
A Display Oriented Programmer's Assistant

Warren Teitelman
Xerox Palo A l to Research Center

Palo Al to. Cal i forn ia

Abstract

This paper continues and extends previous work by the
author in developing systems which provide the user wi th
various forms of explici t and imp l ic i t assistance, and in
general cooperate wi th the user in the development of his
programs. The system described in this paper makes
extensive use of a bit map display and point ing device (a
mouse) to signif icantly enrich the user's interactions with the
system, and to provide capabilities not possible wi th
terminals that essentially emulate hard copy devices. For
example, any text that is displayed on the screen can be
pointed at and treated as input, exactly as though it were
typed, i.e., the user can say use this expression or that value,
and then simply point. The user views his programming
environment through a collection of display windows, each
of which corresponds to a di f ferent task or context. The user
can manipulate the windows, or the contents of a particular
window, by a combinat ion of keyboard inputs or point ing
operations. The technique of using d i f ferent windows fo r
di f ferent tasks makes it easy for the user to manage several
simultaneous tasks and contexts, e.g., def in ing programs,
testing programs, edit ing, asking the system for assistance,
sending and receiving messages, etc and to switch back and
for th between these tasks at his convenience.

Introduction

l i s p systems have been used for highly interactive
programming for more than a decade.+ Dur ing that period,
much ef for t has been devoted to developing tools and
techniques for providing powerful interactive support to the
programmer. The Interlisp programming system [T e i 4]
represents one of the more successful projects aimed at
developing a system which could be used by researchers in
computer science for performing their day to day work, and
could also serve as a testbed for introducing and evaluating
new ideas and techniques for p iov id ing sophisticated forms
of programmer assistance. Interl isp on the PDP-10 is
currently used by programmers at over a do/en ARPA
network sites for doing research and development on
advanced ar t i f ic ia l intelligence projects such as speech and
language understanding, medical diagnosis, computer-aided
msi iuct ion, automatic programming, etc. Implementations
of Interlisp on several other machines are cuirent ly planned
or in progress.

This paper describes a system writ ten in Interlisp which
extends the Inierl isp user facil i t ies to take advantage of a
d isp lay . t t The paper is not an "idea" paper in the sense
that Ar t i f i c ia l Intelligence papers usuallv are. Instead, this

f An excellent survey of the state of the art may be found in [San]

t The author would like to acknowledge and thank R. F. Sproull and J
Strother Moore, who designed and implemented critical support facilities
without which this system would not have been possible, and whose ideas
and intuitions provided extremely valuable guidance and inspiration
during the development of the system. "I he form and capabilities of some
of the display primitives in the current system were suggested by an
earlier version of a display text facility for Interlisp designed by Terry
Winograd. Finally, all of the work described herein depends heavily on
th " leverage provided by the Interlisp system itself, which is the result of
the efforts of man> individuals over a period of almost a decade, made
possible by continuing ARPA support over that period.

papcr describe', a woik ing sysiein which implements and
inttrratcs a number of idvis and techniques previously
reported in The l i teiature by several d i l lY i cn l individuals,
including the author. The idea of a display composed of
mult iple, overlapping regions called "windows" is
attributable to and an essential pai l of the Smallt.dk
programming system designed and implemented by the
learn ing Research Group at Xerox Reseaich (enter [1 R G] .
In particular, much of the way that windows are used in the
system described here was influenced by the work of Dan
Ingalls on the Smalltalk user interface. The idea of using the
display as a means for al lowing the user to retain
comprehension of complex program environments, and to
monitor several simultaneous tasks, can be found in the
work of Dan Swinehart [S w i] , The use of the "mouse" as a
point ing device for selecting portions of a display goes back
to the early work on NFS [E n g] . Final ly, the techniques
used for automatic error correction and the idea of having
the user interact with the system through an active
intermediary winch maintains a history of his session, both
of which appear in this paper, are parts of the standard
Interl isp system [Tei1][Tei2]. The work reported in this
paper is of interest pr imar i ly in how the realization of these
various ideas in a single, integrated, working system
dramatically conf i rms their v a l u e . f i t

Overview of the System

The system described in this paper is implemented on a
version of Interl isp [Tei4] running on M A X C , a computer at
the Xerox Research Center in Palo Al to. This computer
emulates a PDP-11), and runs the Tencx operating system, so
that f r om the standpoint of the user, the system he is using
is Interl isp-10. The raster-scan display used by the system
described in this paper is maintained by a separate 65K 16
bit word mini-computer. The minicomputer is l inked to
M A X C through an internal network, and implements a
graphics protocol similar to the Network Graphics Protocol
[Sp r] . but specialized for text and raster-scan images. A l l of
the work described in this paper deals wi th the "high end" of
the system, i.e., the user interface, and is wutten entirely in
Interl isp.

