
OPS, A DOMAIN-INDEPENDENT PRODUCTION SYSTEM LANGUAGE

C. Forgy and J. McDermott
Carnegie-Mellon University

Pittsburgh, Pa. 15213

Abs t rac t : It has been claimed that product ion systems have
severa l advantages over other representat ional schemes.
These include the potent ial for general self-augmentat ion
(i.e., learn ing of new behavior) and the abil i ty to funct ion in
complex env i ronments. The product ion system language,
OPS, was implemented to test these claims. In this paper
we exp lo re some of the issues that bear on the design of
p roduc t i on system languages and t ry to show the adequacy
of OPS for its intended purpose.

I. INTRODUCTION

Much of the work that has been done wi th
p roduc t i on systems dur ing the past few years has had as
i ts p r imary goal the development of systems that are
expe r t in some part icular task. The tasks so far addressed
inc lude: chemical inference [Buchanan and Lederberg,
J 9 7 1] , medical diagnosis [Davis, Buchanan, and Short l i f fe,
1 9 7 5] , d iscovery in mathematics [Lenat, 1976], speech
recogn i t i on [Erman and Lesser, 1975; McCracken, 1977],
and automatic programming [Barstow, 1977]. Although
many of these systems have shown impressive power in
the par t icu lar task for which they were designed, there
remains a quest ion of how suitable the product ion system
rep resen ta t i on is for large general problem solving
p rograms.

The Instructable Production System (IPS) project at
CMU [Rychener and Newell , 1977] is attempting to answer
th is quest ion. It has been claimed that product ion systems
are capable of learning in a non-tr iv ia l way. If this is t rue,
a p roduc t ion system should be able to learn not only facts,
but also new behaviors. It should be able to generalize
eas i ly ; something learned in one context should be readily
accessible in other , only remotely similar, contexts. The
learn ing mechanisms should not be complex; in part icular,
t hey should not need to know much of the st ructure of the
res t of the system. It has also been claimed that
p roduc t i on systems are capable of functioning in complex
env i ronments . If this is t rue, a product ion system should
be i n te r rup tab le . It should be able to recognize and react
immediate ly to important changes in its environment, and
a f t e r w a r d , to re tu rn to its previous task wi th no loss.
Whi le these claims are not without support (some of the
expe r t systems mentioned above are capable of learning,
for example) , they certa in ly have not yet been established.
The IPS p ro jec t is at tempting to build a product ion system
that d isp lays both characterist ics as ful ly as possible.

1 This w o r k was suppor ted in part by the Defense
Advanced Research Projects Agency
(F 4 4 6 2 0 - 7 3 - C - 0 0 7 4) and monitored by the Air Force
Off ice of Scientif ic Research.

The f i rst phase of this project involved designing a
p roduc t i on system language whose features support
genera l i t y . To our knowledge, no one has enumerated or
systemat ica l ly at tempted to just i fy a set of characteristics
that are appropr ia te for such a language, though Newell
[1 9 7 3] and Davis and King [1975] have suggested sets of
d imensions that can be used to distinguish product ion
sys tem languages f rom one another, and Lenat and Harris
[1 9 7 7] have argued that a language designed to support
tasks w i th in a part icular domain should have characteristics
that explo i t the features of that domain. This paper f i rst
discusses some of the more significant alternatives open to
the designer of a product ion system language, and then
descr ibes OPS2 and argues that it is a suitable language
for the purposes of the IPS project.

I I . THE ALTERNATIVES

The members of the class of production system
languages share only a few common characteristics. All
make use of condit ional statements called productions, and
the i r i n t e rp re te r s all have similar high level functions. The
i n t e r p r e t e r s have access to two memories, product ion
m e m o r y and data memory. Production memory is a place
to s to re the product ions and any static relations (e.g., a
l inear o rder ing) between productions. Data memory is a
place to s to re the data processed by the productions and
any stat ic relat ions between the data. Most product ion
sys tem languages require the maintenance of some
in fo rmat ion in addit ion to that in these two memories (e.g.,
the name of the last product ion to fire). In this paper it
wi l l be assumed that all this information is stored in a th i rd
s t r uc tu re that we wi l l call state memory. The in terpreter
func t ions by repeated ly matching the productions against a
subset of the informat ion held in the data and state
memor ies, select ing one or more of the productions w i th
t rue antecedent condit ions, and then allowing the selected
p roduc t ions to execute and effect changes to data memory.
If changes to state memory are necessary, the in terpre ter
i tsel f makes these. This sequence of operations const i tutes
what is cal led the recognize-act cycle.

