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Abstract 
We define the concept of meta-level Knowledge, and illustrate 

it by br ief ly reviewing four examples that have been described in 
detail elsewhere [2-5). The examples include applications of the 
idea to tasks such as transfer of expertise from a domain expert to 
a program, and the maintenance and use of large Knowledge bases. 
We explore common themes that arise from these examples, and 
examine broader implications of the idea, in particular its impact on 
the design and construction of large programs. 
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(1) Introduction 
The representation and use of knowledge has been a central 

problem in Al research. A range of different encoding techniques 
have been developed, along with a number of approaches to 
applying knowledge. Most of the effort to date, however, has 
concentrated on representing and manipulating knowledge about a 
specific domain of application, like game-playing ([14]), natural 
language understanding ([15], [19]), speech understanding ([8], 
[11]) , chemistry ([7]), etc. 

This paper explores a number of issues involving 
representat ion and use of what we term meta-level knowledge, or 
knowledge about knowledge. It begins by defining the term, then 
exploring a few of its varieties and considering the range of 
capabilities it makes possible. Four specific examples of meta-level 
knowledge are described, and a demonstration given of their 
application to a number of problems, including interactive transfer 
of expert ise and guiding the use of knowledge. Finally, we consider 
the long term implications of the concept and its likely impact on 
the design of large programs. 

{2} Meta-level Knowledge 
In the most general terms, meta-level knowledge is 

knowledge about knowledge. Its primary use here is to enable a 
program to "know what it knows**, and to make multiple uses of its 
knowledge. That is, the program is not only able to use its 
knowledge directly, but may also be able to examine it, abstract it, 
reason about it, or direct Its application. To see in general terms 
how this can be accomplished, imagine taking some of the available 
representat ion techniques and turning them in on themselves, using 
them to describe their own encoding and use of knowledge. The 
result is a system with a store of both knowledge about the domain 
(the object level knowledge), and knowledge about its 
representations (the meta-level knowledge). 

{3} Background 
Some early efforts in Al involved the search for a single 

problem solving paradigm that would be both powerful and widely 
(or even universally) applicable. By the late 1960's it became clear 
that a single such paradigm was at best elusive, and that high (i.e., 
near human level) performance on non-trivial tasks required large 
stores of domain specific knowledge. A number of such 
knowledge-based systems have been developed and the 
methodology applied to a wide range of tasks, including speech 
understanding [11}, algebraic symbol manipulation [121 and 
chemistry {7} Because of the magnitude of the task of assembling 
the knowledge base for these systems, the accumulation, 
management and use of large stores of task specific knowledge has 
itself become a significant research problem. 

It was this problem that provided the context for the 
development and exploration of meta-level knowledge reported 
here. The examples described below are all aimed toward the three 
aspects of the problem noted just above (knowledge accumulation, 
management, and use): 

Schemata (Section 4.1) and rule models (Section 4.2) 
support accumulation of knowledge via interactive transfer 
of expertise from a human expert to the knowledge base of 
the system. 

The schemata, along with the function templates (Section 
4.3), provide a mechanism for handling some aspects of 
knowledge base maintenance. 
Finally, meta-rules (Section 4.4) are applied to the problem 
of guiding the use of knowledge by offering a means of 
expressing strategies. 

All of these are part of the TEIRESIAS system [2-5],an 
INTERLISP program designed to function as an assistant in the 
construction of high performance programs. A key element in this 
construction process is the transfer of expertise from a human 
expert to the program. Since the domain expert often knows 
nothing about programming, his interaction with the performance 
program usually requires a human programmer as intermediary. We 
have sought to create in TEIRESIAS a program to supply the same 
sort of assistance as that provided by the programmer, in order to 
remove the programmer from the loop. 

We view the interaction between the domain expert and the 
performance program in terms of a teacher who continually 
challenges a student with new problems to solve, and carefully 
observes the student's performance. The teacher may interrupt to 
request a justification of some particular step the student has taken 
in solving the problem, or may challenge the final result. This may 
uncover a fault in the student's knowledge of the subject, and 
result in the transfer of information to correct it. 

Figure 1 below shows the overall architecture of the sort of 
program TEIRESIAS is designed to help construct. The knowledge 
base is the program's store of task specific knowledge that makes 
possible high performance. The inference engine is an interpreter 
that uses the knowledge base to solve the problem at hand. 

Figure 1 - architecture of the performance program 

The main point of interest in this very simple design is the 
explicit division between these two parts of the program. This 
division allows us to assign the human expert the task of 
augmenting the knowledge base of a program whose control 
structure (inference engine) is assumed both appropriate and 
debugged. The question of how knowledge is to be encoded and 
used is settled by the selection of one or more of the available 
representations and control structures. The expert's task is to 
enlarge what it is the program knows. If all of the control structure 
information has been kept in the inference engine, then we can 
engage the domain expert in a discussion of the knowledge base 
and be assured that the discussion will have to deal only with 
issues of domain specific expertise (rather than with questions of 
programming and control structures). 

In this discussion we will assume the knowledge base 
contains information about selecting an investment in the stock 
market; the performance program thus functions as an investment 
consultant.1 Knowledge is in the form of a collection of associative 
tr iples (attr ibute, object, value) which characterize the domain, and 
approximately 400 inference rules built from them (Figure 2). Each 
rule is a single "chunk" of domain specific information indicating an 
action (in this case a conclusion) which is justified if the conditions 
specified in the premise are fulfilled. 
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{4.1} Example 1: Schemata 
{4.1.1} Introduction: the need for knowledge about representations 

As data structures go beyond the simple types available in 
most programming languages, to extended data types defined by 
the user, they typically become rather complex. Large programs 
may have numerous structures which are complex in both their 
internal organization and their interrelationships with other data 
types in the system. That is, the design and organization of data 
structures in any sizable system often involves a non-trivial store 
of detailed information. Yet such information is typically widely 
scattered, perhaps throughout comments in system code, in 
documents and manuals maintained separately, and in the mind of 
the system architect. 

This presents a problem to someone who wants to make any 
sort of change to the system. Consider, for example, the difficulties 
typically encountered in such a seemingly simple problem as adding 
a new instance of an existing data type to a large program. Just 
finding all of the necessary information can be a major task, 
especially for someone unfamiliar with the system. 

One particularly relevant set of examples comes from the 
numerous approaches to knowledge representations which hava 
been tr ied over the years. While the emphasis in discussions of 
predicate calculus, semantic nets, production rules, frames, etc. has 
naturally concerned their respective conceptual power, at the level 
of implementation each of these has presented a non-trivial 
problem in data structure management. 

The second example of meta-level knowledge involves 
describing to a system a range of information about the 
representations it employs. The main idea here is, first, to view 
every knowledge representation in the system as an extended data 
type, and write explicit descriptions of each of them. These 
descriptions should include all the information about structure and 
interrelations that was noted earlier as often widely scattered. 
Next, we devise a language in which ail of this can be put in 
machine-comprehensible terms, and write the descriptions in those 
terms, making this store of information available to the system. 
Finally, we design an interpreter for the language, so that the 
system can use its new knowledge to keep track of the details of 
data structure construction and maintenance. 

This is of course easily said and somewhat harder to do. It 
involves answering a number of difficult questions concerning the 
content of the required knowledge, and concerning how that 
information should be represented and used. This paper gives an 
overview of the answers, details can be found in [2] and {3} The 
discussion here demonstrates briefly that the relevant knowledge 
includes information about the structure and interrelations of 
representations, and shows that it can be used as the basis for a 
form of knowledge acquisition. 

