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Abstract: 
This raport outlines the problem of intelligent failure 

recovery in • problem-solver for electrical design. We want our 
problem solver to learn as much as it can from its mistakes. Thus 
we cast the engineering design process in terms of Problem 
Solving by Debugging Almost-Right Plans, a paradigm for 
automatic problem solving based on the belief that creation and 
removal of "bugs" is an unavoidable part of the process of 
solving a complex problem. The process of localization and 
removal of bugs called for by the PSBOARP theory requires an 
approach to engineering analysis in which every result has a 
justification which describes the exact set of assumptions it 
depends upon. We have developed a program based on Analysis 
by Propagation of Constraints which can explain the basis of its 
deductions. In addition to being useful to a PSBDARP designer, 
these justifications are used in Dependency-Directed 
Backtracking to limit the combinatorial search in the analysis 
routines. 

Although the research we will describe is explicitly 
ebout electrical circuits, we believe that similar principles and 
methods ere employed by other kinds of engineers, including 
computer programmers. 

Introduction: 
Engineers combine, analyze, debug, and explain 

structures in the course of design. They decide how simple 
structures may be combined to achieve particular goals. They can 
predict the behavior of complex structures by combining the 
behaviors of the substructures out of which they were formed. 
This analysis is critical for debugging plausible designs which do 

not quite work, for constraining the possible design decisions, and 
for ruling out unfeasible plans. Finally, an engineer must be able 
to explain the devices which he has designed. An explanation is 
often a description of how the behavior of the composite device 
can be attributed to the combined behaviors of its parts. The 
ability to explain is crucial to analysis and design. It is much 
easier to analyze a system if we know the intended operation of 
the parts. 

This paper outlines our project to construct an 
electrical circuit designer program as part of an effort to 
understand the fundamental mechanisms involved in reasoning 
about complex, deliberately constructed systems. Parts of this 
program already exist, other parts are being developed and 
others ere still in the planning stage. Essential ideas from the 
recent theses of Allen Brown on the localization of failures in 
radio circuits <Brown 1975> and Drew McDermott on a ru le-
based system of hierarchical design <McDermott 1976> are being 
incorporated into this project. 

A Theory of the Engineering Design Process: 

Innumerable hours can be spent tracking down a "bug" 
in a computer program, an electronic device, or a mathematical 
proof. At such times it may seem that a bug is at best a nuisance 
and at worst a disaster. We believe that many bugs are just 
manifestations of powerful strategies of creative thinking — that 
creation and removal of bugs are necessary steps in the normal 
process of solving a complex problem. Following the work of 
Poly a <Polya 1962>, recent research <Fahlman 1973> <Sussman 
1973> <Gold$tein 1974> predicated on this belief has resulted in 
the development of a paradigm for problem solving which we cell 
Problem Solving by Debugging Almost-Right Plans (PSBDARP). 
We believe that the PSBDARP theory is a good foundation for 
building expert problem-solving systems for such diverse kinds 
of engineering as circuit design and computer programming. 

The PSBDARP Theory: 
Figure 1 displays the structure of a PSBDARP problem 

solver. When the problem solver is given a problem it f irst 
checks its Answer Library to determine if there is an answer 
available whose pattern of applicability matches the problem 
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statement. If so, the proposed answer is tested make sure that it 
really works and if it passes the test it is returned as the answer 
to the problem posed. But suppose the answer is not 
immediately available. The problem solver next examines a set of 
problem decompositions to see if any are appropriate for 
breaking the problem into more manageable chunks. If so, the 
problem solver remembers the decomposition rule chosen and 
recursively calls itself to solve each subproblem separately. If 
this is possible, the solutions returned are combined according to 
the decomposition rule used to break the problem up and the 
resulting proposal is sent off to be tested. If there are no 
decomposition rules available which match the problem statement, 
the problem solver next checks to see if there are any changes 
of representation which can be applied to the problem statement 
to put it into a form more amenable to solution. If so, the 
problem is considered in terms of the alternate representation. 
If no representation changes are appropriate, the problem solver 
has failed on this problem and reports its failure. A failure may 
cause backtracking and search. 