Beyond this set of common character ist ics,
p roduc t i on system languages have diverged f rom one
another in many ways. In some, for example, product ion

2 A. Newel l and M. Rychener, together wi th the authors,
des igned OPS. OPS contains many of the features found
in PSG [Newel l and McDermott, 1975] , PSNLST
[Rychener , 1976] , and RETE, a system designed by
Forgy.

Languages & Systems-2: Forgy
933

memory can be partitioned to give an effect something like
subroutines in conventional languages [e.g., Newell and
McDermott, 1975]. Data memory can be partitioned in
some others and different access mechanisms provided for
each partition [Lenat and Harris, 1977]. Some languages
allow every satisfied production (that is, e\/ery production
whose antecedent condition is true) to fire on each cycle
[McCracken, 1977], others use a few simple decision
procedures to choose one or a few productions to fire
[Anderson, 1976; Newell and McDermott, 1975], and others
use complex decision procedures to choose with some care
which productions to fire [Erman and Lesser, 1975]. An
automatic backtracking search mechanism is included in
some interpreters (these are the "deductive" production
systems like Rita [Anderson and Gillogly, 1976] and Mycin
[Davis, Buchanan, and Shortliffe, 1975]), while the others
make it necessary to program all searches explicitly.
Differences such as these can be viewed as creating a
space of possible production system languages.

The remainder of this section presents arguments
for one region in this space. Because the goals of the IPS
project differ from the goals of most projects that use
production systems, the arguments differ from those that
might be made for other production system languages. We
will consider each of the four components of a production
system language (the interpreter and the three memories).

The Interpreter

Perhaps the most fundamental consideration in the
design of a production system language is the amount of
processing that will occur during a recognize-act cycle.
Existing production systems vary widely in this.
Productions in the HSII system [Erman and Lesser, 1975],
for example, accomplish far more in one firing than do the
productions in Mycin [Davis, Buchanan, and Shortliffe,
1975]. The production system language should not force a
discipline on the user (i.e., it should not force him to
perform a fixed amount of processing on each cycle), but it
should provide features that make it easy for the user to
adopt whatever discipline he finds appropriate.

The amount of processing that will be appropriate
on any one cycle is dependent on the current task of the
system. If some production is very knowledgeable about a
particular situation, it is appropriate that the production
take powerful actions. In chess, for example, if a
production recognized a book position in the opening, the
production should be able to make the move and avoid the
interference of other productions that are less able in this
situation. If there is no production that understands the
situation, however, the system should be more cautious in
its processing. If it takes a big step and that step is
wrong, it will progress far down the incorrect path before
it has a chance to recognize its mistake. Moreover, a big
step will make the system less able to use whatever store
of information it has about similar tasks because it will be
skipping over so many of the points where that information
could be appropriate. It will be less likely to notice events
such as the sudden feasibility of a new approach to the
current task, the arrival of a more important task, or the
unexpected satisfaction of a pending task. It can be
expected that a large task will be diverse; it will have some
sub tasks that are well understood by the production

system and others that are difficult or poorly understood.
The appropriate amount of processing, then, can vary
greatly from minute to minute even in the performance of
a single task.

Thus the production system language should
neither make it impossible to perform complex actions nor
make it economically infeasible to perform simple actions.
Unfortunately, these requirements tend to conflict. If the
monitor supports complex actions and powerful patterns,
there is likely to be significant overhead to the
recognize-act cycle. To perform only a few simple actions
when the overhead is high may not always be economically
feasible. The production system language must therefore
incorporate some compromise between unlimited power
and potential for short cycle times.