The approach is based on the concept of a data structure 
schema, a device which provides a framework in which 
representations can be specified. This framework, like most, carries 
its own perspectives on its domain. One point it emphasizes 
strongly Is the detailed specification of many kinds of information 
•bout representations. It attempts to make this specification task 

easier by providing ways of organizing the information, and a 
relatively high level vocabulary for expressing it. 

{4.1.2} Schema example 
There are three levels of organization of the information 

about representations (Figure 4). At the highest level, a schema 
hierarchy links the schemata together, indicating what categories of 
data structures exist in the system and the relationships between 
them. At the next level of organization are the individual schemata, 
the basic unit around which the information about representations 
is organized. Each schema indicates the structure and 
interrelationships of a single type of data structure. At the lowest 
level are the slotnames (and associated structures) from which the 
schemata are built; these offer knowledge about specific 
conventions at the programming language level. Each of these three 
levels supplies a different sort of information; together they 
compose an extensive body of knowledge about the structure, 
organization, and implementation of the representations. 

schema h i e r a r c h y - indicates categories of representations and 
their organization 

i n d i v i d u a l schema - describes structure of a single 
representation 

s l o tnames - the schema building blocks, describe 
implementation conventions 

Figure 4 

The hierarchy is a generalization hierarchy that indicates the 
global organization of the representations. It makes extensive use 
of the concept of inheritance of properties, so that a particular 
schema need represent only the information not yet specified by 
schemata above it in the hierarchy. This distribution of information 
also aids in making the network extensible (see [2] for examples 
and further details). 

Each individual schema contains several different types of 
information: 

1) the structure of its instances 
2) interrelationships with other data structures 
3) a pointer to all current instances 
4) inter-schema organizational information 
5) bookkeeping information 

Figure 5 shows the schema for a stock name; information 
corresponding to each of the categories listed above is grouped 
together. 

STOCKNAME-SCHEMA 
PLIST [( INSTOF STOCKNAME-SCHEMA GIVENIT 

SYNONYM (KLEENE (1 0) < ATOM >) ASKIT 
TRADEDON (KLEENE ( 1 1 2 ) 

<(MARKET-INST FIRSTYEAR-INST)» 
ASKIT 

RISKCLASS CLASS-INST ASKIT 
CREATEIT] 

RELATIONS ((AND* STOCKNAMELIST HILOTABLE) 
(XOR* COMMON PFD CUMPFD PARTICPFD) 
((OR* PFD CUMPFD) PFDRATETABLE) 
((AND* CUMPFD) OMITTEDDIVS) ) 

INSTANCES (AMERICAN-MOTORS AT&T . . . XEROX ZOECON) 

FATHER (VALUE-SCHEMA) 
OFFSPRING NIL 

DESCR " t h e STOCKNAME-SCHEMA descr ibes the 
fo rmat f o r a s tock name" 

AUTHOR DAVIS 
DATE 1115 
INSTOF (SCHEMA-SCHEMA) 

Figure 5 - schema for a stock name 

The first five lines in Figure 5 contain structure information, 
and indicate some of the entries on the property list (PLIST) of the 
data structure which represents a stock name. The information is a 
tr iple of the form 

<s1otname> <b1ank> <adv1ce> 
The slotname labels the "k ind" of things which fills the blank, and 
serves as a point around which much of the "lower l eve r 
information in the system is organized. The blank specifies the 
format of the information required, while the advice suggests how 
to f ind it. Some of the information needed may be domain specific, 
and hence must be requested from the expert. But some may 
concern solely internal conventions of representation, and hence 
should be supplied by the system itself, to insulate the domain 
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RULE027 
I f [ 1 ] t h e t i m e - s c a l e o f the investment 1s l ong - t e rm , 

[2] t h e d e s i r e d r e t u r n on the investment 1s 
g r e a t e r than 10%, 

[ 3 ] t h e area o f the Investment 1s not known, 
t h e n t h e r e 1s ev idence ( . 4 ) t h a t the name of the s tock 

to i n v e s t 1n 1s AT&T. 

PREMISE (SAND (SAME OBJCT TIMESCALE LONG-TERM) 
(GREATER OBJCT RETURNRATE 10) 
(NOTKNOWN OBJCT INVESTMENT-AREA)) 

ACTION (CONCLUDE OBJCT STOCK-NAME AT&T .4) 

Figure 2 - inference rule (English and LISP forms) 

(4) Types of meta-level knowledge 
We examine below four examples of meta-level knowledge, 

and review for each (/) the general idea; (//') a specific instance, 
detailing the information it contains; (iii) an example of how that 
information is used to support knowledge base construction, 
maintenance, or use; and (/V) the other capabilities it makes 
possible. Figure 3 summarizes the type of information contained in 
each of the four examples. 

KNOWLEDGE ABOUT IS ENCODED IN 
*************** ************* 
representation of objects schemata 
representation of functions function templates 
inference rules rule models 
reasoning strategies meta-rules 

Figure 3 - four types of meta-level knowledge 



expert from such details. The advice provides a way of indicating 
which of these situations holds in each case. 

The next five lines in the schema indicate its interrelations 
with other data structures in the system. The main point here is to 
provide the system architect with a way of making explicit all of 
the data structure interrelationships upon which his design 
depends. Expressing them in a machine-accessible form makes it 
possible for TEIRESIAS to take over the task of maintaining them, as 
explained below. 

The schemata also keep a list of all current instantiations of 
themselves, primarily for use in maintaining the knowledge base. If 
the design of a data structure requires modification, it is convenient 
to have a pointer to all current instances to insure that they are 
similarly modified. 

The next two lines contain organizational information 
indicating how the the stockname schema is connected to the 
schema hierarchy. 

Finally, there is four lines of bookkeeping information that 
helps in keeping track of a large number of data structures: each 
structure is tagged with the date of creation and author, along with 
a free text description supplied by the author. In addition, each 
structure has a pointer to the schema of which it is an instance 
(note in this case that it is the schema itself which is the data 
structure being described by this information). 

{4.1.3} Schemata: use in knowled£e acquisition 
Use of the schemata for knowledge acquisition relies on 

several ideas: 
- information in the schema is viewed as a guide to creating a 

new instance of the representation it describes. 
- that guidance is supplied by 

the structure description information, which is in the form 
of a prototype to be instantiated, and 
the relations information, which is interpreted as pointers 
to a number of structures which may require updating to 
insure that necessary data structure interrelations are 
maintained. 

- it is this instantiation and interpretation process that drives 
the knowledge transfer dialog. 

- the advice present in the schema adds a level of 
sophistication in the dialog. 

For instance, suppose in the process of adding a new rule to 
the system the expert mentions a stock the system hasn't heard 
about yet. Learning about the new stock (i.e., creating a new 
instance of the concept stock name) becomes a subproblem in the 
task of acquiring the new rule. The stock name schema is retrieved, 
and used as the basis for a dialog that requests the necessary 
information from the expert. Detailed examples are found in [2] and 
[3 ] ; an abbreviated version of the dialog is shown below. (In all 
traces, computer output is in mixed upper and lower case in 
t h i s f o n t , while user responses are in BOLDFACE CAPITALS, tnd 
commentary is (inside braces}.). 

