes. The v e r t i c a l bars
denote a fork and j o i n operat ion on the enclosed
independent event sequences. The dot ted l i n e
ind ica tes tha t the DISMISS event may be posted at
any time between the fo rk and j o i n to i n t e r r u p t
and c u r t a i l the p a r a l l e l sequences. According to
Figure 2, before an INDICT event can be posted, a
p r e l i m i n a r y e x a m i n a t i o n must f i r s t be se t
(PRL.XM.S) and then h e l d (PRL.XM.H), and
o p t i o n a l l y c o n t i n u e d (PRL.XM.C) and r e - h e l d
(PRL.XM.H) an a r b i t r a r y number of t imes. However,
at any t ime dur ing t h i s p re l im inary examination
sequence, DISMISS may be posted, thereby escaping
from the sequence and causing a s ta tus change to
the " P o s t - T r i a l " s ta tus (see Figure 1) .

The event d i c t i o n a r y , s ta tus diagrams, and
sequence diagrams represent the c o u r t - o r i e n t e d
knowledge of the CR1MNL system and are
d e c l a r a t i v e l y s p e c i f i e d i n t a b l e s r a t h e r than
being, for example, p rocedura l ly embedded. The
system ac ts e s s e n t i a l l y as an i n t e r a c t i v e
i n t e r p r e t e r which accepts proposed events from the
user and t r i e s to apply the semantic ac t ions of
each event to t ransform the cur ren t s ta te of i t s
s u b j e c t . The i n t e l l i g e n c e o f the system is
exh ib i ted by i t s responses to proposed events and
the r e p o r t s produced f o r e f f e c t i v e case
mon i to r ing . Not only can CRIMNL detect when an
event is i n v a l i d based on the cur ren t s ta te of i t s
sub jec t , but the system can a lso o f f e r d iagnost ic
advice as to which events are a l lowable at tha t
time and which events need to be posted f i r s t in
order that the attempted event become v a l i d . This
model-based v a l i d i t y check ing and d i a g n o s t i c
advice al lows the de tec t ion of c l e r i c a l e r ro rs and
resu l t s in increased data base i n t e g r i t y . This
same model-based system also provides the Courts
w i th a valuable t r a i n i n g too l fo r the i n s t r u c t i o n
o f docket c l e r k s i n c r i m i n a l p r o c e d u r e .
Furthermore, as a r e s u l t of e x p l i c i t l y de f i n i ng
each sub jec t ' s s ta te w i th respect to i t s progress
i n the c r im ina l proceedings, i t i s poss ib le t o
genera te e x c e p t i o n r e p o r t s which m o n i t o r case
progress and warn of approaching procedural t ime
cons t ra i n t s , an espec ia l l y complex c l e r i c a l task
imposed on the Courts by the Speedy T r i a l Act .

The system is programmed in SAIL u s i n g
DBMS-10 and runs on a DECsystem-10 computer in
Wash ington, D .C. , a c c e s s i b l e f rom t e r m i n a l s
l o c a t e d in the v a r i o u s user Cour ts v i a a
value-added network. The i n i t i a l " p i l o t " group of
Federal Courts are located in Los Angeles, San
F r a n c i s c o , Ch icago, D e t r o i t , New York , and
Washington, D.C.

REFERENCES

Buchanan, J .R . , "Management In format ion Systems
f o r the Federa l C o u r t s , " P roceed ings o f
" I n t e r a c t i v e In format ion and Decision Support
Systems," O f f i ce of Naval Research, Wharton
School of Management, November 1975.

E b e r s o l e , J . L . , and J .A . H a l l , "COURTRAN, An
In format ion System for the Cour t s , " Journal of
Computer & Law, Rutgers Un iv . , 1972.

Federal Rules of Cr iminal Procedure fo r the United
States D i s t r i c t Courts, August 1976.

Lesser, V.R., R.D. Fenne l l , L.D. Erraan, and D.R.
Reddy, "Organizat ion of the Hearsay II Speech
Understanding System," IEEE Trans. ASSP, 23,
pp. 11-23, February 1975.

N ihan , C.W., "COURTRAN, An Assessment of
A p p l i c a t i o n s and Computer R e q u i r e m e n t s , "
Federa l J u d i c i a l Center Repo r t , September
1974.

Speedy T r i a l A c t , P u b l i c Law 93 -619 , 93rd
Congress, S.754, January 1975.

A p p l i c a t i o n s - 2 : Buchanan
902