The recognize part of the cycle is potentially more
of a problem, but current technology provides a
reasonable solution. The problem with using powerful
recognition criteria is that even though the productions
that contain the more powerful patterns may fire only
infrequently, the patterns must be tested on every cycle.
Powerful actions, in contrast, have a cost only when they
are executed. A solution to this problem is provided in the
methods now available that allow quite powerful patterns
while making the time to perform recognition almost
independent of the number of productions in the system
[Forgy, 1977; McDermott, Newell, and Moore, 1977]. These
methods do have one major limitation: they do not allow
the use of variables in Data Memory.3

In summary, the production system language should
allow antecedent conditions that are as powerful as
possible given the constraint that the time required to
perform recognition must be independent of the sizes of
data and production memories. The power that should be
allowed in the actions is less easy to characterize. While
there is not the same efficiency issue here as there is in
the case of antecedent conditions (actions have a cost only
when they are executed), actions whose power is
incommensurate with the power of the match would appear
to be unusable. If there are limits to the power of
antecedent conditions, it will not be possible to describe
the character of a situation fully enough to insure that an
ultra-powerful (and hence ultra-specific action) is applied
only at appropriate times.

Another choice facing the designer of a production
system language is whether to include the backtracking *
search feature of the deductive production systems.
Certainly search is important in the types of programs
most often written in production systems, and for many
environments an exhaustive depth first search is
appropriate. It seems not to be appropriate for systems
that must search through large spaces or that must learn
to modify old behavior. If the system is to modify old
behavior, including old search methods, the old methods
must be accessible to the system, not hidden inside the
interpreter.

3 Perhaps the methods could be extended to allow
variables in Data Memory, but since the necessary
studies have not yet been made, we are unsure.

Languages & Systems-2: Forgy
934

Data Memory

Complex environments are best handled by systems
that use a single uni form data memory of limited size. Any
sys tem that is able to function intel l igently in many
d i f f e ren t s i tuat ions wil l have available a great quanti ty of
Knowledge, much of which wil l be useful in more than one
s i tua t ion . If the system is not to be impossibly slow in its
response to changing situations, it must have means
w h e r e b y the in format ion relevant to a new situation can be
located immediately. The interpreter provides one such
means in the mappings performed during the recognit ion
phase of the cycle. All long term information can be stored
in p roduc t ions whose antecedent conditions express the
charac te r of the situations in which the information is
po ten t ia l l y re levant . When a new situation arises or an old
s i tua t ion is t ransformed, the relevant information is found
and poss ib ly (that is, if the in terpreter so chooses) brought
in to data memory. Since this approach to storing long term
in fo rmat ion makes data memory essentially an attent ion
focus ing device, there is l i t t le advantage to having more
in fo rmat ion in data memory than can be usefully attended
to all at once,

Par t i t ioned data memories are of ten useful, but the
same purposes can be served by the more general
mechanism of tagging data. Consider, for example, how a
pa r t i t i oned memory might be used in a deductive
p roduc t i on system. In these systems, before execution of
each p roduc t ion a new part i t ion can be created, and any
asser t ions made by the product ion affect only the new
pa r t i t i on . If the in terpre ter later needs to back up and
undo the ef fects of the product ion, it can do so simply by
de le t ing the appropr ia te part i t ion and its contents. A
p roduc t i on system that performs its own searches can
achieve similar results w i th an unpart i t ioned data memory
by tagging the data to indicate that it is contingent, to
indicate what it is contingent upon, to indicate why it is
cont ingent (e.g., that it is a goal or that it is hypothesized
but not yet accepted), or any other purpose that might
ar ise. In contrast , since they are supplied wi th a f ixed set
of mechanisms for the manipulation of the part i t ions and
the i r contents , par t i t ions on data memory are of ten diff icult
to use for purposes other than those that appeared useful
at the t ime the language was designed.

Product ion Memory

Product ion memory should, like data memory, be a
s ingle un i form s t ruc ture ; unlike data memory, it should
have no size limit. The system would be unable to learn if
b o t h data and product ion memories were limited. It should
be a single un i form st ructure to insure that all potential ly
re levan t knowledge is accessible to the system at all times.
Since a system funct ioning in a complex environment can
never know what the state of the wor ld will be from cycle
to cyc le , it makes no sense to exclude some set of
p roduc t ions f rom considerat ion during a particular cycle.
To exc lude product ions Is to limit the amount of knowledge
that the system can br ing to bear.