The new r u l e w i l l be c a l l e d RULE384 
If 1 - THE DESIRED RATE OF RETURN ON THE INVESTMENT IS 

GREATER THAN 107. 
2 - THE AMOUNT OF INVESTMENT EXPERIENCE OF THE CLIENT 

IS MODERATE 
3 - THE AREA OF THE INVESTMENT IS NATURAL RESOURCE 

DEVELOPMENT 
Then 

1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK 
TO INVEST IN IS GEORGIA PACIFIC 

S o r r y , b u t I d o n ' t unders tand 
THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK T( 
INVEST IN IS GEORGIA PACIFIC 

because these words are unknown: GEORGIA PACIFIC 

{TEIRESIAS finds it cannot generate any interpretations of the text, 
so it reprints the original line, and specifies the trouble.} 

Would you ca re t o t r y r eph ras i ng t ha t? 
++** Y 
( P l e a s e use * ' s to mark what you t h i n k might be a new 
a t t r i b u t e or a new va lue o f an e x i s t i n g a t t r i b u t e ) 

1 - THERE IS EVIDENCE (.5) THAT THE NAME OF THE STOCK 
TO INVEST IN IS * GEORGIA PACIFIC * 

{While the language in this example is very simple, there are more 
complex cases where it would be quite hard to decide from the 
context what sort of new item the expert had in mind. To avoid the 
necessity for more sophisticated natural language handling, he is 
asked to mark off the new word or phrase with asterisks.} 

It looks as though 

GEORGIA PACIFIC 
r e f e r s to a new value of an a t t r i bu te , correct? 
+ + * * Y 

. . . 1 s 1t a name of a s tock? 
+ + * * Y 

{The system can then do some very simple pattern matching.} 

Now p l e a s e t e l l me a few t h i n g s about 1 t . . . 

{TEIRESIAS retrieves the schema for a stock, and "reads" it to find 
out what it needs to know about any stock.} 

On what marke ts is GEORGIA-PACIFIC t raded? 
The answer shou ld be 1n the form of 1 or more of the 
f o l l o w i n g - <market name> <year f i r s t t r a d e d ) 
[ T y p e 1 s e t to a l i n e , then an empty l i n e when d o n e . ] 
**** NYSE 1945 
**** PCE 196S 

{Each of the questions from the system is prompted by the attempt 
to fill in some component of the data structure being built, 
according to the representation conventions indicated By the 
schema. A translated form of the "blank" is printed to guide the 
expert; it is then used to parse his answer and insure syntactic 
validity.} 

What 1s t he c u r r e n t r i s k c l a s s i f i c a t i o n of GEORGIA-
PACIFIC? The answer shou ld be 1n the form of a 

<r1sk c l a s s i f i c a t i o n ) 
**** AMEX 

S o r r y , bu t t he f o l l o w i n g are i n v a l i d -
AMEX is no t a recogn ized < r i s k c l a s s i f i c a t i o n ) 
P lease answer a g a i n . 

**** BLUE-CHIP 

{TEIRESIAS now beings working on updating other data structures 
in response to the addition of the new stock name.} 

Should t h i s new item be added to -
1 - the 11st of common stocks, or 
2 - the 11st of preferred stocks, or 
3 - the 11st of cumulative prefered stocks, or 
4 - the 11st of par t i c ipa t ing prefered stocks 

Select one of the above 
**** 3 
[ A d d i n g GEORGIA-PACIFIC to CUMULATIVEPFD] 

{One of these tasks involves adding the new stock to one of four 
mutually exclusive lists. (Several other necessary updates are also 
performed; these have been edited out here for brevity, see [3] for 
details).} 

Ck, done w i t h GEORGIA-PACIFIC n o w . . . Back to the r u l e . 

{Having finished acquiring the new stock, the system returns to 
parsing the new rule, and with some help from the expert gets the 
correct result (the parsing process is omitted here, see [4] for a 
detailed example),} 

T h i s may take a few moments. 

T h i s 1s my unde rs tand ing of your r u l e : 
I f 1 - t he d e s i r e d r a t e o f r e t u r n f o r the investment 

1s g r e a t e r than 10% 
2 - t h e amount of investment exper ience of the 

c l i e n t 1s moderate 
3 - t h e area of the investment 1s n a t u r a l -

resource-deve lopment 
Then 

1 - t h e r e 1s ev idence ( . 5 ) t h a t the name of the 
s t o c k to choose is g e o r g i a - p a c i f 1 c 

{4.1.4} Schemata: other uses 
The schemata also support a number of other capabilities. 

They are useful in maintaining the knowledge base, for instance, 
and offer a convenient mechanism for organizing and implementing 
data structure access and storage functions. 

The data structure updating demonstrated in the previous 
section is one instance of their maintenance capabilities. This 
updating helps to insure that one change to the knowledge base 
(adding a new instance of representation) will not violate necessary 
relationships between data structures. 

One of the Ideas behind the design of the schemata is to use 
them as points around which to organize knowledge. The 
information about structure and interrelationships described above, 
for instance, is stored this way. In addition, access and storage 
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information is also organized in this fashion. By generalizing the 
advice concept slightly, it is possible to effect all data structure 
access and storage requests via the appropriate schema. That is, 
code which wants to access a particular structure "sends" an 
access request, and the structure "answers" by providing the 
requested item2. This offers the well known advantages of 
insulating the implementation of a data structure from its logical 
design. Code which refers only to the latter is far easier to 
maintain in the face of modifications to data structure 
implementation. 

While they have not yet been implemented, two other 
interesting uses of the schemata appear possible. First, 
straightforward extensions to the current system should support a 
more complex form of knowledge base maintenance. Suppose, for 
instance, it became necessary to modify the representation of a 
stock, i.e., we want to edit the stock name schema. It should be 
possible to have TEIRESIAS "watch" as the schema is modified and 
then carry out the same sequence of modifications on each of the 
current instances of the schema. Where new information was 
required (e.g., if new structure descriptors were added to the 
schema) the system could prompt for the appropriate entry for 
each instance. While major redesigns would be more difficult to 
carry out in this fashion, a number of common modifications could 
be accommodated, easing the task of making changes to structures 
in the knowledge base. 

Second, the schema also appear to make possible a limited 
form of introspection. If the information in the relations slot were 
made accessible via simple retrieval routines, this would make it 
possible to answer questions like What else in the system will be 
affected if I add a new instance of this data structure? or What are 
all the other structures that are related to this one? This would be 
a useful form of on-line documentation. 

{4.2} Example 2: Rule models 
[4.2.1} Rule models as empirical abstractions of the knowledge base 

In reviewing the rules in the knowledge base, a number of 
regularities become apparent. In particular, rules about a single 
topic tend to have characteristics in common — there are "ways" 
of reasoning about a given topic. This idea of patterns of reasoning 
has been given a formal (statistical) definition, and provides the 
basis for the automated construction of a set of empirical 
generalities about the knowledge base: the rule models. 

A rule model is an abstract description of a subset of rules, 
built from empirical generalizations about those rules. It is used to 
characterize a " typical" member of the subset (and in this sense is 
similar to the structures used in [20]), and is composed of four 
parts. First, a list of EXAMPLES indicates the subset of rules from 
which this model was constructed. 

Next, a DESCRIPTION characterizes a typical member of the 
subset. Since we are dealing in this case with rules composed cv 
premise-action pairs, the DESCRIPTION currently implemented 
contains individual characterizations of a typical premise and a 
typical action. Then, since the current representation scheme used 
in those rules is based on associative triples, we have chosen to 
implement those characterizations by indicating (a) which attributes 
" typ ica l ly " appear in the premise (and in the action) of a rule in 
this subset, and (b) correlations of attributes appearing in the 
premise (action).3 

Note that the central idea is the concept of characterizing a 
typical member of the subset. Naturally, that characterization would 
look different for subsets of rules, procedures, theorems, etc. But 
the main idea of characterization is widely applicable and not 
restr icted to any particular representational formalism. 