Suppose that a composite solution is eventually 
proposed and tested. If it is found to work it is returned as the 
answer, but often the proposal has a bug. A bug may manifest 
by a contradiction among the constraints of the modules which 
are the solutions to the subproblems. The composite solution is 
also analyzed to see if it actually achieves the goal. If there is a 
bug the next step is to localize the cause of the failure. Since 
the solution is a composite of correct solutions to subproblems, 
the bug must be the result of some unanticipated interaction 
between the parts of the proposed solution. In any case the 
problem solver must construct a subproblem whose solution 
would fix the bug. This problem is then solved (by a recursive 
call to the problem solver) and the resulting patch is installed in 
the proposed solution. The corrected solution must then be 
retested against the original criteria. 

Why are there bugs? 
One might imagine a problem-solver based on Figure 1 

which produced only correct solutions to problems -- that is, one 
in which the question "Does it work?" is always answered "Yes". 
The. problem with this idea is that a crucial part of the problem-
solving strategy is the decomposition of problems into 
presumably independent subproblems. There is no guarantee 
that this is possible in general, but even when it is not possible, 
there are often general strategies for approximating a solution to 
a problem by composing the solutions to almost independent 
subproblems. Often one can make progress on the solution to a 
hard problem by considering the solution of a simplified version 
of the problem which is similar in some essential aspect to the 
original one but which differs from it in detail. But even in those 
cases where a decomposition into completely independent 
subproblems is possible, it is not always feasible. In order to be 
sure that the solutions to the subproblems are really independent 
it is necessary to understand the problem and the possible 
implementations of subsolutions so completely that one must 
effectively solve the entire problem before choosing the correct 
decomposition. This compromises the decomposition strategy. 
Another difficulty is that in order to allow "perfect" solutions, the 
decompositions and possible answers to problems must be 
specified more precisely. This leads to a proliferation of stored 
answers and decompositions which differ in only some minor 
aspect and thus hide the power of generalization. 

Superficially, PSBDARP is a kind of Means-Ends 
analysis <Ernst & Newell 1969> but it is not profitable to merge 
the concepts. In Means-Ends analysis the problem solver 
considers the current state of the problem solution and the goal 
being approached and attempts to apply an operator which will 
move the solution in the direction of the goal. Often the operator 
wil l decompose the problem Into subproblems which can be 
achieved separately, to be combined into a solution of the overall 
problem. At this point the PSBDARP philosophy diverges. In 
Means-Ends analysis the process Is now iterated. In debugging, 

the original goal may be ignored because many bugs manifest in 
terms of destructive interactions among the solutions of 
subprobiems. 

In PSBDARP there is a specific phase of the solution 
process where debugging knowledge is applied. This knowledge 
is relatively domain independent and is concerned with notions of 
causality, teleology and simultaneous constraints. The debugging 
phase is far more concerned with the structure of the plan 
produced by the decomposition phase than it is with the goal that 
evoked the plan. For example, localization of a bug in an 
electrical circuit or in a computer program may involve such 
strategies as "tracing" — examination of the conditions at various 
module boundaries to determine how the expected conditions 
compare with those that actually occur. 

An Example of Synthesis: 
Consider a concrete problem of engineering synthesis. 

Suppose we want an electrical network with a specified system 
function; perhaps a network having a voltage-transfer ratio 
whose magnitude varies with frequency as follows: 

We recognize that the encoding of these requirements is not 
obvious — part of the research is to determine appropriate 
languages for such description. The designer first checks the bag 
of tricks for a plan fragment (an answer or decomposition) whose 
pattern of applicability matches the goal. (An expert engineer 
would probably have an answer on tap for so simple a problem.) 
"Matches" is a rather complex idea — features must be extracted 
such as the "flat response" between wl and w2, the fall off at 
frequencies above w2 and below w l , the positions of the 
"elbows", etc. In this case we assume that the designer does not 
have a plan fragment for synthesis of the required network, so it 
has to look for a transformation of the problem. (In McDermott's 
terminology, we enter the "Rephrasing Protocol".) In this case, 
there is a good transformation available ~ from a magnitude 
graph to a pole - zero plot. (This is an algorithmic transformation 
which requires careful measurement of the parameters of the 
magnitude plot.) 
We get: 
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Notice that this plan fragment it more generally applicable than 
just in the domain of electrical circuits. It is appropriate to any 
domain in which the "stuff" being manipulated (in this case signal 
represented as voltages) "flows* from process to process. Note 
that this plan fragment assumes that the flow is unilateral; we wil l 
see that this causes a bug! The system hes other generalized 
decomposition rules as well. For example, if the system function 
hed been e sum of terms, we could use a different plan for 
decomposition: 

In fact, if our "bag of tricks" includes some techniques of 
elgebreic manipulation we can turn our product into a sum by a 
part ial-fraction expansion. 