State Memory

If p roduct ion memory is large and if the
env i ronment is complex, considerable intelligence wil l be

r e q u i r e d to select the most appropriate productions to f i re
on each cycle. While most of the information on which the
se lec t ion should be made is found in data memory, the
in fo rmat ion that is available in state memory (e.g., the set
of all cu r ren t l y sat isf ied productions and information about
the past actions of the product ion system) should not be
ignored . Because this information is hidden from the
p roduc t i on system in most existing production system
languages, the in te rp re te r has to make the final decision of
wh ich product ions to f ire. But certainly the in terpreter is
less we l l - su i ted for such decision making than the
p roduc t i on system itself; product ion systems are, after all,
b e t t e r su i ted than conventional programs for making quick
decis ions based on large amounts of data and involving
many complex cr i ter ia . Thus productions should be allowed
to read state memory as well as data memory so that they
can have as large a role as possible in the selection
process4.

I I I . A DESCRIPTION OF OPS

In the previous section we indicated a set of
character is t ics that seem appropriate for a product ion
sys tem language that is to be used for building product ion
sys tems capable of general i ty. In this section a part icular
language, OPS, is descr ibed. With one exception, OPS has
these character is t ics ; the exception is that OPS does not
g ive the product ion system access to state memory. In the
desc r ip t i on that fo l lows, we attempt to just i fy our lower
level design choices.

The Data

The data processed by OPS are autonomous,
constant list s t ructures. The elements are constant
because, as explained above, we do not yet know an
economical way to handle variables in data memory. The
data elements are autonomous structures for reasons of
s impl ic i ty . Because variables are allowed in productions, it
is possib le to implici t ly link two assertions simply by
inc luding the same unique constant in both. Thus, to allow
expl ic i t l inks be tween elements would add no expressive
powe r to the language.

The OPS data memory is a set of limited size. The
set na ture of memory is maintained by automatically
de le t ing elements when identical new elements are
asser ted . The l imited size is maintained by automatically
de le t ing elements when they have been in data memory for
some f ixed amount of time. Because data are deleted after
on ly a shor t stay, data memory is a temporary workspace
that focusses the system's attent ion on knowledge that is
c u r r e n t l y re levant . There is no great significance to the

4 MYCIN, w i th its meta-rules, is one of the few systems to
al low this [see Davis, 1976].

5 A ful l descr ip t ion of OPS is given in Forgy and
McDermot t [1976] .

6 The amount of t ime, measured in actions executed, Is
spec i f ied by the user; the default is 300 actions.

Languages & Systems-2: Forgy

decis ion that data memory should be a set; there are styles
of programming that can be adopted when data memory
al lows mult iple occurrences of elements and other equally
good sty les that can be adopted when it does not.

The Match

The search performed by the OPS interpreter is
comple te ; every legal instantiation of every production is
found. This makes OPS quite dif ferent from its
predecessor , PSG [Newell and McDermott, 1975]. Because
it does not per form exhaustive searches, the PSG
i n te rp re te r may fail to f ind an instantiation of a product ion
e v e n though one exists. PSG's match algorithm is
dependent on the order in which a production's condition
e lements occur. It was decided that this dependence on
o rde r is unacceptable for a production system that is to
g r o w th rough the acquisition of new productions; to add a
su i tab le product ion is diff icult enough without having to
con tend w i th the problem of specifying an order on its
condi t ion elements that would be appropriate for any
s i tuat ion that the system might encounter.

The antecedent of an OPS production is composed
of one or more condit ion elements, each of which is a form
to be instant iated by one element from data memory. The
express ive power of OPS condition elements is greater
than that of condit ion elements in languages like PSG. It is
possib le to give either exact or (somewhat) inexact
speci f icat ions for both the shape and content of the data
to be matched. Condition elements are, like data elements,
list s t ruc tures . Generally, the shape of a condition element
must cor respond exactly to that of a data element for the
t w o to match. Two means are provided, however, to allow
the matching of the head of a list without fully describing
its ta i l . The symbol "..." is used to specify that the tail of a
l ist is to be ignored in the match. For example, the
fo l low ing condi t ion element will match any data element
that begins w i t h "a b"

(a b ...)