The two other parts of the rule model are pointers to models 
describing more general and more specific subsets of rules. The set 
of models is organized into a number of tree structures. These 
structures determine the subsets for which models will be 
constructed. At the root of each tree is the model made from all the 
rules which conclude about <attribute>, below this are two models 
dealing with all affirmative and all negative rules, and below this 
are models dealing with rules which affirm or deny specific values 
of the attribute. 

There are several points to note here. First, these models 
are not hardwired into the system, but are instead formed by 
TEIRESIAS on the basis of the content of the knowledge base. 
Second, where the rules in the knowledge base contain object level 
information about a specific domain, the rule models contain 
information about those rules, in the form of empirical 
generalizations. As such they offer a global overview of the 
regularities in the rules, and may possibly reflect useful trends in 
the reasoning of the expert from whom those rules were acquired 

Figure 6 - example of a rule model 

{4.2.3} Rule models; use in knowledge acquisition 
Use of the rule models to support knowledge acquisition 

occurs in several steps. First, as noted above, our model of 
knowledge acquisition is one of interactive transfer of expertise in 
the context of a shortcoming in the knowledge base. The process 
starts with the expert challenging the system with a specific 
problem and observing its performance. If he believes its results 
are incorrect, there are available a number of tools that will allow 
him to track down the source of the error (see [2] for details). 
TEIRESIAS keeps track of this debugging process, and responds to 
the discovery of the source of the error by selecting the 
appropriate rule model. For instance, if the problem is a rule 
missing from the knowledge base that concludes about the 
appropriate area for an investment, then TEIRESIAS will select the 
model shown in Figure 6 as the appropriate one to describe the 
rule it is about to acquire. Note that the selection of a specific 
model is in effect an expression by TEIRESIAS of its expectations 
concerning the new rule, and the generalizations in the model 
become predictions about the likely content of the rule. 

At this point the expert types in the new rule (Figure 7), 
using the vocabulary specific to the domain, and expressing it as 
much as possible in the associative triple format. TElRESIAS's 
problem now is to try to understand what the expert has said. As is 
traditional, "understanding" is determined by converting the text 
into an internal representation (like that shown in Figure 2), then 
converting this back into English and requesting approval from the 
expert. 

Since understanding natural language is known to be difficult, 
we have taken a simpler approach. The basic idea is to allow the 
text to "suggest" interpretations via a simple keyword-based 
approach, and to intersect those results with the expectations 
provided by the selection of a particular rule model. We thus have 
a data directed process (interpreting the text) combined with a goal 
directed process (the predictions made by the rule model). Each 
contributes to the end result, but it is the combination of them that 
is effective. Details of this process are described in [2] and [4]. 

The new ru le w i l l be cal led RULE383 
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{4.2.2} Rule model example 
Figure 6 shows an example of a rule model, one that 

describes the subset of rules concluding affirmatively about the 
area for an investment. (Since not all of the details of 
implementation are relevant here, this discussion will omit some. 
See [2 ] for a full explanation.) As indicated above, there is a list of 
the rules from which this model was constructed, descriptions 
characterizing the premise and the action, and pointers to more 
specific and more general models. Each characterization in the 
description is shown split into its two parts, one concerning the 
presence of individual attributes and the other describing 
correlations. The first item in the premise description, for instance, 
indicates that "most" rules about what the area of an investment 
should be mention the attribute rate of return in their premise; 
when they do mention it they "typically" use the predicate 
functions SAME and NOTSAME; and the "strength", or reliability, of 
this piece of advice is 3.83 (see [2] for precise definitions of the 
quoted terms). 

The fourth item in the premise description indicates that 
when the attribute rate of return appears in the premise of a rule 
in this subset, the attribute timescale of the investment "typically" 
appears as well. As before the predicate functions are those 
typically associated with the attributes, and the number is a 
indication of reliability. 

EXAMPLES ((RULE116 .33) 
(RULE050 70) 
(RULE037 .80) 
(RULE095 .90) 
(RULE152 1.0) 
(RULE 140 1.0)) 

DESCRIPTION 
PREMISE ((RETURNRATE SAME NOTSAME 3.83) 

(TIMESCALE SAME NOTSAME 3.83) 
(TREND SAME 2.83) 
((RETURNRATE SAME) (TIMESCALE SAME) 3.83) 
((TIMESCALE SAME) (RETURNRATE SAME) 3.83) 
((BRACKET SAMEXFOLLOWS SAMEXEXPERIENCE SAME) 

1.50)) 
ACTION ((INVESTMENT-AREA CONCLUDE 4.73) 

(RISK CONCLUDE 4.05) 
((INVESTMENT-AREA CONCLUDE) (RISK CONCLUDE) 4.73)) 

MORE-GENL (INVESTMENT-AREA) 
MORE-SPEC (INVESTMENT-AREA-IS-UTILITIES) 



I f : 1 - THE CLIENT'S INCOME TAX BRACKET IS 507. 
and 2 - THE CLIENT IS FOLLOWING UP ON MARKET TRENDS 

CAREFULLY 
and 3 -

Then : 1 - THERE IS EVIDENCE (.8) THAT THE INVESTMENT AREA 
SHOULD BE HIGH TECHNOLOGY 

and 2 -

Figure 7 

TEIRESIAS displays the results of this initial interpretation of 
the rule (Figure 8). If there are mistakes (as there are in this case), 
a rule editor is available to allow the expert to indicate required 
changes. This is easily accomplished, since TEIRESIAS can often 
make an effective second choice by determining the likely source of 
error in its initial guess. 

T h i s 1s my unde rs tand ing of your r u l e : 
RULE383 
If 1) The c l i e n t ' s income-tax bracket is 50%, 

2) The market has followed a upward trend recently 
3) The c l i e n t manages his assets carefu l ly 

Then there is evidence (.8) that the area of the 
investment should be high-technology 

Figure 8 

Once the expert is satisfied that TEIRESIAS has correctly 
understood what he said, it is the system's turn to see if it is 
satisfied with the content of the rule. The main idea is to use the 
rule model to see how well this new rule "fits in" to the system's 
model of its knowledge — i.e., does it "look like" a typical rule of 
the sort expected? 

In the current implementation, the presence of a partial match 
between the new rule and the generalizations in the rule model 
tr iggers a response from TEIRESIAS. Recall the last line of the 
premise description in the rule model of Figure 6: 

((BRACKET SAME) (FOLLOWS SAME) (EXPERIENCE SAME) 1.50)) 
This indicates that when the tax BRACKET of the client appears in 
the premise of a rule of this sort, then how closely he FOLLOWS the 
market, and how much investment EXPERIENCE he has typically 
appear as well. Note that the new rule has the first two of these, 
but is missing the last, and TEIRESIAS points this out. 