The user communicates wi th the system using a standard
typewri ter- l ike keyboard. In addit ion, he has available a
point ing device commonly called a "mouse" [E n g] used fo r
point ing at particular locations on the screen. For those
unfami l iar with this device, the mouse is a small object
(about 3" by 2" by 1") wi th three buttons on its top. The
system gives the user continuous feedback as to where it
thinks the mouse is point ing by displaying a cursor on the
screen. The user slides the mouse around on his work ing
surface (causing bearings of wheels on the bottom of the
mouse to rotate), and the system moves the cursor on the

! J t W h e n I first began woik in 1969 on what was to become DWIM. the
automatic error correction facility of Interlisp, by implementing a
primitive spelling corrector which would automatically correct a certain
class of user spelling errors, I discussed this project at length with a
colleague over a period of months. One d:is soon after this facility was
finally completed and installed in our f isp system, this same colleague
rushed to my office and in i*rral excitement exclaimed that the system
had corrected an error. I was surprised at his enthusiasm, since we had
been discussing this system tor months. He replied, "Yes, but it really did
it!" the system described herein implements ideas that many of us have
long been sayinu would be a good thing to have. And they really are!

Lan t fua ros A S y s t e m s - 1 : T e i t e l m a n
905

http://Smallt.dk

Why is such a fac i l i ty useful? Because most interactions
wi th a prus.',raminim; system are not independent, i.e., each
"event" bears some relationship to what transpired before,
usually to a fa i r ly recent event. Being able to point at
(pur l ions o() these events effectively gives the user the power
of pronoun reference, i.e.. the user can say use this
expression or that value, and then simply point. This
drastically reduces the amount of typing the user has to do
in many situations, and results in a considerable increase in
the effective "bandwidth" of the user's communicat ion with
his programming environment.

The user views his environment through a display consisting
of several rectangular display "windows". Windows can be,
and f icquenl ly are, overlapped on the screen. In this case,
windows that are "underneath" can be brought up on top and
vice versa. The resulting conf igurauon considerably
increases the user's effective working space, and also
contributes to the i l lusion that the user is viewing a desk top
containing a number of sheets of paper winch the user can
manipulate in various ways.

One faci l i ty provided by these windows that is not available
wi th sheets of paper is the abi l i ty to scroll the window
forward or backward to view material previously, but not
currently, visible in the window. Thus a single window can
be used to view and manipulate a body of text that would
icquire many sheets of paper.

bach window corresponds to a di f ferent task or aspect of the
user's environment. f o r example, there is a tYlMSCRirr
window, which contains the transcript of the user's
interactions w i th the Lisp interpreter through the
programmer's assistant, a WORK AREA window winch is used
for edit ing and pret typrmt ing, a HISTORY. window, a
BACKTRACF window, a MESSAGE: window, etc. Using
d i f ferent windows for di f ferent tasks

...makes it easy for the user to manage several simultaneous
tasks and contexts, switching back anil for th between them at
his convenience.

Being able to switch back and for th between tasks icsults in
a relaxed and easy style of operating more similar to the way
people lend to work in the absence of restrictions. To use a
programming metaphor, people operate somewhat l ike a
collection of coroutines corresponding to tasks in various
states of complet ion. These coroutines are continual ly being
activated by internally and externally generated interrupts,
and then suspended when higher pr ior i ty interrupts arrive,
e.g., a phone call that interrupts a meeting, a quick question

by a colleague that interrupts a phone call, etc. Our previous
experience with Interiisp supports the contention that it is of
great value to the user to he able to switch back and fo r th
quickly between related tasks. 1 he system described in this
paper makes this especially convenient, as is il lustrated in
the sample se.sMon presented in the body of the paper.