The symbol "." makes it possible to specify that a tail is to
be matched and then to give information about the content
of the tai l by fo l lowing the "." by a pattern.

Several elementary pat tern types, called match
funct ions, are al lowed in OPS. The most basic match
func t ion is the constant, which will match only itself. This
is seen in . the example above where the condition element
wi l l match only those data elements whose f irst subelement
is an "a " and whose second subelement is a "b" It is also
possible to speci fy that a data subelement must be equal
to one of a g roup of constants, be not equal to a constant,
or be not equal to any one of a group of constants. The
ANY funct ion provides the f irst of these capabilit ies; the
NOTANY funct ion, the other two. For example, the
fo l lowing condi t ion element wil l match any data element
composed of two subelements where the f irst subelement
is one of "a", "b", and V and where the second
subelement is not a "d"

((ANY a b c) (NOTANY d))

NOTANY w i t h no arguments is part icular ly useful; it wi l l
match any sublement. Thus, the condit ion element

((NOTANY) (NOTANY))

wi l l match any data element wi th two subelements.

Because data elements can be arbi t rar i ly complex
list s t ruc tures , the need was felt to be able to specify
something about the contents of data elements. The
CONTAINS and NOTCONTA1NS functions were included to fil l
this need. As their names imply, the former allows the
speci f icat ion that the subelement contain (at any level) at
least one occurrence of one of some set of specif ied
constants, and the latter that the subelement not contain
any occurrences of any of the specif ied constants. The
fo l lowing condit ion element, which uses "." as described
above, wi l l match any data element of two or more
subelements prov ided the constant "a" occurs somewhere
af ter the f i rst subelement

((NOTANY). (CONTAINS a))

Two means are provided for specifying the
re la t ionship among condit ion elements. Simply wr i t ing an
antecedent wi thout put t ing separating marks between the
condi t ion elements indicates that all condition elements
must be sat isf ied simultaneously in order for the
antecedent to be satisf ied. For example, the antecedent

(a ...) (b ...)

wi l l be sat isf ied if there is an element in data memory
beginn ing w i th "a" and another beginning with "b". The
NOT match funct ion allows another kind of grouping,
negated conjunct ion. An antecedent composed of one
cond i t ion element and one negated condition element is
sat is f ied when the non-negated condition element is
sat is f ied and the negated condition element is not. Thus,
the fo l lowing antecedent,

(a ...) (NOT (b ...)),

ir wh ich "(b ...)" has been negated, is satisfied only if data
memory contains a data element beginning wi th "a" and no
element beginning w i th "b". Negated conjunctions may of
course involve more than just two condition elements. Any
g r o u p of condi t ion elements (including groups containing
o ther negated condit ion elements) may be negated and
con jo ined to any other group. The antecedent condition

(a ...) (NOT (b ...) (c ...))

is sat is f ied when there is a data element in work ing
memory beginning w i th "a" but not both a data element
beginn ing w i th " b " and a data element beginning wi th "c".
When NOTs are nested, evaluation proceeds from the
innermost level ou tward .

Variables make it possible to specify that the
content of a condit ion element is dependent on the content
of o ther condi t ion elements in the same antecedent. There
are four t ypes of variables in OPS. The most important
t y p e , denoted by preceding the variable name wi th "= " , is
the "s imple" var iable. All occurrences of such a variable
must have EQUAL bindings. Thus the antecedent

(a . - x) (b . =x)

Languages & Systeros-2: Forpy

wi l l match two elements, the first of which begins wi th "a",
the second of which begins wi th "b" , and both of which
have identical tails. The second form of variable, denoted
by preced ing the variable name wi th "≠", may not be used
unless there is a simple variable wi th the same name
e l sewhere in the same antecedent. Any data matching one
of these not -var iab les must differ from the data matching
the simple var iable. For example, the antecedent

=x (NOT ≠x)

w i l l be sat isf ied only if there is exactly one element in data
memory. The final two forms of variables, denoted by
p reced ing the variable names wi th ">" and "<", are used in
compar ing numbers. Like the variables preceded by 'V" ,
use of these is legal only if there is a simple variable of
the same name elsewhere in the antecedent. A variable
p receded by ">" wil l match numbers greater than the
number matched by the simple variable; a variable
p receded by "<" , numbers less than the number matched
by the simple variable. Thus, the antecedent

=x (NOT >x)

wi l l b ind x to the largest number in data memory.