I h a t e to c r i t i c i z e , Randy, but d i d you know t h a t most 
r u l e s about what the area of a investment might be, 
t h a t m e n t i o n -

t h e income-tax b racke t o f the c l i e n t , and 
how c l o s e l y the c l i e n t f o l l o w s the market 

ALSO m e n t i o n -
A] - t h e amount o f investment exper ience o f the c l i e n t 
S h a l l I t r y to w r i t e a c lause to account f o r [ A ] ? 
+ + * * Y 
How a b o u t -
A] The amount o f investment exper ience o f the c l i e n t 

1s moderate 
Ok? 
**** Y 

Figure 9 

If the expert agrees to the inclusion of a new clause, 
TEIRESIAS attempts to create it. The system relies on the context of 
the current dialog (which indicates that the clause should deal with 
the amount of the client's investment experience), and the fact that 
the rule must work for this case, or it won't fix the bug (earlier in 
the interaction [not shown] the expert indicated that the client had 
a moderate amount of experience). TElRESIAS's guess is not 
necessarily correct, of course, since the desired clause may be 
more general, but it is at least a plausible attempt. 

It should be noted that there is nothing in this concept of 
"second guessing" which is specific to the rule models as they are 
currently designed, or indeed to associative triples or rules as a 
knowledge representation. The most general and fundamental point 
was mentioned above — testing to see how something "fits in" to 
the system's model of its knowledge. At this point the system might 
perform any kind of check, for violations of any established 
prejudices about what the new chunk of knowledge should look like. 
Additional kinds of checks for rules might concern the strength of 
the inference, number of clauses in the premise, etc. Different 
checks might be devised for other knowledge encoding schemes. 

The automatic generation of the rule models by TEIRESIAS 
has several interesting implications, since it makes possible a 
synthesis of the ideas of model-based understanding and learning 
by experience. While both of these have been developed 
independently in previous Al research, their combination produces a 
novel sort of feedback loop: rule acquisition relies on the set of 

rule models to effect the model-based understanding process; this 
results in the addition of a new rule to the knowledge base, and 
this in turn prompts the recomputation of the relevant rule 
model(s). 

Note first that performance on the acquisition of the next 
rule may be better, because the system's "picture" of its 
knowledge base has improved — the rule models are now computed 
from a larger set of instances, and their generalizations are more 
likely to be valid. 

Second, since the relevant rule models are recomputed each 
time a change is made to the knowledge base, the picture they 
supply is kept constantly up to date, and they will at all times be 
an accurate reflection of the shifting patterns in the knowledge 
base. 

Finally, and perhaps most interesting, the models are not 
hand-tooled by the system architect, or specified by the expert. 
They are instead formed by the system itself, and formed as a 
result of its experience in acquiring rules from the expert. Thus 
despite its reliance on a set of models as a basis for understanding, 
TElRESIAS's abilities are not restricted by the existing set of 
models. As its store of knowledge grows, old models can become 
more accurate, new models will be formed, and the system's stock 
of knowledge about its knowledge will continue to expand. This 
appears to be a novel capability for a model-based system. 

{4.2.4} Rule models; other capabilities 
As a form of meta-level knowledge, the rule models give the 

system a picture of its own knowledge. The system can, for 
instance, " read " a rule model to the user, supplying an overview of 
the information in part of the knowledge base. This may suggest 
global trends in the knowledge of the expert who assembled the 
knowledge base, and thus helps to make clear the overall approach 
of the system to a given topic (for examples see [2]). 

{4.3} Example 3: Function templates 
Associated with each predicate function in the system is a 

template, a list structure which resembles a simplified procedure 
declaration (Figure 10). It indicates the order and generic type of 
the arguments in a typical call of that function, and makes possible 
very simple versions of two interesting, parallel capabilities: code 
generation and code dissection. 

FUNCTION TEMPLATE 
SAME (OBJ ATTRIBUTE VALUE) 

Figure 10 - template for the predicate function SAME 

The template is used as the basis for the simple form of code 
generation alluded to in Section (42.3}. While details are beyond 
the scope of this paper (see [2]), code generation is essentially a 
process of "fi l l ing in the blanks": processing a line of text in a new 
rule involves checking for keywords that implicate a particular 
predicate function, and then filling in its template on the basis of 
connotations suggested by other words in the text. 

Code dissection is accomplished by using the templates as a 
guide to extracting any desired part of a function call. For instance, 
as noted earlier, TEIRESIAS forms the rule models on the basis of 
the current contents of the knowledge base. To do this, it must be 
able to pick apart each rule to determine the attributes to which it 
refers. This could have been made possible by requiring that every 
predicate function use the same function call format (i.e., the same 
number, type, and order of arguments), but this would be too 
inflexible. Instead, we allow every function to describe its own 
calling format via its template. To dissect a function call, then, we 
need only retrieve the template for the relevant function (i.e., the 
template for the CAR of the form), and then use that as a guide to 
dissecting the remainder of the form. The template in Figure 10, for 
instance, indicates that the attribute would be the CADOR of the 
form. This same technique is also used by TElRESIAS's explanation 
facil ity, where it permits the system to be quite precise in the 
explanations it provides (see [2] for details). 

This approach also offers a useful degree of flexibility. The 
introduction of a new predicate function, for instance, can be totally 
transparent to the rest of the system, as long as its template can 
be wr i t ten in terms of the available set of primitives like attribute, 
value, etc. The power of this approach is limited primarily by this 
factor, and will succeed to the extent that code can be described 
by a relatively small set of such primitive descriptors. While more 
complex syntax is easily atcomodated (e.g., the template can 
indicate nested function calls), more complex semantics are more 
difficult (e.g., the appearance of multiple attributes in a function 
template can cause problems). 
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{4.4} Example 4: Meta-rules 
{4.4.1} Strategies to guide the use of knowledge 

Meta-rules embody strategies — Knowledge that indicates 
how to use other knowledge. This discussion considers strategies 
from the perspective of deciding which knowledge to invoke next in 
a situation where more than one chunk of knowledge may be 
applicable. For example, given a problem solvable by either 
heuristic search or problem decomposition, a strategy might 
indicate which technique to use, based on characteristics of the 
problem domain and nature of the desired solution. If the problem 
decomposition technique were chosen, other strategies might be 
employed to select the appropriate decomposition from among 
several plausible alternatives. 

This view of strategies can be useful because many of the 
paradigms developed in Al admit (or even encourage) the possibility 
of having several alternative chunks of knowledge plausibly useful 
in a single situation (e.g., production rules, PLANNER-like languages, 
etc.). Faced with a set of alternatives large enough (or varied 
enough) that exhaustive invocation becomes infeasible, some 
decision must be made about which should be chosen. Since the 
performance of a program will be strongly influenced by the 
intelligence with which that decision is made, strategies offer an 
important site for the embedding of knowledge in a system. 

This type of guidance can be especially useful in the sort of 
rule-based performance program that TEIRESIAS is designed to help 
build. The rules in this system are invoked in a simple 
backward-chaining fashion that produces an exhaustive depth-first 
search of an and/or goal tree. If the program is attempting, for 
example, to determine which stock would make a good investment, it 
retr ieves all the rules which make a conclusion about that topic (i.e., 
they mention STOCK-NAME in their action). It then invokes each one 
in turn, evaluating each premise to see if the conditions specified 
have been met. The search is exhaustive because the rules are 
inexact: even if one succeeds, it was deemed to be a wisely 
conservative strategy to continue to collect all evidence about a 
subgoal. 

The ability to use an exhaustive search is of course a luxury, 
and in time the base of rules may grow large enough to make this 
infeasible. As this point some choice would have to be made about 
which of the plausibly useful rules should be invoked. Meta-rules 
were created to address this problem. 

