A Display Oriented Programmer's Assistant

Warren Teitelman
Xerox Palo Alto Research Center

Palo Alto. California
Abstract papcr describe’, a woiking sysiein which implements and
inttrratcs a number of idvis and techniques previously
This paper continues and extends previous work by the reported in The liteiature by several dillYicnl individuals,
author in developing systems which provide the user with including the author. The idea of a display composed of
various forms of explicit and implicit assistance, and in multiple, overlapping regions called "windows" is
general cooperate with the user in the development of his attributable to and an essential pail of the Smallt.dk
programs. The system described in this paper makes programming system designed and implemented by the

extensive use of a bit map display and pointing device (a
mouse) to significantly enrich the user's interactions with the
system, and to provide capabilities not possible with
terminals that essentially emulate hard copy devices. For
example, any text that is displayed on the screen can be
pointed at and treated as input, exactly as though it were
typed, i.e.,, the user can say use this expression or that value,
and then simply point. The user views his programming
environment through a collection of display windows, each
of which corresponds to a different task or context. The user
can manipulate the windows, or the contents of a particular
window, by a combination of keyboard inputs or pointing
operations. The technique of using different windows for
different tasks makes it easy for the user to manage several
simultaneous tasks and contexts, e.g., defining programs,
testing programs, editing, asking the system for assistance,
sending and receiving messages, etc and to switch back and
forth between these tasks at his convenience.

Introduction

lisp systems have been used for highly interactive
programming for more than a decade.+ During that period,
much effort has been devoted to developing tools and

techniques for providing powerful interactive support to the
programmer. The Interlisp programming system [Tei4]
represents one of the more successful projects aimed at
developing a system which could be used by researchers in
computer science for performing their day to day work, and
could also serve as a testbed for introducing and evaluating
new ideas and techniques for pioviding sophisticated forms
of programmer assistance. Interlisp on the PDP-10 s
currently used by programmers at over a do/en ARPA
network sites for doing research and development on
advanced artificial intelligence projects such as speech and
language understanding, medical diagnosis, computer-aided
msiiuction, automatic programming, etc. Implementations
of Interlisp on several other machines are cuirently planned
or in progress.

describes a system written in Interlisp which
extends the Inierlisp user facilities to take advantage of a
display.tt The paper is not an "idea" paper in the sense
that Artificial Intelligence papers usuallv are. Instead, this

This paper

f An excellent survey of the state of the art may be found in [San]

t The author would like to acknowledge and thank R. F. Sproull and J
Strother Moore, who designed and implemented critical support facilities
without which this system would not have been possible, and whose ideas
and intuitions provided extremely valuable guidance and inspiration
during the development of the system. "I he form and capabilities of some
of the display primitives in the current system were suggested by an
earlier version of a display text facility for Interlisp designed by Terry
Winograd. Finally, all of the work described herein depends heavily on
th" leverage provided by the Interlisp system itself, which is the result of
the efforts of man> individuals over a period of almost a decade, made
possible by continuing ARPA support over that period.

Lantfuaros A Systems-1:

905

learning Research Group at Xerox Reseaich (enter [1 RG].
In particular, much of the way that windows are used in the
system described here was influenced by the work of Dan
Ingalls on the Smalltalk user interface. The idea of using the

display as a means for allowing the wuser to retain
comprehension of complex program environments, and to
monitor several simultaneous tasks, can be found in the

work of Dan Swinehart [Swi], The use of the "mouse" as a
pointing device for selecting portions of a display goes back
to the early work on NFS [Eng]. Finally, the techniques
used for automatic error correction and the idea of having
the user interact with the system through an active
intermediary winch maintains a history of his session, both
of which appear in this paper, are parts of the standard
Interlisp system [Tei1][Tei2]. The work reported in this
paper is of interest primarily in how the realization of these
various ideas in a single, integrated, working system
dramatically confirms their value.fit

Overview of the System

The system described in this paper is implemented on a
version of Interlisp [Tei4] running on MAXC, a computer at
the Xerox Research Center in Palo Alto. This computer
emulates a PDP-11), and runs the Tencx operating system, so
that from the standpoint of the user, the system he is using
is Interlisp-10. The raster-scan display used by the system
described in this paper is maintained by a separate 65K 16
bit word mini-computer. The minicomputer is linked to
MAXC through an internal network, and implements a
graphics protocol similar to the Network Graphics Protocol
[Spr]. but specialized for text and raster-scan images. All of
the work described in this paper deals with the "high end" of
the system, ie., the user interface, and is wutten entirely in
Interlisp.