It is o f ten useful to be able to give multiple
speci f icat ions for a data element. For example, one may
want to speci fy that a data element be one of a set of
constants and then bind a variable to the element so that
the exact value may be determined; this can be denoted
using the symbol "$". For example,

(ANY a b c d e) $ =x.

The symbol "$" indicates that the two condition elements
that it separates are both to match the same data element.
As o ther examples, the antecedent

=x - y $ >x (NOT <y S >x)

wi l l b ind x to a number and y to the next larger number;
the antecedent

=x =y $ ≠x (NOT ≠x 8 ≠y)

wi l l succeed if there are exactly two elements in data
memory.

Finally, OPS provides a QUOTE function so that the
match funct ions can be used as constants. For example, to
use "(NOT x)" as a constant, one would wr i te

(QUOTE (NOT x))

Confl ict Resolution

On each cycle OPS selects a single product ion
ins tant ia t ion to execute. The selection is a two step
process in which f i rst the set of all legal instantiations of
all p roduct ions are found and then one instantiation chosen
f r o m that set. The second step, called conflict resolut ion.
must be pe r fo rmed solely by the in terpreter because state
memory , wh ich holds the information on which the selection

Languages &

is made, is closed to the productions. The decision not to
al low the product ions to access state memory wa r. based
on our (since reformed) belief that sufficiently general
se lect ion rules could be built into the interpreter to allow
it to funct ion adequately in all situations. Conflict
reso lu t ion is per formed in f ive steps using a dif ferent rule
on each step. The f irst rule is absolute in its effect; if
t he re is no instantiat ion that meets its condition, the
sys tem halts. If a set of instantiations do meet its
cond i t ion , then the remaining rules are applied, in the
o rder g iven below, until all but one have been rejected.

1. No instant iat ion may be executed more than
once.

2. The instantiat ions containing the most recently
asser ted data are given preference. In comparing
t w o instant iat ions, the rule first compares the most
recent data element of each. If these elements
d i f fer in recency, the rule selects the instantiation
containing the more recent element. If both
elements are of equal recency, the next most
recent elements are compared, and so on. If the
data contained in one instantiation is exhausted
be fo re that contained in the other, the instantiation
containing more data is chosen. Only if both
instant iat ions are exhausted simultaneously and no
elements of d i f fer ing recency are found are the
two instantiat ions considered equal under this rule.

3. The instantiations of productions with the
greatest number of condition elements are given
p re fe rence . Negated condition elements, including
nested negated condit ion elements, are taken into
account.

4. The instantiat ions of the most recently created
produc t ion are given preference.

5. An instant iat ion is selected at random.

These rules, because they make use of a var iety of
s ta te informat ion that is not available to the productions,
p rov ide considerable additional discriminative power.
B r ie f l y , the f irst rule helps insure that the system wil l
consider informat ion that has not yet been taken into
account. The second rule, by giving preference to more
recent in format ion, encourages the system to continue to
a t tend to whatever task it is current ly engaged in; in
add i t ion , if g iven a choice among several productions which
are re levant to the same situation, it prefers the most
d iscr iminat ing. The th i rd rule simply extends the defini t ion
of "d iscr iminat ing" implicit in the second rule. The four th
ru le prov ides a way in which the system can mask older
p roduc t ions w i th newer, more adequate ones.8

7 Recall that reasser t ing a data element wil l result in the
de le t ion of the exist ing element. The instantiations
conta in ing the new element will have no inhibit ions even
though they may be identical to instantiations that have
a l ready f i red .

8 For a more complete discussion of how these rules
p rov ide suppor t for domain-independent systems, see
McDermot t and Forgy [1977] .

Systems-2: Forgy
93 7

The Actions

Af te r a product ion is chosen, it is executed by
ind iv idual ly execut ing each of its actions in order. The
act ions are simple functions that can modify the contents
of data memory, modify the contents of production
memory , or interact w i th the system's environment.