{4.4.2} Meta-rules: examples 
Figure 11 below shows two meta-rules. The first of them 

says, in effect, that in trying to determine the best investment for a 
non-prof i t organization, rules that base their recommendations on 
tax bracket are not likely to be successful. The second indicates 
that when dealing with clients nearing retirement age, more secure 
stocks should be considered before more speculative ones. 

METARULE001 
If 1) you are attempting to determine the best stock 

to invest in, 
2) the c l i e n t ' s tax status 1s non-prof i t , 
3; there are rules which mention 1n the i r premise 

the income-tax bracket of the c l i en t , 
then 1t 1s very l i k e l y (.9) that each of these rules 

1s not going to be usefu l . 

PREMISE 
($AND(SAME OBJCT CURGOAL STOCK-NAME) 

(SAME OBJCT STATUS NON-PROFIT) 
(THEREARE OLRULES (SAND 

(MENTIONS FREEVAR PREMISE BRACKET)) SET1)) 
ACTION (CONCLUDE SET1 UTILITY NO .9) 

METARULE002 
If 1) the age of the c l i en t is greater than 60, 

2) there are rules which mention in thei r 
premise blue-chip r i s k , 

3) there are rules which mention in the i r 
premise speculative r i sk , 

then it 1s very l i k e l y (.8) that the former should 
be used before the l a t t e r . 

PREMISE 
($AND(GREATER OBJCT AGE 60) 

(THEREARE OLRULES (SAND 
(MENTIONS FREEVAR PREMISE BLUE-CHIP)) SET1) 

(THEREARE OLRULES (SAND 
(MENTIONS FREEVAR PREMISE SPECULATIVE)) SET2)) 

ACTION 
(CONCLUDE SET1 DOBEFORE SET2 .8) 

Figure 11 - two meta-rules 

It is important to note the character of the information 
conveyed by meta-rules. First, note that in both cases we have a 
rule which is making a conclusion about other rules. That is, where 
object level rules conclude about the stock market domain, 
meta-rules conclude about object level rules. These conclusions can 

' ( in the current implementation) be of two forms. As in the first 
meta-rule, they can make deductions about the likely utility of 
certain object level rules, or (as in the second) they can indicate a 
partial ordering between two subsets of object level rules. 

Note also that (as in the first example) meta-rules make 
conclusions about the uti l i ty of object level rules, not their validity. 
That is, METARULE001 does not indicate circumstances under which 
some of the object level rules are invalid (or even "very likely (.9)" 
invalid). It merely says that they are likely not to be useful; i.e., 
they will probably fail, perhaps only after requiring extensive 
computation to evaluate their preconditions. This is important 
because it has an impact on the question of distribution of 
knowledge. If meta-rules did comment on validity, it might make 
more sense to distribute the knowledge in them, i.e., delete the 
meta-rule, and just add another premise clause to each of the 
relevant object level rules. But since their conclusions do concern 
uti l i ty, it does not make sense to distribute the knowledge. 

Adding meta-rules to the system requires only a minor 
addition to the control structure described above. As before, the 
system retrieves the entire list of rules relevant to the current goal 
(call it L). But before attempting to invoke them, it first determines 
if there are any meta-rules relevant to that goal4. If so, these are 
invoked first. As a result of their action, we may obtain a number of 
conclusions about the likely utility, and relative ordering of the 
rules in L. These conclusions are used to reorder or shorten L, and 
the revised list of rules is then used. Viewed in tree-search terms, 
the current implementation of meta-rules can either prune the 
search space or reorder the branches of the tree. 

{4.4.3} Meta-rules: guiding the use of the knowledge base 
There are several points to note about this approach to 

encoding knowledge. First, the framework it presents for knowledge 
organization and use appears to offer a great deal of leverage, 
since much can be gained by adding to a system a store of 
(meta-level) knowledge about which chunk of object level 
knowledge to invoke next. Considered once again in tree search 
terms, we are talking about the difference between "blind" search 
of the tree, and one guided by heuristics. The advantage of even a 
few good heuristics in cutting down the combinatorial explosion of 
tree search is well known. Thus, where earlier sections were 
concerned about adding more object level knowledge to improve 
performance, here we are concerned with giving the system more 
information about how to use what it already knows. 

Consider, too, that part of the definition of intelligence 
includes appropriate use of information. Even if a store of (object 
level) information is not large, it is important to be able to use it 
properly. Meta-rules provide a mechanism for encoding strategies 
that can make this possible. 

Second, the description given in Section (4.4.2) has been 
simplified in several respects for the sake of clarity. It discusses 
the augmented control structure, for example, in terms of two 
levels — the object and meta-levels. In fact, there can be an 
arbi t rary number of levels, each serving to direct the use of 
knowledge at the next lower level. That is, the system retrieves the 
list (L) of object level rules relevant to the current goal. Before 
invoking this, it checks for a list (L') of first order meta-rules which 
can be used to reorder or prune L. But before invoking this, it 
checks for second order meta rules which can be used to reorder 
or prune L', etc. Recursion stops when there is no rule set of the 
next higher order, and the process unwinds, each level of 
strategies advising on the use of the next lower level. 

Consider once again the issue of leverage, and recall the 
value of heuristics in guiding tree search. We can apply the same 
idea at this higher level, gaining considerable leverage by encoding 
heuristics that guide the use of heuristics. That is, rather than 
adding more heuristics to improve performance, we might add more 
information at the next higher level about effective use of existing 
heuristics. 

The judgmental character of the rules offers several 
interesting capabilities. It makes it possible, for instance, to write 
rules which make different conclusions about the best strategy to 
use, and then rely on the underlying model of confirmation [16] to 
weigh the evidence. That is, the strategies can "argue" about the 
best rule to use next, and the strategy that presents the best case 
(as judged by the confirmation model) will win out. 

Next, recall that the basic control structure of the 
performance program is a depth-first search of the and/or goat 
tree sprouted by the unwinding of rules. The presence of 
meta-rules of the sort shown in Figure 11 means that this tree has 
an interesting characteristic: at each node, when the system has to 
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choose a path, there may be information stored advising about the 
best path to take. There may therefore be available an extensive 
body of knowledge to guide the search, but that knowledge is not 
embedded in the code of a clever search algorithm. It is instead 
organized around the specific objects which form the nodes in the 
tree; i.e., instead of a smart algorithm, we have a "smart tree". 

Finally, there are several advantages associated with the use 
of strategies which are goal-specific, explicit, and embedded in a 
representation which is the same as that of the object level 
knowledge. That fact that strategies are goal-specific, for instance, 
makes it possible to specify quite precise heuristics for a given 
goal, without imposing any overhead in the search for any other 
goals. That is, there may be a number of complex heuristics 
describing the best rules to use for a particular goal, but these will 
cause no computational overhead except in the search for that goal. 

The fact that they are explicit means a conceptually cleaner 
organization of knowledge and ease of modification of established 
strategies. Consider, for instance, alternative means of achieving 
the sort of partial ordering specified by the second meta-rule in 
Figure 11. There are several alternative schemes by which this 
could be accomplished, involving appropriate modifications to the 
relevant object level rules and slight changes to the control 
structure. Such schemes, however, share several faults that can be 
il lustrated by considering one such approach: an agenda with 
multiple priority levels like the one proposed in [1]. That is, rather 
than dealing with a linear list L of relevant rules, those rules would 
be put on an agenda. Partial ordering could be accomplished simply 
by setting the priority for some rules higher than that of others: 
rules in subset A, for instance, might get priority 6 while those in 
subset B were given priority 5. 