The user communicates with the system using a standard
typewriter-like keyboard. In addition, he has available a
pointing device commonly called a "mouse" [Eng] used for

pointing at particular locations on the screen. For those
unfamiliar with this device, the mouse is a small object
(about 3" by 2" by 1") with three buttons on its top. The

system gives the user continuous feedback as to where it
thinks the mouse is pointing by displaying a cursor on the
screen. The user slides the mouse around on his working
surface (causing bearings of wheels on the bottom of the
mouse to rotate), and the system moves the cursor on the

'JtWhen | first began woik in 1969 on what was to become DWIM. the
automatic error correction facility of Interlisp, by implementing a
primitive spelling corrector which would automatically correct a certain
class of user spelling errors, | discussed this project at length with a
colleague over a period of months. One dis soon after this facility was
finally completed and installed in our fisp system, this same colleague
rushed to my office and in i*rral excitement exclaimed that the system
had corrected an error. | was surprised at his enthusiasm, since we had
been discussing this system tor months. He replied, "Yes, but it really did
it!" the system described herein implements ideas that many of us have
long been sayinu would be a good thing to have. And they really are!

Teitelman

http://Smallt.dk

isplin . The wewr amdiesdes that the mowse b rrived af
sume dostned locadion Wy presstne one of e thiee buttons
on the top ot the towee. The anlerpretabion of the botions

depenel o the partienlir procsam hstenoe 1o the mouse,
bar eanniple, when the mouse s positioned over g pece of
texl, e ot ol s baltons pressed, the corresponding text s

“selected” Such selecuons are idicsted by mverting: the text,
Le, dispinying b as whie characters on a black background,

The nser mdeiets with the system either by typing on the

heyboard, or by pointing ot commands or expressions on e
serecit, ar oan asynchmnous mixlure of the two, in
pesttie o, any material diad is displayed on the screen can
be setevted and then treaned as thought 31 were input, i,
typed.

The ability to iw v in seleet, ., point at, uekcesial
ceerently displaomd o cune i 1o Le treatell as inpot i
eaentt e neddl el wis wleo cach a Baeility can be

[IEETUR RN gren i aas clese of oan intenactive

[YSATTI

WY

Why is such a facility useful? Because most
with a prus.,raminim; system are not
"event" bears some relationship to what transpired before,
usually to a fairly recent event. Being able to point at
(purlions o) these events effectively gives the user the power
of pronoun reference, i.e.. the wuser can say use this
expression or that value, and then simply point. This
drastically reduces the amount of typing the user has to do
in many situations, and results in a considerable increase in
the effective "bandwidth" of the user's communication with
his programming environment.

interactions
independent, i.e., each

The user views his environment through a display consisting
of several rectangular display "windows". Windows can be,
and ficquenlly are, overlapped on the screen. In this case,
windows that are "underneath" can be brought up on top and
vice versa. The resulting configurauon considerably
increases the user's effective working space, and also
contributes to the illusion that the user is viewing a desk top
containing a number of sheets of paper winch the user can
manipulate in various ways.

One facility provided by these windows that is not available
with sheets of paper is the ability to scroll the window
forward or backward to view material previously, but not
currently, visible in the window. Thus a single window can
be used to view and manipulate a body of text that would
icquire many sheets of paper.

bach window corresponds to a different task or aspect of the

user's environment. for example, there is a tYIMSCRIirr
window, which contains the transcript of the user's
interactions with the Lisp interpreter through the

programmer's assistant, a WORK AREA window winch is used
for editing and prettyprmting, a HISTORY. window, a
BACKTRACF window, a MESSAGE: window, etc. Using
different windows for different tasks

...makes it easy for the user to manage several simultaneous
tasks and contexts, switching back anil forth between them at
his convenience.