One technique hcavib cmplovcd th ioughoni the system is the
use ol menus. A menu is a lypc of window that causes a
specified operation to be p».; IOIHHM! when a selection made
in that window. Menus scive a numhci of impottant
functions. \ hey make it easy for the ti.ser to specify an
operation without having (o t\ne. Thev act as a prompt for
the i r c r by providing him with a repeiloire of commands
f rom which to choose, t o r example, often a user wi l l not
remember the name of a command, or may not even be
aware of the existence ol' a command.

However, most important ly, menus llv facilitate context
switching. As wi th most systems, the interpretation of the
user's keystrokes (wi th the exception oi interrupt characters
which usually have a globallv detmed effect) depends on the
state i)\ the system, f or example, when addressing the Lisp
interpreter, the characters that the user types are used to
construct Lisp expressions which are then evaluated. When
using the editor, the characters are inserted in the indicated
expression, etc. 1 he important point is that once the user
starts typing, he normally has to complete the operation or
abort it. However, by selecting a menu command using the
mouse, even in the midst of typing, the user can temporari ly
suspend the operation he is pel fo rming , go o f f and do
something else, and then return and continue wi th his
current context. This is also illustrated in the sample session
below.

A Samojr Session vvitji_tlie System

Since so much of the ut i l i ty o\' the system desciibed in this
paper rest on visual effects, it is d i f f i cu l t to transmit the feci
and smoothness of the system through words. Therefore, the
fo rm chosen for presenting, the system in this paper is to
take the leader through a sample session with the system,
using frequent "snapshots" of the display as a substitute for
the actual display itself. This session is divided into two
parts. The f i rst part is a " toy" session, in that the user is not
per forming any serious work. It is included only to
introduce the salient features of the system. The second part
of the session shows some more sophisticated use of these
features in the context of an actual working session
involv ing f ind ing and f i x ing bugs, testing programs, sending
and receiving messages, etc.

For readers not fami l iar wi th I isp, please ignore Lisp related
details (which we have tried to m in im i /e) . I he impoi tant
point is the way t i c system allows the user to switch back
and forth between several tasks and contexts. Such a fac i l i ty
would be useful in any piogramining environment.

Lan r t unp rps & S v s t f * m s - 1 : T ^ i t p l n a n
9 0 6

Sample_Session _ - Part 1

1. Figure 1 shows the in i t ia l conf igurat ion of the screen.
Three windows are displayed: the TYPESCRlPT window,
which records the user's interactions wi th the programmer's
assistant and the Lisp interpreter; the PROMPT window, which
is the black region without a caption at the top of the screen
used for prompt ing the user; and a menu, which is the
smaller window wi th caption MENUS to the right of the
lYPESCRIPT w indow. j A menu is just l ike any other
window, except that whenever a selection is made in a menu,
a specified operation is also performed. This particular
menu is a menu of menus, hence its caption. If the user
selects one of its commands, each of which is the name of a
menu, the corresponding menu wi l l be displayed at the
location he indicates. He can then select, and thereby
perform, commands on that menu. The crosshairs shape in
the lower right hand port ion of the TYPESCRIPT window is
the cursor, and indicates the current posit ion of the mouse.

In Figure 1, I have just typed in a Lisp def in i t ion for the
funct ion FACT (factor ial) . Fisp has given me the error
message "incorrect def in ing f o r m " (displayed in bold face to
set it o f f) . The system displays a b l ink ing ca re t f f to
indicate where the next character that I type, or the system
prints, wi l l be displayed. In Figure I, the caret now appears
immediately fo l lowing the "2<-", where 2 is the event number
for my next interaction with the programmer's assistant, and
<- is the "ready" character.

2. I don't understand what caused this error, so I type ? to
the p.a. (programmer's assistant), requesting it. to supply
addit ional explanatory in format ion . The p.a. looks at the
previous event to determine the nature of the error. In this
case. tram: bu i l t - i n in format ion about the arguments to
Dl I INI■«..», the p.a. tells me that the problem is that D I . H N R ;
encount '- i 'd an atom where it expected a list, i.e., a left
parentheses is missing f rom in f ront of the word "fact".!" | j
Since the programmer's assistant is maintaining a history of
mv interactions wi th the system. I don't have to retype the
l>! I INI o expression. Instead, I can edit what I have already
typed, and simply insert the missing left parenthesis. The
! i>ii menu wi l l allow me to perform various edit ing
opnat ions using, the mouse for pointing, and the keyboard,
where necessary, for supplying text. In f igure 2, I have
alicady moved the mouse so that the cursor is positioned
over the EDIT command on the MhNiis menu, in preparation
for "br inging up" the r o i l menu.