But this technique presents two problems: it is both opaque 
and likely to cause bugs. It will not be apparent from looking at the 
code, for instance, why the rules in A were given higher priority 
than the rules in B. Were they more likely to be useful, or is it 
desirable that those in A precede those in B no matter how useful 
they each may be? Consider also what happens if, before we get a 
chance to invoke any of the rules in A, an event occurs which 
makes it clear that their priority ought to be reduced (for reasons 
unrelated to the desired partial ordering). If the priority of only the 
rules in A are adjusted, a bug arises, since the desired relative 
ordering may be lost. 

The problem is that this approach tries to reduce a number 
of different, incommensurate factors to a single number, with no 
record of how that number was reached. Meta-rules offer one 
mechanism for making these sorts of considerations explicit, and for 
leaving a record of why a set of processes has been queued in a 
particular order. They also make subsequent modifications easier, 
since all of the information is in one place — changing a strategy 
can be accomplished by editing the relevant meta-rule, rather than 
searching through a program for all the places priorities have been 
set to effect that strategy. 

Lastly, the use of a uniform encoding of knowledge makes the 
treatment of all levels the same. For example, second order 
meta-rules require no machinery in excess of that needed for first 
order meta-rules. It also means that all the explanation and 
knowledge acquisition capabilities developed for object level rules 
can be extended to meta-rules as well. The first of these 
(explanation) has been done, and works for all levels of meta-rules. 
Adding this to TElRESIAS's explanation facility makes possible an 
interesting capability: in addition to being able to explain what it 
did, the system can also explain how it decided to do what it did. 
Knowledge in the strategies has become accessible to the rest of 
the system, and can be explained in just the same fashion. We 
noted above that adding meta-level knowledge to the system was 
quite distinct from adding more object level knowledge, since 
strategies contain information of a qualitatively different sort. 
Explanations based on this information are thus of a 
correspondingly different type as well. 

{4.4.4} Meta-rules; broader implications 
There are a number of interesting generalizations of the 

basic scheme presented above, two of which we touch on briefly 
here. First, while we have been examining the idea of strategies in 
the context of the depth-first search used by the performance 
program, the concept is in fact more widely applicable and can be 
used with a range of control structures. Second, meta-rules effect 
their selection of the relevant object level rules by what we have 
termed content-directed invocation, an approach which offers 
advantages over previous knowledge source invocation techniques. 

Applications to other control structures 
The concept of strategies as a mechanism for deciding which 

chunk of knowledge to invoke next can be applied to a number of 
different control structures. We have seen how it works in 
goal-directed scheme, and it functions in much the same way with a 

data-directed process. In that case meta-rules offer a way of 
controlling the depth and breadth of the implications drawn from 
any new fact or conclusion. Pursing this further, we can imagine 
making the decision to use a data- or a goal-directed process itself 
an issue to be decided by a collection of appropriate meta-rules. At 
each point in its processing, the system might invoke one set of 
meta-rules to choose a control structure, then use another set to 
guide that control structure. This can be applied to many control 
structures, demonstrating the range of applicability of the basic 
concept of strategies as a device for choosing what to do next. 

Content-directed invocation 
If meta-rules are to be used to select from among plausibly 

useful object level rules, they must have some way of referring to 
the object level rules. The mechanism used to effect this reference 
has implications for the flexibility and extensibility of the resulting 
system. 

To see this, note that the meta-rules in Figure 11 refer to 
the object level rules by describing them, and effect this 
description by direct examination of content. For instance, 
METARULEOOl refers to rules which mention in their premise the 
income tax bracket of the client, a description, rather than an 
equivalent list of rule names. The set of object level rules which 
meet this description is determined at execution time by examining 
the source code of the rules. That is, the meta-rule "goes in and 
looks" for the relevant characteristic (in this case the presence of 
the attribute BRACKET), using the function templates as a guide to 
dissecting the rules. We have termed this content-directed 
invocation. 

Part of the utility of this approach is illustrated by its 
advantages over using explicit lists of object level rules (e.g., if 
METARULEOOl had been written to indicate " i t is very l i k e l y 
( . 9 ) t h a t RULE124, RULE065, RULE210, and RULE113 are 
n o t g o i n g to be u s e f u l " ) . If such lists were used, then tasks 
like editing or adding an object-level rule to the system would 
require extensive amounts of bookkeeping. After an object level 
rule has been edited, for instance, we would have to check all the 
strategies that name it, to be sure that each such reference was 
still applicable to the revised rule. By using content-directed 
invocation, however, these tasks require no additional effort, since 
the meta-rules effect their own examination of the object level 
rules, and will make their own determination of relevance. 

Additional advantages of this technique are discussed in more 
detail in [2 ] and [5] 

{5] Implications 
The examples reviewed above illustrate a number of general 

ideas about knowledge representation and use that may prove 
useful in building large programs. 

We have, first, the notion that knowledge in programs should 
be made explicit and accessible. Use of production rules to encode 
the object level knowledge is one example of this, since knowledge 
in them may be more accessible than that embedded in the code of 
a procedure. The schemata, templates, and meta-rules illustrate the 
point also, since each of them encodes a form of information that is, 
typically, either omitted entirely or at best is left implicit. By 
making knowledge explicit and accessible, we "make possible a 
number of useful abilities. The schemata and templates, for example, 
support the forms of system maintenance and knowledge acquisition 
described above. Meta-rules offer a means for explicit 
representation of the decision criteria used by the system to select 
its course of action. Subsequent "playback" of those criteria can 
then provide a form of explanation of the motivation for system 
behavior (see [2] for examples). That behavior is also more easily 
modified, since the information on which it is based is both clear 
(since it is explicit) and retrievable (since it is accessible). Finally, 
more of the system's knowledge and behavior becomes open to 
examination, especially by the system itself. 

Second, there is the idea that programs should have access 
to their own representations. To put this another way, consider 
that over the years numerous representation schemes have been 
proposed and have generated a number of discussions of their 
respective strengths and weaknesses. Yet in all these discussions, 
one enti ty intimately concerned with the outcome has been left 
uninformed: the program itself. What this suggests is that we ought 
to describe to the program a range of information about the 
representations it employs, including such things as their structure, 
organization, and use. 

As noted, this is easily suggested but more difficult to do. It 
requires a means of describing both representations and control 
structures, and the utility of those descriptions will be strongly 
dependent on the power of the language in which they are 
expressed. The schemata and templates are the two main examples 
of the partial solutions we have developed for describing 
representations, and both rely heavily on the idea of a task specific 
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high level language — a language whose conceptual primitives are 
task specific. The main reason for using this approach is to make 
possible what we might call "top down code understanding". 
Traditionally, efforts at code understanding (e.g., [18], [13]) have 
attempted to assign meaning to the code of some standard 
programming language. Rather than take on this sizable task, we 
have used the task specific languages to make the problem far 
easier. Instead of attempting to assign semantics to ordinary code, a 
"meaning" is assigned to each of the primitives in the high level 
language, and represented in one or more informal ways. Thus, for 
example, ATTRIBUTE is one of the primitives in the "language" in 
which templates are written; its meaning is embodied in procedures 
associated with It that are used during code generation and 
dissection (see [2 ] for details). 

This convenient shortcut also implies a number of limitations. 
Most important, the approach depends on the existence of a finite 
number of "mostly independent" primitives. This means a set of 
primitives with only a few, well specified interactions between 
them. The number of interactions should be far less than the total 
possible, and interactions that do occur should be uncomplicated (as 
for example, the interaction between the concepts of attribute and 
value). 