We next t ry to expand and instantiate the plan 
fragment's parts. We are forced to solve 2 subproblems: 

(How will our system Know to break it up this way? — It won't 
particularly, in that this depends upon how the algebraic 
expression matcher works. But in any case, if one decomposition 
fails to be realizable we can expect to back up and t ry another.) 

We also see that we have conveniently forgotten about K, 
which was deferred for later because it is not a constraint. We 
know that it is always easy to make a scaler if the problem 
specification does not require that the result be passive. 

Next, we recursively attempt to instantiate the 
subproblems. In this case, we have (at least) two matches in the 
answer l ibrery. The voltage transfer ratios with one real pole or 
wi th one reel pole and a zero at the origin can be reelized as 
resistor-capacitor voltage dividers. 

The problem solver must now check the proposed 
result. Here circuit analysis is employed. If the problem were 
one of program design, we might run the proposed program in 
CAREFUL mode <Sussman 1973>; or we might t ry to Meta-
evaluate the program <Hewitt ft Smith 1975>, or even prove that 
the program is correct. 

*** 
In this case analysis discovers a bug. Our analysis of 

Nl as a voltage divider was contingent on the assumption that no 
current would be drawn from the midpoint of the divider. Our 
analysis of N2 was contingent on it drawing a significant current. 
These assumptions are contradicted by connecting the output of 
Nl to the input of N2. This contradiction is apparent from local 
evidence in the structure of the proposed solution independent 
of the goal of the overall circuit. We have caught ttr\ 
unanticipated destructive interaction between the subproblem 
solution modules. This particular kind of bug, called loading is 
common and should be considered whenever ports are connected 
together. 

The statement of this bug — that we have a port 
voltage which we cant draw a current from, connected to a port 
which wants to draw a current at that voltage -- can easily be 
turned into a statement of a problem whose solution is an 
appropriate patch for this bug. Wishful thinking tells us that if 
we hed e voltage-controlled voltage source inserted between Nl 
end N2 everything would be OK. 
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We now have e good place to absorb our constant K, thus solving 
the problem given: 

Suppose we were using pure means-ends analysis 
rather then a debugging strategy. At point * * * above we would 
then analyze our current circuit and compere it with the result 
we expected (the goat). In this case, analysis leads to the 
following result: 

The difference between the answer we got and the answer we 
wanted is just that there is an extra term (R1C2 )in the second 
coefficient of the denominator. Why is this term present? Allen 
Brown <Brown 1975> has developed methods for localizing bugs 
using causal and tepeological reasoning about a circuit but it is 
certainly a more difficult problem to pursue this path than the 
one we have. 

The Propagation Theory of Engineering Analysis: 

It is important that the bug localization process have 
access to the assumptions on which the bug manifestation is 
based. This depends upon analysis being able to explain its 
answers. In this section we will describe progress that has been 
made on an analysis program that reasons qualitatively about 
circuits and can explain its results. 

As part of the development of the PSBDARP circuit 
designer, we have developed EL, a new Kind of electrical network 
enalysis program <Sussman ft Staliman 1975>. The literature is 
full of powerful and useful circuit analysis systems which 
implement the formal methods. What is novel about this program 
it its rule-based approach to network analysis and its consequent 
ability to explain the basis of its deductions. 

EL is implemented in ARS (Antecedent Reasoning 
System), a problem-solving language which implements rules as 
demons with multiple patterns of invocation monitoring an 
associative data base <Stallman & Sussman 1976>. It performs 
ell deductions in an antecedent manner, threading the deduced 
facts with Justifications which mention the antecedent facts used 
end the rule of inference applied. These justifications may be 
examined by the user to gain insight into the operation of the 
system of rules as they epply to a problem. The same 
justifications are employed by the system to determine the 
currently active data-base context for reasoning in hypothetical 

situations. Justifications are also used in the analysis of blind 
alleys to extract information which will limit future search. 