I"! IK- "plaid" effeet of the hackground in the figures is an artifact of the
pmdmt ion/ iedn-hon process. I he aelu.tl background wit (he display t.s

a uniform grey.

If In these figures, (he tare! is always shown in ils "on" position.

f i ' T l f I he p.a. did not know anything about this particular error, il
would refer to the index of I he on-l ine Inlerlisp Reference Manaial and
present the toi respondmp text as:.ociated with the crro< message by way of
explanation. I he user can also a i rmenl the bni l l - in mini malum that the
p.a has about syacm functions by mfoinnnj', the p.a. about the
requirements of his own functions. He ean then use the ? command to
explain errois in his own programs.

Lan fu ia res & S y s t r m s - 1 : T p i t e l m a n
907

3. I press a button on the mouse to select the EDIT
command in the MENUS menu. The system indicates the
selection by displaying EDIT as white on black. The PROMPT
window tells me to use the left button on the mouse to
indicate where I want the center of the (EDIT) menu to
appear. The cursor is changed to an icon of a menu with a
cross in its center to suggest the operation that is pending.
At this point, I don't have to complete this operation. I can
type in other expressions to the programmer's assistant,
perform other menu operations, etc. The process which is
waiting for me to supply the indicated information is simply
a co-routine which has been suspended.! However, since I
want to fix up the DFElNEQ expression before going on to
anything else. I move the cursor to the position at which I
want the EDIT menu to appear, which is below the MENUS
menu and to the right of the TYPESCRIPT window, as shown
in Figure 3.

4. I press the left button on the mouse, causing the EDIT
menu to appear at the location of the cursor. In this
position, the EDIT menu slightly overlaps both the
TYPESCRIPT window and the MENUS menu, so the system
automatically adjusts the EDIT menu by sliding it off these
windows to its location as shown in Figure 4. | f

'I'See description of the ''Spaghetti Stack" facility in [Eob] and [Te i4] .

I t ' could force the EDIT menu to overlap the TYPf SCRIPT window by
positioning it exactly using one of the commands on the WINDOW
menu. However, since in this case I only positioned the menu
approximately, the system tries to "Do What I Mean", a philosophy of
system design we have tried to follow throughout the Interlisp system

Languages & Sys tems-1 : Te i te iman
908

5. Now I am ready to edit. I select the left parenthesis in
the first line of the TYPESCRIPT window, and then select the
INSERT command on the EDIT menu. The line of text in the
TYPESCRIPT window is broken just before the selection (the
left parenthesis), and the caret is moved to that location.
The PROMPT window instructs me to input material.
Anything I type will appear at the location indicated by the
caret.

6. I type in a single left parenthesis, and terminate the
INSERT operation. The line of text I have been editing is
rejoined, and the caret returned to the appropriate location
at the end of the TYPESCRIPT window. I now wain to cause
the corrected text to be re-input in order to perform my
original operation, i.e., define my function. Therefore, I
select the text by first selecting the "d" in "iltTineq" and then
extending this selection through the final "] " . Then, using
the same method as previously shown for bringing up the
EDIT menu, I bring up the WINDOW menu in order to obtain
the command for inputting selected material.

Languages & S s t e m s - 1 : Te i te lman
909

11. I still don't understand why the error occurred, so I try
typing the ? command again. In this case, the programmer's
assistant tells me that the problem is that one of the
operands to * (the MULTIPLY operator) was (FACT N-1) and
that the value of (FACT N-D is NIL when N=1. In other
words, when FACT is called with N=o, it returns NIL. The p.a.
is able to generate this explanation because (1) it knows that
all of the arguments to * must be numbers, and (2) it can
examine the state of the computation on the stack. In this
case, it found that the second operand to iTlMts was NIL,
which is not a number, and that the expression that
produced this particular value was (FACT N-1) in the
expression (N.(FACT N-1)) which is contained in the function
FACT, and that at the time this call occurred, the value of N
was 1.

I now realize that the problem is simply that I neglected to
specify the value of FACT for N=o.f Therefore, I prettyprint
the definition of FACT in preparation for editing it. Figure
II shows the definition of FACT prettyprinted in my WORK
AREA window, which automatically appeared when
prettyprint was called. Note that the definition of FACT now
shows the two misspelled words, GREATERR and FACCT,
spelled correctly.