Being able to switch back and forth between tasks icsults in
a relaxed and easy style of operating more similar to the way
people lend to work in the absence of restrictions. To use a
programming metaphor, people operate somewhat Ilike a
collection of coroutines corresponding to tasks in various
states of completion. These coroutines are continually being
activated by internally and externally generated interrupts,
and then suspended when higher priority interrupts arrive,
e.g.,, a phone call that interrupts a meeting, a quick question

Lanrtunprps

& Svstf*ms-1 :

906

by a colleague that interrupts a phone call, etc. Our previous
experience with Interiisp supports the contention that it is of
great value to the user to he able to switch back and forth
quickly between related tasks. 1 he system described in this
paper makes this especially convenient, as is illustrated in
the sample sesMon presented in the body of the paper.

One technique hcavib cmploved thioughoni the system is the
use ol menus. A menu is a lypc of window that causes a
specified operation to be p»; IOIHHM! when a selection made
in that window. Menus scive a numhci of impottant
functions. \ hey make it easy for the ftiser to specify an
operation without having (o t\ne. Thev act as a prompt for
the ircr by providing him with a repeiloire of commands
from which to choose, tor example, often a user will not
remember the name of a command, or may not even be
aware of the existence ol' a command.

However, most importantly, menus llv facilitate context
switching. As with most systems, the interpretation of the
user's keystrokes (with the exception oi interrupt characters
which usually have a globallv detmed effect) depends on the
state i)\ the system, f or example, when addressing the Lisp
interpreter, the characters that the user types are used to
construct Lisp expressions which are then evaluated. When
using the editor, the characters are inserted in the indicated
expression, etc. 1 he important point is that once the user
starts typing, he normally has to complete the operation or
abort it. However, by selecting a menu command using the
mouse, even in the midst of typing, the user can temporarily
suspend the operation he is pelforming, go off and do
something else, and then return and continue with his
current context. This is also illustrated in the sample session
below.

A Samojr Session vvitji_tlie System

Since so much of the utility ol' the system desciibed in this
paper rest on visual effects, it is difficult to transmit the feci
and smoothness of the system through words. Therefore, the
form chosen for presenting, the system in this paper is to

take the leader through a sample session with the system,
using frequent "snapshots" of the display as a substitute for
the actual display itself. This session is divided into two
parts. The first part is a "toy" session, in that the user is not

performing any serious work. It is included only to
introduce the salient features of the system. The second part
of the session shows some more sophisticated use of these
features in the context of an actual working session
involving finding and fixing bugs, testing programs, sending
and receiving messages, etc.

For readers not familiar with | isp, please ignore Lisp related
details (which we have tried to minimi/e). | he impoitant
point is the way tic system allows the user to switch back
and forth between several tasks and contexts. Such a facility
would be useful in any piogramining environment.

TAitplnan

Sample_Session _ - Part 1

1. Figure 1 shows the initial configuration of the screen.
Three windows are displayed: the TYPESCRIPT window,
which records the user's interactions with the programmer's
assistant and the Lisp interpreter; the PROMPT window, which
is the black region without a caption at the top of the screen
used for prompting the user; and a menu, which is the
smaller window with caption MENUS to the right of the
IYPESCRIPT window.j A menu is just like any other
window, except that whenever a selection is made in a menu,
a specified operation is also performed. This particular
menu is a menu of menus, hence its caption. If the user
selects one of its commands, each of which is the name of a
menu, the corresponding menu will be displayed at the
location he indicates. He can then select, and thereby
perform, commands on that menu. The crosshairs shape in
the lower right hand portion of the TYPESCRIPT window is
the cursor, and indicates the current position of the mouse.

In Figure 1, | have just typed in a Lisp definition for the
function FACT (factorial). Fisp has given me the error
message "incorrect defining form" (displayed in bold face to
set it off). The system displays a blinking caretff to
indicate where the next character that | type, or the system
prints, will be displayed. In Figure |, the caret now appears
immediately following the "2<-", where 2 is the event number
for my next interaction with the programmer's assistant, and
<-is the "ready" character.