There are only two methods by which the contents
of data memory may be modified; an action may assert a
new data element or delete an existing element. This is a
comple te , if pr imi t ive, set of actions. The means by which
the elements to be asserted or deleted are constructed are
equal ly pr imi t ive. On the action side of a production there
are a number of elements similar in form to condition
e lements. The execut ion of an action involves instantiating
the element, per forming whatever operations are specified
by the element, and then if a value results, asserting that
value.

If var iables occur in an action element, they are
rep laced by the values to which they were bound during
the match. The abi l i ty to bind variables in the antecedent
p rov ides a quite general extractor mechanism. The abil i ty
to recover the bindings while instantiating a form provides
a genera l constructor mechanism. The list manipulation
abi l i t ies of OPS are comparable to those of LISP. For
example, to extract the CAR and CDR of a list, one wri tes
the condi t ion element

(=car . =cdr)

To ex t rac t other subelements, one can wri te condition
e lements like

(=car (=caadr ...) ...)

Var iables and "." may also be used in action elements in
o rde r to bui ld l ists. In an action element, "." has the effect
of s t r i pp ing away the top level of the fol lowing list
s t r uc tu re and leaving the etements of the list. Thus, the
p roduc t i on

(a . =x) — > (a . - x)

wi l l do noth ing but reassert the matched element. More
complex processing is of course possible. For example, the
t rans fo rmat ion of data performed by the production

O x . =y) —> (. =y =x)

is similar to that of

(APPEND (CDR Z) (LIST (CAR Z))).

Self Modification

Since extensive use may be made of OPS's list
processing capabil i t ies in manipulating productions, only
th ree funct ions are provided expressly for this purpose.
One of these, READP, takes as its argument the name of a
p roduc t ion and causes a copy of that production to be
depos i ted in data memory. Once in data memory the
p roduc t ion can be processed as any other data element. A

second funct ion, BUIl D, takes a data element having the
form of a product ion as its argument and adds it to
p roduc t ion memory. The th i rd function, EXCISE, takes the
name of a product ion as its argument and deletes that
p roduc t ion f rom product ion memory. This is, again, a
pr imi t ive but complete set of functions. These three
funct ions give the system the capabilities of creating new
product ions and of modifying existing productions. To
modify an exist ing product ion, the system would br ing the
p roduc t ion into data memory wi th READP, delete the
ex is t ing product ion w i th EXCISE, modify the copy using the
genera l processing capabil it ies of OPS, and then place the
modi f ied product ion in product ion memory using BUILD.

Input and Output

As w i th the other capabilit ies, only a minimal set of
funct ions are prov ided for interaction wi th the outside
wor ld . There are two functions, READ and WRITE. WRITE
instant iates one or more forms and wri tes them on user's
terminal . READ .accepts one or more list structures f rom
the user and deposits them in data memory.

IV. CONCLUDING REMARKS

OPS has been in use for more than a year. During
that time it has been the primary tool of a research group
that has as its goal the construction of an instructable
p roduc t ion system whose production memory wil l
eventua l ly contain several thousand productions. OPS has
p r o v e n to be basically satisfactory, but it has not been
w i thou t its problems. Three problems have been
par t i cu la r ly irksome; OPS is slow, it is somewhat inf lexible,
and the informat ion in state memory is hidden from the
system. On a KL version of the PDP-10, OPS executes
about 5 actions per second (this f igure is almost
independent of the number of productions in the system).
In the successor to OPS, which is scheduled to be
completed in the summer of 1977, we expect a speed
increase of at least one order of magnitude. The
in f lex ib i l i ty of OPS has caused trouble in several ways. No
mechanism was prov ided to make it easy for a user to
modi fy the set of match functions or the set of confl ict
reso lu t ion rules. Yet it became apparent rather quickly
that nei ther the set of match functions nor the set of
conf l ic t resolut ion rules was completely satisfactory. Some
of the match functions (e.g., CONTAINS and NOTCONTAINS)
rece ived almost no use, while other functions that appear
to have promise have not yet been implemented. In the
f i rs t vers ion of OPS, a mechanism was provided that
a l lowed the user to add his own action functions. In the
second vers ion of OPS this mechanism is being expanded to
al low adding new match functions as well. Unfortunately,
no solut ion to the problems with conflict resolut ion
s t ra teg ies has been found. A number of sets of conflict
reso lu t ion rules have been t r ied, but no universally
appropr ia te set has emerged. Simply allowing the user to
modi fy the confl ict resolut ion rules at will is not a solution;
it now appears that the problems with conflict resolut ion
have resu l ted, at least in part, f rom the decision not to
al low product ions to read the information in state memory.