12. I select the right square bracket in the definition of
FACT in the WORK A R I A window, and then select the INSERT
comand on the EDIT menu. The EDIT menu automatically
moves so as to be close to the window that I am editing. I
make the necessary correction by typing ") ELSE I", i.e. if N
is not greater than 0, FACT should return 1. Figure 12 shows
the display just before I complete the INSERT. Note that the
caret appears in the WORK AREA window where I am typing.
The cursor is in the upper right hand portion of the screen
at the location of the INSERT command before the EDIT
menu moved to be close to the WORK AREA.

f i n Interlisp, if none of the predicates of ;tn i f- then expression evaluate
true, the value of the expression defaults to NIL.

Languages & Systems-1: Teitelman
912

13. 1 complete the INSERT, and then select the DONE
command on the EDIT menu to indicate that I am finished
editing this expression. The PROMPT window reports that the
definition of FACT has been changed. Note that I did not
have to finish editing FACT at this point: I could have typed
in expressions to be evaluated, performed other menu
operations, etc.. even edited other expressions, before
selecting the DONE command for this expression. This is
another example of being able to suspend different tasks in
varying states of completion and go back to them at some
later point.

14. I now test out my change by typing fact(2), which
works correctly. Now I want to continue with the
computation. Note that I am still in the original break that
followed the error. The arithmetic operation * (i.e., the Lisp
function ITIMHS) is still waiting for a number to be used as a
multiplicand. I therefore select the RETURN command on
the BREAK menu. The PROMPT window tells me to INPUT
EXPRESSION and the caret moves to the PROMPT window. I
type 1 as the value to be returned from this error break.
Figure 14 shows the display at this point just after I type 1,
which is echoed (displayed) in the PROMPT window.

Note: in actual practice, for a computation as trivial as
FACT(3), I would probably simply reset (abort back to the
top) and reexecute FACT(3) rather than bothering to continue
the computation, since so little has been invested in getting
to this point. However,

being able to continue a computation following; an error is
especially useful when an error occurs following a significant
amount of compulation, or when the computation has left
things in an "unclean state" as a result of global side effects.
Such a facility is also essential for good interactive
debugging.

Languages & Systems-1
913

Te i te lman

15. I complete typ ing the expression for the R E T U R N
command, thereby causing 1 to be returned as the value of
the break, which causes (1 * I) to be computed and returned
as the value of F A C T O) , which then causes (2 * 1) to be
computed, etc., and f inal ly the or ig inal computat ion of
FACTO) finishes and returns 6 as its value as shown in Figure
15. in the next to the bottom line of the TYPESCRIPT window.

I now want to try F A C T on some other values, so I br ing up
the HISTORY menu, and select the usr. command, which is a
command to the programmer's assistant to reexecute a
previous event, or events, wi th new values. The PROMPT
window instructs me to select the targets and to input the
objects to be substituted. I select the " 3 " in FACTO) (near the
lop of the TYPESCRIPT window) and input "4 5 10" (echoed
in the PROMPT window), i.e., I am requesting that FACT(4),
F A C ' I O) and FACT(10) be computed.

16. The resulting history operation is equivalent to typing
USF 4 5 in FOR 3 IN <1,4" which the p.a. prints in the
TYPFSCRIPT window to show me what is happening. This
USF command now causes three computations to be
performed, corresponding io the result of substituting 4 for
3 in FACT(3). the resuit of substituting 5 fo r 3 in F A C T O) , and
the result of substituting JO for 3 in FACT(3). The values
produced by these three compulations, 24, 120. and 3678800,
are printed in the TYPI-NCKUM' window, as shown in Figure
16. Final ly, I ask for a replay of the history of my session,
by selecting the ?? command in the 11 is I OR Y menu. The
HIMOKY window is brought up, and the history of my
session, in reverse chronological order, is printed in this
window, as shown in f igure 16 . f f

f4 is the event number of the .-vein corresponding k> FACTO).

ft In addition io seeing a replav of his history, the user can also scroll
the (contents of the) 'IYPFSCKIPJ WINDOW backward, m time to we the
transcript of car l in interactions with the system. The difference between
the history anil the IYPFSCRIPT is that the TYPI SCRIPT contains a
record of all chaiailcrs input or output, e.g., includes messages,es printed by
the system and by the user's prograions The histoiy contains a subset of
these duracteis. orram/cd according' to events. For cample, 6, the value
returned by FACTO), actually appears IX lines below FACTO) in the
I M T S C R I P I window, but in the HISTORY window, it would be shown
as the value of event number A, regardless of the fact thai events 5 thru 9
occurred between the lime that event 4 was begun and the time it
completed. .