But suppose we could describe to a system its 
representations? What benefits would follow? The primary thing this 
can provide is a way of effecting multiple uses of the same 
knowledge. Consider for instance the multitude of ways in which 
the object level rules have been used. They are executed as code 
in order to drive the consultation (see [6] and [17] for examples); 
they are viewed as data structures, and dissected and abstracted to 
form the rule models; they are dissected and examined in order to 
produce explanations (see [2]); they are constructed during 
knowledge acquisition; and finally they are reasoned about by the 
meta rules. 

It is important to note here that the feasibility of such 
multiplicity of uses is based less on the notion of production rules 
per se, than on the availability of a representation with a small 
grain size and a simple syntax and semantics. "Small", modular 
chunks of code written in a simple, heavily stylized form (though 
not necessarily a situation-action form), would have done as well, 
as would any representation with simple enough internal structure 
and of mangable size. The introduction of greater complexity in the 
representation, or the use of a representation that encoded 
significantly larger "chunks" of knowledge would require more 
sophisticated techniques for dissecting and manipulating 
representations than we have developed thus far. But the key 
limitations are size and complexity of structure, rather than a 
specific style of knowledge encoding. 

Two other benefits may arise from the ability to describe 
representations. We noted earlier that much of the information 
necessary to maintain a system is often recorded in informal ways, 
if at all. If it were in fact convenient to record this information by 
describing it to the program itself, then we would have an effective 
and useful repository of information. We might see information that 
was previously folklore or informal documentation becoming more 
formalized, and migrating into the system itself. We have illustrated 
above a few of the advantages this offers in terms of maintaining a 
large system. 

This may in turn produce a new perspective on programs. 
Early scarcity of hardware resources led to an emphasis on 
minimizing machine resources consumed, for example by reducing 
all numeric expressions to their simplest form by hand. More 
recently, this has meant a certain style of programming in which a 
programmer spends a great deal of time thinking about a problem 
first, trying to solve as much as possible by hand, and then 
abstracting out only the very end product of all of that to be 
embodied in the program. That is, the program becomes simply a 
way of manipulating symbols to provide "the answer", with little 
indication left of what the original problem was, or more important, 
what knowledge was required to solve it. 

But what if we reversed this trend, and instead view a 
program as a place to store many forms of knowledge about both 
the problem and the proposed solution (i.e., the program itself). This 
would apply equally well to code and data structures, and could 
help make possible a wider range of useful capabilities of the sort 
i l lustrated above. 

One final observation. As we noted at the outset, interest in 
knowledge-based systems was motivated by the belief that no 
single, domain independent paradigm could produce the desired 
level of performance. It was suggested instead that a large store of 
domain specific (object level) knowledge was required. We might 
similarly suggest that this too will eventually reach Its limits, and 
that simply adding more object level knowledge will no longer, by 
itself, guarantee increased performance. Instead it may be 
necessary to focus on building stores of meta-level knowledge, 
especially in the form of strategies for effective use of knowledge. 

Such "meta-level knowledge based" systems may represent a 
profitable future direction. 

{6} Conclusions 
We have reviewed four examples of meta-level knowledge, 

and demonstrated their application to the task of building and using 
large stores of domain specific knowledge. This has showed that 
supplying the system with a store of information about its 
representations makes possible a number of useful capabilities. For 
example, by describing the structure of its representations 
(schemata, templates), we make possible a form of transfer of 
expertise, as well as a number of facilities for knowledge base 
maintenance. By supplying strategic information (meta-rules), we 
make possible a finer degree of control over use of knowledge in 
the system. And by giving the system the ability to derive empirical 
generalizations about its knowledge (rule models), we make possible 
a number of useful abilities that aid in knowledge transfer. 

Notes 
(1) TEIRESIAS was developed in the context of the MYCIN system 
[17,6], which deals with infectious disease diagnosis and therapy. 
The domain has been changed to keep the discussion phrased in 
terms familiar to a wide range of readers, and to emphasize that 
neither the problems attacked nor the solutions suggested are 
restricted to a particular domain of application. The dialogs shown 
are real examples of TEIRESIAS in action, with a few word 
substitutions: e.g, primary bacteremia became Georgia Pacific, 
infection became investment, etc. 
(2) Both of these are constructed via simple statistical 
thresholding operations. 
(3) This was suggested by the perspective taken in work on 
SMALLTALK [9] and actors [10], 
(4) That is, are there meta-rules directly associated with that 
goal. Meta-rules can also be associated with other objects in the 
system, but that is beyond the scope of this paper. The issues of 
organizing and indexing meta-rules are covered in more detail in 
[2J and [5] . 

References 
[1] Bobrow D, Winograd T, An Overview of KRL, Cognitive 
Science, vol 1, pp 3-47, Jan 1977. 
[2 ] Davis R, Applications of meta-level knowledge to the 
construction, maintenance, and use of large knowledge bases, 
Stanford HPP Memo 76-7, July 1976. 
[3 ] Davis R, Knowledge about representations as a basis for 
system construction and maintenance, to appear in Pattern-Directed 
Inference Systems, Academic Press, (in press). 
[4 ] Davis R, Interactive transfer of expertise, to appear in Proc 
5th IJCAI, Aug 1977. 
[5] Davis R, Generalized procedure calling and content-directed 
invocation, to appear in Proc AI/PL Conference, Aug 1977. 
[6 ] Davis R, Buchanan B G, Shortliffe E H, Production rules as a 
representation for a knowledge-based consultation system, Artificial 
Intelligence, 8:15-45, Spring 1977. 
[7 ] Feigenbaum E A, et. al., On generality and problem solving, in 
MI6, pp 165-190, Edinburgh University Press, 1971. 
[8 ] Fennell R D, Multiprocess software architecture for Al 
problem solving, PhD Thesis, Computer Science Department, CMU, 
May 1975. 
[9 ] Goldberg A, Kay A, Smalltalk-72 User's Manual, Learning 
Research Group, Xerox PARC, 1976. 
[10 ] Hewitt C, A universal modular actor formalism for Al, Proc 3rd 
IJCAI, pp 235-245, 
[11] Lesser V R, Fennell R D, Erman L D, Reddy D R, Organization 
of the HEARSAY II speech understanding system, IEEE Transactions, 
ASSP-23, February 1975, pp 11-23. 
[12 ] Mathlab Group, MACSYMA reference manual, 1974, MIT. 
[13 ] Manna Z, Correctness of programs, Journal of Computer 
Systems Sciences, May 1969. 
[14 ] Samuel A L, Some studies in machine learning using the game 
of checkers II - recent progress, IBM Jnl Res and Devel, 
11:601-617. 
[15 ] Schank R C, Abelson R P, Scripts, plans and knowledge, Proc 
4th IJCAI, pp 151-157. 
[16 ] Shortliffe E H, Buchanan B G, A model of inexact reasoning in 
medicine, Math Biosci 23 (1975) pp 351-379. 
[17 ] Shortliffe E H, MYCIN: Computer-based Medical Consultations, 
American Elsevier, 1976. 
[18 ] Waldinger R, Levitt K N, Reasoning about programs, Artificial 
Intelligence, 5 (Fall 1974) pp 235-316. 
[19 ] Winograd T, Understanding Natural Language, Academic Press, 
1972. 
[ 20 ] Winston P, Learning structural descriptions from examples, 
MIT TR-76, Sept 70. 

L a n g u a g e s & S y s t e n s - 2 : D a v i s 