2. | don't understand what caused this error, so | type ? to
the p.a. (programmer's assistant), requesting it. to supply
additional explanatory information. The p.a. looks at the

previous event to determine the nature of the error. In this
case. tram: built-in information about the arguments to
DI | INlm«.», the p.a. tells me that the problem is that DI.HNR;
encount'-i'd an atom where it expected a list, ie, a left

parentheses is missing from in front of the word "fact".!" | j
Since the programmer's assistant is maintaining a history of
mv interactions with the system. | don't have to retype the

I>! 1INl o expression. Instead, | can edit what | have already
typed, and simply insert the missing left parenthesis. The

'i>ii menu will allow me to perform various editing
opnations using, the mouse for pointing, and the keyboard,
where necessary, for supplying text. In figure 2, | have

alicady moved the mouse so that the cursor is positioned
over the EDIT command on the MhNiis menu, in preparation
for "bringing up" the roil menu.

1"l IK- "plaid" effeet of the hackground in the figures is an artifact of the
pmdmtion/iedn-hon process. | he aelu.tl background wit (he display ts
a uniform grey.

If In these figures, (he tare! is always shown in ils "on" position.

fi'TIf lhe pa. did not know anything about this particular error, il
would refer to the index of Ihe on-line Inlerlisp Reference Manaial and
present the toirespondmp text as:.ociated with the crro< message by way of
explanation. | he user can also airmenl the bnill-in mini malum that the
pa has about syacm functions by mfoinnnj', the p.a. about the
requirements of his own functions. He ean then use the ? command to
explain errois in his own programs.

Lanfuiares & Systrms-1:

ket

Lok
AL
el

| Opwrati.

HmuiTmc ! dufhireg Jnm

) L | | winduw
L Linremant ‘

Db
H Lz @
| ninfy

Hpear
Tt At
[S,

3. | press a button on the mouse to select the EDIT
command in the MENUS menu. The system indicates the
selection by displaying EDIT as white on black. The PROMPT
window tells me to use the left button on the mouse to
indicate where | want the center of the (EDIT) menu to
appear. The cursor is changed to an icon of a menu with a
cross in its center to suggest the operation that is pending.
At this point, | don't have to complete this operation. | can
type in other expressions to the programmer's assistant,
perform other menu operations, etc. The process which is
waiting for me to supply the indicated information is simply
a co-routine which has been suspended.! However, since |
want to fix up the DFEINEQ expression before going on to
anything else. | move the cursor to the position at which |
want the EDIT menu to appear, which is below the MENUS
menu and to the right of the TYPESCRIPT window, as shown
in Figure 3.

4. | press the left button on the mouse, causing the EDIT
menu to appear at the location of the cursor. In this
position, the EDIT menu slightly overlaps both the
TYPESCRIPT window and the MENUS menu, so the system
automatically adjusts the EDIT menu by sliding it off these
windows to its location as shown in Figure 4.|f

'I'See description of the "Spaghetti Stack" facility in [Eob] and [Tei4].

I t' could force the EDIT menu to overlap the TYPf SCRIPT window by
positioning it exactly using one of the commands on the WINDOW
menu. However, since in this case | only positioned the menu
approximately, the system tries to "Do What | Mean", a philosophy of
system design we have tried to follow throughout the Interlisp system

lase Ao bt b Dty 4

o~
Bt bush DEPITIE 4 raquicgs that waz™ o' 2 sryur@ntl be &
T wr W DEPUNE P AT Ry psl WS SAFATFRR Thalh]
THFY W= (PRI T R 11 L ERed a8 P rhe Lae

LIPS

Flyard 2

BN

o dahrpBEa o pap [If 0ot e s Ter Atan 0
pragn r P Ae
Incatrec sfining
rAcT
Lagaaie DEFIED requirdt fhat hof nf dn arquments b 4
e Ee o TCFRMP T AT 2 oF 0 SREA TERR THah
TR (kas T ey, Fes e rl Bhe A
Ia,

e 4

Languages & Systems-1: Teiteiman

5. Now | am ready to edit. | select the left parenthesis in
the first line of the TYPESCRIPT window, and then select the
INSERT command on the EDIT menu. The line of text in the I i e
TYPESCRIPT window is broken just before the selection (the Rrorr o e u o reatesr rran U
left parenthesis), and the caret is moved to that location. barrucs satrion farm