Languages & Sys tems-1 : Te i te lman
914

This completes the "toy" session designed to illustrate some
of the basic features of the system. Note that at this point
the display contains nine different windows. Five of these
windows are control windows (menus). The other four
windows describe various processes. Note that the windows
have not been a burden on the user: he does not "manage"
the windows, although he could perform explicit operations
on them such as changing their position, or size, or shape, or
editing their contents as we have seen. The feeling to the
user is that the windows more or less manage themselves, and
this contributes greatly to the smoothness of the system.f

Conclusions

The system decribed in this paper has been in use by actual
users other than the author only a few months. However, our
conjectures about the usefulness of this kind of facility were
if anything conservative. The ability to suspend an
operation, perform other operations, and then return without
loss of context is widely appreciated. The technique of using
different windows for different tasks docs make this
switching of contexts easy and painless.

liven when the user is not switching contexts, the use of
multiple windows is extremely helpful. For example, a
standard complaint with conventional display terminals is
that material that the user wants to refer to repeatedly, e.g., a
printout of some function, or a record of some complicated
interaction, is displaced by subsequent, incidental
interactions with the system. In this situation when using a
hard copy terminal, the user simply tears off the portion he
is interested in and saves it beside his keyboard. Being able
to freeze a portion of the user's interactions in a separate
window, such as the WORK AREA. while allowing subsequent
interactions to scroll off the screen seems to combine some
of the best aspects of hardcopy and display terminals.

Finally, users just seem to enjoy aesthetically the style of
interacting with the system, such as using menus, the
feedback via the prompt window and changing cursors, being
able to scroll the windows back and forth, etc. We think this
is an area that will see an increasing amount of activity in
the future as the cost of bit map displays and the necessary
computing power to maintain them continues to drop.

REFERENCES

[Bob] Bobiow, D. G.. and Wegbreit B., "A Model and
Stack Implementation for Multiple Environments,"
Communications of the ACM, Vol. 16, 10 October 1973.

[Eng] English, W. K., Engelbart, D. C, and Herman, M.
I.., "Display Selection Techniques for Text Manipulation,"
IEEE Transactions on Human Factors in Electronics, Vol.
HFE-8, No. 1. March 1967.

[L R G] Learning Research Group. Personal Dynamic
Media, Xerox Palo Alto Research Center, 1976. Excerpts
published in IEEE Computer Magazine, March 1977.

'Thc second part of the session, which shows more sophisticated use of
the above features in the context of an actual working session involving
f inding and f ix ing bugs, testing programs, sending and receiving messages,
etc.. may be found in an expanded version of this paper available as a
Xerox CSI Report, A Display Oriented Programmer's Assistant, by
Warren Teitelman.

[San] Sandewall. E, "Programming in an Interactive
Environment: The Lisp Experience," Matematiska
Institutionen, University of Linkoping, Sweden. (to be
published in CACM).

[Spr] Sproull. R. F., and Thomas, E. L., "A Network
Graphics Protocol," Computer Graphics, SIUGRAPH
Quarterly, Fall 1974.

[Swi] Swinehart, D. C, "Copilot: A Multiple Process
Approach to Interactive Programming Systems," Stanford
Artif icial Intelligence Laboratory Memo AIM-230, Stanford
University, July 1974.

[T e i l] Teitelman, VV. "Toward a Programming Laboratory,"
in Walker, D. (ed.) International Joint Conference on
Artificial Intelligence, May 1969.

[Tei2] Teitelman. W. "Automated Programmering - The
Programmer's Assistant," Proceedings of the Fall Joint
Computer Conference, December 1972.

[Tei3] Teitelman. W. "CLISP - Conversational Lisp," Third
International Joint Conference on Artificial Intelligence,
August 1973.

[Tei4] Teitelman, W. et al., Interlisp Reference Manual,
Dec. 1975, Xerox Palo Alto Research Center.

Languages & S y s t e n s - 1 : T e i t e l m a n
915