EL is a set of ARS rules for electronic circuit analysis. 
This set of rules encodes familiar approximations to physical laws 
such as Kirchoff's laws and Ohm's law as well as models for more 
complex devices such as transistors. Facts, which may be given 
or deduced, represent data such as the circuit topology, device 
parameters, voltages and currents. The antecedent reasoning of 
ARS gives analysis by EL a "cetch-es-catch-can" flavor 
suggestive of the behavior of a circuit expert. The justifications 
prepared by ARS allow an EL user to examine the basis of its 
conclusions. This is useful in understanding the operation of the 
circuit as well as in debugging the EL rules. For example, a 
device parameter not mentioned in the derivation of a voltage 
value has no part in determining that value. If a user changes 
some part of the circuit specification (a device parameter or an 
imposed voltage or current), only those facts depending on the 
changed fact need be "forgotten" and re-deduced, so small 
changes in the circuit may need only a small amount of new 
analysis. Finally, the search-limiting combinatorial methods 
supplied by ARS lead to efficient analysis of circuits with 
piecewise-linear models. 

The style of analysis performed by EL, which we call 
the method of propagation of constraints, requires the 
introduction and manipulation of some symbolic quantities. 
Though the system has routines for symbolic algebra, they can 
handle only linear relationships. Nonlinear devices such as 
transistors are represented by piecewise-linear models that 
cannot be used symbolically; they can be applied only after one 
has guessed a particular operating region for each nonlinear 
device in the circuit. Trial and error can find the right regions, 
but this method of assumed states is potentially combinatorially 
explosive. ARS supplies dependency-directed backtracking, a 
scheme which limits the search as follows: The system notes a 
contradiction when it attempts to solve an impossible algebraic 
relationship, or when discovers that a device's operating point is 
not within the possible range for its assumed region. The 
antecedents of the contradictory facts are scanned to find which 
nonlinear device state guesses (more generally, which 
backtrackable choicepoints) are relevant) ARS nenr tries that 
combination of guesses again. A short list of relevant 
choicepoints eliminates from consideration a large number of 
combinations of answers to all the other (irrelevant) choices. The 
fact that the set of assumptions leading to the contradiction is 
inconsistent is summarized and recorded with antecedents being 
that part of the support of the contradiction which are 
independent of the assumptions. These summaries are examined 
whenever a choice has to be made, thus preventing rechoosing of 
an inconsistent set of assumptions. Thus the justifications (or 
dependency records) are used to extract and retain more 
information from each contradiction than a chronological 
backtracking system. A chronological backtracking system would 
often have to t ry many more combinations, each time wasting 
much labor rediscovering the original contradiction. 

Jon Doyle is now engaged in further research on the 
uses of dependency information in the control of reasoning 
<Doyle 1976>. 1 De Kleer, Jon Doyle, Guy Steele and this author 
have been developing an even more powerful rule-besed 
language we call AMORD in which the EL rules can be expressed 
in e more hierarchical form. 

History of this Project and Relation to other work: 
The PSBDARP theory of design has many 

antecedents. The idea of successive refinement of plans appears 
as a key dogma of "Structured Programming" <Dijkstra 1970> 
<Wirth 1971> <Dahl et el 1972>, although it also appears in the 
Artificial Intelligence problem-solving literature. The idea of 
relaxation of a hierarchy of constraints comes from <Freeman ft 
Newell 1971> There are also versions of GPS <Ernst ft Newell 
1969> which were purported to do reasoning in a hierarchy of 
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abstraction spaces. ABSTRIPS <Sacerdoti 1973> showed how 
refinement of abstract plans could be used to guide a problem 
solver past problems which would otherwise be combinatorially 
explosive. Recently the NOAH system <Sacerdoti 1975> has 
developed this idea to great depth. The major difference we 
have with successive refinement is our emphasis on engineering 
analysis and debugging. We are sure that it is impossible to build 
systems which can deal with complex real world problems without 
making and removing bugs. PSBOARP is a descendent of the 
HACKER <Sussman 1973> and MYCROFT <Goldstein 1974> 
debugging systems. One might consider that GPS already 
embodied the idea of debugging in that one may take a problem 
solver with a debugging strategy to be a special case of a 
problem solver which first attempts to eliminate the main 
difference between the given and the goal and then reevaluates 
the situation after a step. This is true in principle, but GPS was 
never used for debugging. Poly a <Polya 1945> had developed a 
theory of problem solving which included debugging but GPS only 
captured the reduction and rephrasing aspects of Polya's theory. 