The PROMPT window instructs me to input material. e

Anything | type will appear at the location indicated by the Raca-1te DEFIINS) ranuirgd tadt 28-n A% s asquOERtS BE 4

oI
e Bt i DEFINFOIFA ST Fay ok Mo GREATERR Trak L
caret. THEH NS TFRCTT s 1030, thes uz ot the oy
”

AL Rt

Figurd &

U 44t Bl G0 an Chas ekt o wnfalaba welimn gontl et Bfas cantur af (0w maieg fa

6. | type in a single left parenthesis, and terminate the
INSERT operation. The line of text | have been editing is
rejoined, and the caret returned to the appropriate location
at the end of the TYPESCRIPT window. | now wain to cause e eemies (et aage ot ¢ .
the corrected text to be re-input in order to perform my e R DRt et iy e 4 5 TR A TR TRty
original operation, ie., define my function. Therefore, | Jel4 T ARACSE NI, Bt 1 e The cave

select the text by first selecting the "d" in "iltTineq" and then
extending this selection through the final "]". Then, using
the same method as previously shown for bringing up the
EDIT menu, | bring up the WINDOW menu in order to obtain o
the command for inputting selected material. [pana |

ry

Thiyera &

Languages & S stems-1: Teitelman
909

11. | still don't understand why the error occurred, so | try
typing the ? command again. In this case, the programmer's
assistant tells me that the problem is that one of the
operands to * (the MULTIPLY operator) was (FACT N-1) and
that the value of (FACT N-D is NIL when N=1. In other
words, when FACT is called with N=o, it returns NIL. The p.a.
is able to generate this explanation because (1) it knows that
all of the arguments to * must be numbers, and (2) it can
examine the state of the computation on the stack. In this
case, it found that the second operand to iTIMts was NIL,
which is not a number, and that the expression that
produced this particular value was (FACT N-1) in the
expression (N.(FACTN-1)) which is contained in the function
FACT, and that at the time this call occurred, the value of N
was 1.

| now realize that the problem is simply that | neglected to
specify the value of FACT for N=of Therefore, | prettyprint
the definition of FACT in preparation for editing it. Figure
Il shows the definition of FACT prettyprinted in my WORK
AREA window, which automatically appeared when
prettyprint was called. Note that the definition of FACT now
shows the two misspelled words, GREATERR and FACCT,
spelled correctly.

12. | select the right square bracket in the definition of
FACT in the WORK ARIA window, and then select the INSERT
comand on the EDIT menu. The EDIT menu automatically
moves so as to be close to the window that | am editing. |
make the necessary correction by typing ") ELSE I", ie. if N
is not greater than 0, FACT should return 1. Figure 12 shows
the display just before | complete the INSERT. Note that the
caret appears in the WORK AREA window where | am typing.
The cursor is in the upper right hand portion of the screen
at the location of the INSERT command before the EDIT
menu moved to be close to the WORK AREA.

fin Interlisp, if none of the predicates of ;tn if-then expression evaluate

true, the value of the expression defaults to NIL.

Languages & Systems-1:
912

umEntY e &

vacause DFFITIEC ruquires That aach af lt1 g
Wt put in DEFIMEQERACT (N} (1F b 1t GREATERM Toarn 0
THEHN N™ [FAGCT A= 15)1, The o hat the L
a olhnnuucl (n: {rf md presterr than Timcs
ther novRrct A 1] Conr
(FA2TY
departid} N'I
JREATEMR [FECTL Gnnru S oves iac
FAC'T yin FACT) =1 P& " Ll
nuery
NON-NUNMERIC ARG l:é'i
I TIRES m:- s‘nun‘
Frotgn Mavese "
L. hp ' Mavs/n LY
5 Lol ETVS
- - e
CMCAUTE * FAGU-T4Y KR pach of 1e) .ruum.n i ‘- *ror
A romber bl of ‘u‘ rhastt oy, g Fat Dane
Thu vaiun LF CFa S MRy I wner N
TrE fact
racT Head 1
e R Murs
S — Movs ra:
'.'- argy wral vake oh go retuh ﬂm?:i‘d‘:
b @ uo ¢ ravery in? aslt ppw Put an b
Maks v