Recently Allen L Brown Jr. finished a PhD thesis at 
MIT <Brown 1975> which explored the use of causal and 
teleologies! reasoning in the troubleshooting of complex electrical 
systems. In this thesis Brown developed a set of linguistic 
conventions for the representation of the plan of a complex, 
hierarchically-structured system. Brown's methods depend on, 
and inspired the construction of the EL analysis system 
<Sussman & Stallman 1975> which uses constraint propagation 
and can explain how a result depends on assumptions. Brown 
needed analysis by propagation of constraints to predict the 
consequences of a hypothesized fault in a component. These 
consequences are compared with the measured values as a test 
of the fault theory. The explanations are critical in determining 
the faulty assumptions. Johan de Kleer also uses this technique 
in his debugging program INTER <de Kleer 1976>. A related 
process of relaxation of symbolic constraints has been applied to 
the labelling of line drawings of visual scenes <Muffman 1970>. A 
beautiful exposition of this technique can be found in <Waltz 
1972>. Some theoretical analysis of this technique appears in 
<Freuder 1976>. 

TOPLE <McDermott 1974> was an early attempt to 
record the interactions among deductions for the purpose of 
deciding what is currently believed to be true. McDermott used 
this information to help decide which of several assumptions must 
be thrown out in order to keep a consistent data base when a 
new fact conflicted with existing ones. MYCIN <Shortliffe 1974> 
<Davis 1976> use dependency information to produce 
explanations but do not use it for any control purposes. The SRI 
Computer Based Consultant <Fikes 1975> makes use of 
dependencies to determine the logical support of facts in a 
manner similar to ARS but does not use them to control search. 

Two other recent research efforts at MIT have 
developed these ideas further. Drew V. McDermott finished a 
PhD thesis <Mc Dermott 1976> concerning the design of such 
systems. Drew developed a rule-based language, called NASL, in 
which it is possible to express strategies, tactics, and advice for 
design. He used this language to encode some general design 
strategies and some specific strategies for the design of 
electrical systems. Howie Shrobe and Charles Rich <Rich & 
Shrobe 1976> designed and mostly implemented a system which 
"understands" a limited class of LISP programs. They have 
developed set of linguistic constructs for attaching a set of 
structured comments to a program which relate it to its plan. 
These plans look very much like the plans of Brown. They have 
also developed a system which reasons about the program in 
terms of its plan, and which can check that a program in fact 
implements its goals. In effect their system employs the 
teleological information in the plan about the parts of the 
program being checked, as an outline for the verification of the 
program. 

Finally, there have been many books about the 
strategies of the design process (for example <Alexander 1964>, 

<Asimow 1962>, <Buhl 1962>, <Glegg 1973>) but these are 
mostly simple advice about how to avoid overlooking a good 
approach when working out a hard problem. They offer l itt le 
help in how to propose new solutions to new problems. Artificial 
intelligence researchers have been interested in the design 
process as a model of creativity. Computer Science in general 
has been interested in design because of the "complexity 
barr iers" apparent in the design of large systems. Herbert Simon 
<Simon 1969> wrote a delightful and insightful book which relates 
computer science to general engineering design and to cognitive 
theory. At Carnegie-Mellon University, for example, Grason 
<Grason 1970> wrote a PhD thesis on the relaxation of 
architectural constraints, and Hanley <Hanley 1968> wrote a PhD 
thesis on computer-aided design of computer instruction sets. 

One would expect the CAD literature to deal 
extensively with systems to save an engineer time and effort. A 
survey of this literature (see <Kuo & Magnuson 1969> <Furman 
1970> <Dertouzos 1972> <Vlietstra & Wielinga 1973> 
<Rosenbrock 1974>) shows that the thrust of CAD development 
has been in the development of interactive graphics packages, 
libraries of special purpose programs, and mathematically 
sophisticated programs aimed at analysis or optimization of 
synthesis. Only a small amount of work has been done in the 
field of synthetic reasoning, and then only in restricted domains 
where algorithms are available to solve a small class of problems. 
Such approaches have been partially successful in the problem of 
printed-circuit layout (e.g. <Fletcher 1974>) and filter design (e.g. 
<Chohan A Fidler 1974>). Director <Director 1974> describes a 
circuit design program which assumes a full-graph impedance 
network and then optimizes the network for the behavior 
desired. In the process, many component values become zero 
and are thus discarded? The CAD literature is almost completely 
ignorant of non-numerical techniques (except <Powers 1973>) 
and would benefit from an infusion of these new ideas. Besides 
our work, the TROPIC system <Latombe 1976> is one other 
application of artificial intelligence ideas to CAD. John S. Brown 
<Brown & Burton 1975> (at Bolt, Beranek and Newman, 
Cambridge, Massachusetts) has been applying both artificial 
intelligence ideas and CAD ideas to the problem of computer-
aided instruction of circuit debugging skills for technicians. We 
expect that the work of his group will contribute to the 
understanding of AI issues in CAD. 

Conclusions: 
A major problem confronting builders of automatic 

problem-solving systems is that of the combinatorial explosion of 
search-spaces. One way to attack this problem is to build 
systems that effectively use the results of failures to reduce the 
search space — that learn from their exploration of blind alleys. 
In simple cases, as in analysis of circuits, various automatic 
techniques such as the dependency-directed backtracking of ARS 
can go a long way toward controlling the search. In more 
complex situations, as in design, it is necessary to constrain the 
search as rapidly as possible — even if that sometimes 
overconstrains the problem and causes a bug. At least we can 
hope that the debugging problem is easier than the search 
problem. In either case it is necessary to build problem solvers 
so that they can remember and explain their reasoning. Both 
dependency-directed backtracking and problem solving by 
debugging almost-right plans depend on the ability to manipulate 
the justification of a conclusion as well as the ability to deduce it. 

Saving justifications for the intermediate results of a 
computation has other merits. It is very difficult to debug 
programs containing large amounts of knowledge. The complexity 
of the interactions between the "chunks" of knowledge makes it 
difficult to ascertain what is to blame when a bug manifests itself. 
A program which can explain the reasons for its beliefs is more 
convincing when right, and it is easier to debug when wrong. 
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3. The STATUS t r a n s i t i o n , if any ( e . g . , 
"PRL.XM.S" can occur only if the defendant is 
in the "Mag i s t r a te ' s Proceedings" s ta tus , and 
the event w i l l not cause a s ta tus change), 

4. The formal parameters necessary to speci fy 
the data contents of the event ( e . g . , 
"PRL.XM.S" requ i res tha t the scheduled date 
of the examination be supp l i ed ) , 

5. The Speedy T r i a l t ime accounting act ions 
necessary as a r e s u l t of post ing the event, 

6. Any spec ia l precondi t ions tha t must be 
s a t i s f i e d in order fo r the event to be 
posted, 

7. Any spec ia l semantic act ions that must be 
performed upon post ing the event, 

8. The t e x t tha t is to be p r i n t ed on a docket 
sheet when t h i s event is repor ted . 

In a d d i t i o n to the event sequencing 
cons t ra in t s represented by the status diagram, 
a r b i t r a r y sequenc ing r e l a t i o n s h i p s may be 
spec i f i ed to con t ro l the order in which events may 
be pos ted w i t h i n any g i ven s t a t u s . These 
r e l a t i o n s h i p s are r e p r e s e n t e d g r a p h i c a l l y as 
SEQUENCE DIAGRAMS and extend the f i n i t e s ta te 
nature of the STATUS DIAGRAM. In add i t i on to 
s t r i c t event sequences, SEQUENCE DIAGRAMS may 
denote forks and j o i n s , opt iona l sequences, and 
p a r a l l e l paths. The s ta te of any given subject 
w i t h respect to the progress of a case may be 
described as the STATUS conta in ing the subject-
p l u s a v e c t o r o f "program c o u n t e r " va lues 
i n d i c a t i n g the s u b j e c t ' s p o s i t i o n a long each 
poss ib le p a r a l l e l path in the SEQUENCE DIAGRAM 
which f u r t h e r def ines the STATUS. 