[FacT
[LaNBOR (N}
TEE W s grAALRe tRan W
ripn W7 kELT H-L1Y

Flyuw 1!

bacause DEFINFO requires that cack of ity ArgumanTy bd o
linl Byt I DEFINEQEFAGC T (M) (F & 1B OMEATERR THAN U
| THEN N (FARST N- 133, thy 19 nut the ceze
3 ﬂo!lntqi”lﬂ cn: {F A s graaTen chan J 1l
then n‘”.r!' LER} LgW0
| orazey
aetace(dy H
GREATERN {in FACT] « GAEATIR 3 e FaL1
MG [FATT) 3 PAG] v LMD
NON-HUMENIC ANO] "2
[Falt
m I TIKHER FONR
. MU
:nmqtln,; “r
5" Tart
BNCHuls * requirey ERET WECRH GF IF) grguRERTS B9 Trre
® numBer oul o (UT [FACT NOPY un Fas T
K valul of PACT N ML et e Nt

(Fac1
[LAmEDS (W)
CIf N tr greaker Lhan B
Ctwn N=[PRET B-1] winw 1,

n

Figure 3

Teitelman

13. 1 complete the INSERT, and then select the DONE
command on the EDIT menu to indicate that | am finished
editing this expression. The PROMPT window reports that the
definition of FACT has been changed. Note that | did not
have to finish editing FACT at this point: | could have typed

in expressions to be evaluated, performed other menu
operations, etc.. even edited other expressions, before
selecting the DONE command for this expression. This is

another example of being able to suspend different tasks in
varying states of completion and go back to them at some
later point.

14. | now test out my change by typing fact(2), which
works correctly. Now | want to continue with the
computation. Note that | am still in the original break that
followed the error. The arithmetic operation * (i.e., the Lisp
function ITIMHS) is still waiting for a number to be used as a
multiplicand. | therefore select the RETURN command on
the BREAK menu. The PROMPT window tells me to INPUT
EXPRESSION and the caret moves to the PROMPT window. |
type 1 as the value to be returned from this error break.
Figure 14 shows the display at this point just after | type 1,
which is echoed (displayed) in the PROMPT window.

Note: in actual practice, for a computation as trivial as
FACT(3), | would probably simply reset (abort back to the
top) and reexecute FACT(3) rather than bothering to continue
the computation, since so little has been invested in getting
to this point. However,

being able to continue a computation following; an error is
especially useful when an error occurs following a significant
amount of compulation, or when the computation has left
things in an "unclean state" as a result of global side effects.
Such a facility is also essential for good interactive
debugging.

Fail charmed

not thi LR

'
MR (8 FrT] c OREATTR T igs

FaZ L FALT s Rl e

L]

nOTIMES

IFrrsans

EMT.

)

LA 4 T FAQUTEE That gatr 4T 1) ArQumARTD B0
DI LR T I AT VR R EFI TN T
TR atai ot PR N A N L el et

T pp tasr

FasT

H

T= sty Svak vakie ol 4o retumn
bU bty Ul T revert in? wiit ppe

FACT
|LAMBOE (hy
Lar N s arearer
Tawn NE PR

#R7R AF T% 2°QuRanTT O &
HWOIFE GRFEATFRR THAL U

than W

LR E

g,
[

Hr
[
Lo

"
L]
[
T

n

e npan

Fryure 13

THEEL M (FASET ti- g

A gwhirek qPas dng g

Thwn n*Fracct ne]
CTh

hat the cdte
waTarr Tha [3

4 -t

SREATERA fan Puiily - GAPATER ° ey
T ARFACY T FACT T g

NN - MU RE: AMG

W ITIWES

Boien

LTy

A

Bldate " regures Inar nit Lt L argumalits te

A nunbw baton (WY CFATT A e g Far Ty,

AN uplg® o (AT M 1y L wern B

Top tart

e argy eval vake ol go
WLty Wb T ravent I

(ract
[LAMBOA (N}
[#F N rr grédber

an i@
copr Macrant s - RO

.