F igure 2 depic ts a s i m p l i f i e d event sequence 
diagram f o r de fendant s u b j e c t s i n the 
"Mag i s t r a te ' s Proceedings" s t a tus , showing the 
a l l o w a b l e sequences f o r S e t t i n g , H o l d i n g , and 
Cont inuing p re l im ina ry examinat ions. The { } 
i n d i c a t e t h a t the enc losed sequence may be 
repeated zero or more t imes. The v e r t i c a l bars 
denote a fork and j o i n operat ion on the enclosed 
independent event sequences. The dot ted l i n e 
ind ica tes tha t the DISMISS event may be posted at 
any time between the fo rk and j o i n to i n t e r r u p t 
and c u r t a i l the p a r a l l e l sequences. According to 
Figure 2, before an INDICT event can be posted, a 
p r e l i m i n a r y e x a m i n a t i o n must f i r s t be se t 
(PRL.XM.S) and then h e l d (PRL.XM.H), and 
o p t i o n a l l y c o n t i n u e d (PRL.XM.C) and r e - h e l d 
(PRL.XM.H) an a r b i t r a r y number of t imes. However, 
at any t ime dur ing t h i s p re l im inary examination 
sequence, DISMISS may be posted, thereby escaping 
from the sequence and causing a s ta tus change to 
the " P o s t - T r i a l " s ta tus (see Figure 1) . 

The event d i c t i o n a r y , s ta tus diagrams, and 
sequence diagrams represent the c o u r t - o r i e n t e d 
knowledge of the CR1MNL system and are 
d e c l a r a t i v e l y s p e c i f i e d i n t a b l e s r a t h e r than 
being, for example, p rocedura l ly embedded. The 
system ac ts e s s e n t i a l l y as an i n t e r a c t i v e 
i n t e r p r e t e r which accepts proposed events from the 
user and t r i e s to apply the semantic ac t ions of 
each event to t ransform the cur ren t s ta te of i t s 
s u b j e c t . The i n t e l l i g e n c e o f the system is 
exh ib i ted by i t s responses to proposed events and 
the r e p o r t s produced f o r e f f e c t i v e case 
mon i to r ing . Not only can CRIMNL detect when an 
event is i n v a l i d based on the cur ren t s ta te of i t s 
sub jec t , but the system can a lso o f f e r d iagnost ic 
advice as to which events are a l lowable at tha t 
time and which events need to be posted f i r s t in 
order that the attempted event become v a l i d . This 
model-based v a l i d i t y check ing and d i a g n o s t i c 
advice al lows the de tec t ion of c l e r i c a l e r ro rs and 
resu l t s in increased data base i n t e g r i t y . This 
same model-based system also provides the Courts 
w i th a valuable t r a i n i n g too l fo r the i n s t r u c t i o n 
o f docket c l e r k s i n c r i m i n a l p r o c e d u r e . 
Furthermore, as a r e s u l t of e x p l i c i t l y de f i n i ng 
each sub jec t ' s s ta te w i th respect to i t s progress 
i n the c r im ina l proceedings, i t i s poss ib le t o 
genera te e x c e p t i o n r e p o r t s which m o n i t o r case 
progress and warn of approaching procedural t ime 
cons t ra i n t s , an espec ia l l y complex c l e r i c a l task 
imposed on the Courts by the Speedy T r i a l Act . 

The system is programmed in SAIL u s i n g 
DBMS-10 and runs on a DECsystem-10 computer in 
Wash ington, D .C. , a c c e s s i b l e f rom t e r m i n a l s 
l o c a t e d in the v a r i o u s user Cour ts v i a a 
value-added network. The i n i t i a l " p i l o t " group of 
Federal Courts are located in Los Angeles, San 
F r a n c i s c o , Ch icago, D e t r o i t , New York , and 
Washington, D.C. 
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