Figure 14

Languages & Systems-1 Teitelman
913

15. | complete typing the expression for the RETURN
command, thereby causing 1 to be returned as the value of
the break, which causes (1 * |) to be computed and returned
as the value of FACTO), which then causes (2 * 1) to be
computed, etc., and finally the original computation of
FACTO) finishes and returns 6 as its value as shown in Figure
15. in the next to the bottom line of the TYPESCRIPT window.

| now want to try FACT on some other values, so | bring up
the HISTORY menu, and select the usr. command, which is a
command to the programmer's assistant to reexecute a
previous event, or events, with new values. The PROMPT
window instructs me to select the targets and to input the
objects to be substituted. | select the "3" in FACTO) (near the
lop of the TYPESCRIPT window) and input "4 5 10" (echoed
in the PROMPT window), ie., | am requesting that FACT(4),
FAC'IO) and FACT(10) be computed.

16. The resulting history operation is equivalent to typing
USF 4 5 in FOR 3 IN <I4 which the p.a. prints in the
TYPFSCRIPT window to show me what is happening. This
USF command now causes three computations to be
performed, corresponding io the result of substituting 4 for
3 in FACT(3). the resuit of substituting 5 for 3 in FACTO), and
the result of substituting JO for 3 in FACT(3). The values
produced by these three compulations, 24, 120. and 3678800,
are printed in the TYPI-NCKUM' window, as shown in Figure
16. Finally, | ask for a replay of the history of my session,
by selecting the ?? command in the 11is|ORY menu. The
HIMOKY window is brought up, and the history of my
session, in reverse chronological order, is printed in this
window, as shown in figure 16.ff

f4 is the event number of the .-vein corresponding k> FACTO).

ft In addition io seeing a replav of his history, the user can also scroll
the (contents of the) 'lYPFSCKIPJ WINDOW backward, m time to we the
transcript of carlin interactions with the system. The difference between
the history anil the IYPFSCRIPT is that the TYPI SCRIPT contains a
record of all chaiailcrs input or output, e.g., includes messageses printed by
the system and by the user's prograions The histoiy contains a subset of
these duracteis. orram/cd according' to events. For cample, 6, the value
returned by FACTO), actually appears I[X lines below FACTO) in the
IMTSCRIPI window, but in the HISTORY window, it would be shown
as the value of event number A, regardless of the fact thai events 5 thru 9
occurred between the lime that event 4 was begun and the time it
completed.

Lowbot 1 1le Rarapudoe, mapn® Bbea ribes 4 40 hn s et 4 4 NE,

GRE ' Rin FulT) = .,H[lT[ﬂ *
TRICF i FACTY -1 Eant c e

HHON- MU PN ARG

i

Ay lﬁ A g reilm
ln by ub ¥ revurt T vl ppa

. (raer
chankae Shg
Det b s araaree 1kan @

I

e I

N

hCTMER

Liaeant

§BT; Ny

' Fact

ba dush ' FEQUITEY th ACh LT Dy ArRAt i ba L-NQ_
& LN LAT Bl BT Loy ot Fatt TNy

Phn wae e nF FATT R ul wrer 0

trg fa 1 Ly
Tt "

FniT e

EREH e

RG]

BAE&l » 1

Flyara 1%

Titrhdd T kg Cofgpml s, mapig] g oligen 0 Dap bes b Cituted 4 4 10

[

Famurs * raquecs thas cn ot iy argumenrs e
LAF BT r -..'u\nln-.iu [EB
of (Pa’2T M1k L e Mat

YAFTURN 1
BHEAFE » 1
g,

1W0r wad 4 % 10 00R T 4
-1

Lath
T FRAOD
e

HIlIE AR $CINAARNDIH 1Y TIMM AR
= argy eval wakse Gk qu serm
BE MIY Ub ¥ Faew] 07 sl ppa

18 uiE A E AR FOR T DN
.fat'i 1

.uL‘tEJ
[
AP RCTEAH
L
] -RETYRN 1
CREFRE .
] FaLTrT)
2
? PP fACl
PACT

ATw

HEIAH
PCUTEER J‘r Fafl) -: GFEATEIR

HUTN - HUMIFRKC. &P !
L8
Imrnsent
nITIMES Edil
ok,
e eny
5'5 "y ::ﬂuy

Figurn 15

Languages & Sys1tems-1: Teitelman
914

This completes the "toy" session designed to illustrate some
of the basic features of the system. Note that at this point
the display contains nine different windows. Five of these
windows are control windows (menus). The other four
windows describe various processes. Note that the windows
have not been a burden on the user: he does not "manage"
the windows, although he could perform explicit operations
on them such as changing their position, or size, or shape, or
editing their contents as we have seen. The feeling to the
user is that the windows more or less manage themselves, and
this contributes greatly to the smoothness of the system.f

Conclusions

The system decribed in this paper has been in use by actual
users other than the author only a few months. However, our
conjectures about the usefulness of this kind of facility were
if anything conservative. The ability to suspend an
operation, perform other operations, and then return without
loss of context is widely appreciated. The technique of using
different windows for different tasks docs make this
switching of contexts easy and painless.

liven when the user is not switching contexts, the use of
multiple windows is extremely helpful. For example, a
standard complaint with conventional display terminals is
that material that the user wants to refer to repeatedly, e.g., a
printout of some function, or a record of some complicated
interaction, is displaced by subsequent, incidental
interactions with the system. In this situation when using a
hard copy terminal, the user simply tears off the portion he
is interested in and saves it beside his keyboard. Being able
to freeze a portion of the user's interactions in a separate
window, such as the WORK AREA. while allowing subsequent
interactions to scroll off the screen seems to combine some
of the best aspects of hardcopy and display terminals.

Finally, users just seem to enjoy aesthetically the style of
interacting with the system, such as using menus, the
feedback via the prompt window and changing cursors, being
able to scroll the windows back and forth, etc. We think this
is an area that will see an increasing amount of activity in
the future as the cost of bit map displays and the necessary
computing power to maintain them continues to drop.

REFERENCES
[Bob] Bobiow, D. G.. and Wegbreit B, "A Model and
Stack Implementation for Multiple Environments,"
Communications of the ACM, Vol. 16, 10 October 1973.

[Eng] English, W. K., Engelbart, D. C, and Herman, M.
l.., "Display Selection Techniques for Text Manipulation,”
IEEE Transactions on Human Factors in Electronics, Vol.

HFE-8, No. 1. March 1967.
[LRG] Learning Research Group. Personal Dynamic
Media, Xerox Palo Alto Research Center, 1976. Excerpts

published in IEEE Computer Magazine, March 1977.

'Thc second part of the session, which shows more sophisticated use of
the above features in the context of an actual working session involving
finding and fixing bugs, testing programs, sending and receiving messages,
etc.. may be found in an expanded version of this paper available as a
Xerox CSI Report, A Display Oriented Programmer's Assistant, by
Warren Teitelman.

Languages & Systens-1:

915

[San] Sandewall. E, "Programming in an Interactive
Environment: The Lisp Experience," Matematiska
Institutionen, University of Linkoping, Sweden. (to be
published in CACM).

[Spr] Sproull. R. F, and Thomas, E. L., "A Network
Graphics Protocol," Computer Graphics, SIUGRAPH
Quarterly, Fall 1974.

[Swi] Swinehart, D. C, "Copilot: A Multiple Process

Approach to Interactive Programming Systems," Stanford
Artificial Intelligence Laboratory Memo AIM-230, Stanford
University, July 1974.

[Teil] Teitelman, W. "Toward a Programming Laboratory,"
in Walker, D. (ed.) International Joint Conference on
Artificial Intelligence, May 1969.

[Tei2] Teitelman. W. "Automated Programmering - The
Programmer's Assistant," Proceedings of the Fall Joint
Computer Conference, December 1972.

[Tei3] Teitelman. W.
International Joint
August 1973.

"CLISP - Conversational Lisp," Third
Conference on Artificial Intelligence,

[Teid] Teitelman, W. et al., Interlisp Reference Manual,
Dec. 1975, Xerox Palo Alto Research Center.

Teitelman