Languages & Systems-2: Forgy
938

ACKNOWLEDGEMENTS and F. Hayes-Roth (eds), Pattern-Directed Inference
Systems. Academic Press, 1977 (forthcoming).

The development of many of the ideas discussed
above owes much to the members of the instructable
p roduc t ion system project at Carnegie-Mellon University.
The members of this pro ject , in addition to the authors, are
J. Lai rd, P. Langley, A. Newell, K. Ramakrishna, P.
Rosenbloom, and M. Rychener.

REFERENCES

Anderson , J. Language, Memory, and Thought. Lawrence
Erlbaum Associates, 1976.

Anderson , R. H. and Gillogly, J. J. Rand intelligent terminal
agent (RITA): design philosophy. Report R-1809-ARPA.
The Rand Corporat ion, Santa Monica, CA, 1976.

Bars tow, D. Automatic construct ion of algorithms and data
s t ruc tu res using a knowledge base of programming
rules. Art i f ic ia l Intelligence Laboratory, Stanford
Univers i ty , 1977.

Buchanan, B, and Lederberg, J. The heuristic DENDRAL
program for explaining empirical data. IF IP, 1971, pp.
179 -188 .

Davis, R. Appl icat ions of meta level knowledge to the
const ruc t ion , maintenance, and use of large knowledge
bases. SAIL A IM-271 . Artif icial Intelligence
Labora to ry , Stanford University, 1976.

Davis, R., Buchanan, B., and Short l i f fe, E. Production rules
as a representa t ion for a knowledge-based consultation
program. Report STAN-CS-75-519, Memo AIM-266.
Computer Science Department, Stanford University,
1975.

Davis, R. and King, J. An overview of production systems.
Report STAN-CS-75-524, Memo A1M-271. Department
of Computer Science, Stanford University, 1975.

Erman, L. and Lesser, V. A mult i- level organization for
p rob lem solving using many, diverse, cooperating
sources of knowledge. IJCAI 4, 1975, pp 483-490.

Forgy , C. A product ion system monitor for parallel
. computers. Technical Report. Department of Computer

Science, Carnegie-Mel lon University, 1977.

Forgy , C. and McDermott, J. The OPS reference manual.
Department of Computer Science, Carnegie-Mellon
Univers i ty , 1976.

Lenat, D. AM: an art i f icial intelligence approach to
d iscovery in mathematics as heuristic search. Report
STAN-CS-76-570 , Memo AIM-286. Computer Science
Depar tment , Stanford University, 1976.

Lenat, D. and Harris G. Designing a rule system that
searches for scientif ic discoveries. In D. A. Waterman

McCracken, D. A parallel production system architecture
for speech understanding. Technical Report.
Carnegie-Mel lon University, Computer Science
Department, Pi t tsburgh, PA, 1977.

McDermott , J. and Forgy, C. Production system conflict
reso lu t ion strategies. In D. A. Waterman and F.
Hayes-Roth (eds), Pattern-Directed Inference Systems.
Academic Press, 1977 (forthcoming).

McDermott , J., Newell, A., and Moore, J. The efficiency of
cer ta in product ion system implementations. In D. A.
Waterman and F. Hayes-Roth (eds), Pattern-Directed
Inference Systems. Academic Press, 1977
(for thcoming).

Newel l , A. Production systems: models of control
s t ruc tures . In Chase, W. (ed.), Visual Information
Processing. Academic. Press, 1973, pp. 463-526.

Newel l , A. and McDermott, J. PSG manual. Department of
Computer Science, Carnegie-Mellon University, 1975.

Rychener , M. D. Production systems as a programming
language for artif icial intelligence applications.
Technical Report. Department of Computer Science,
Carnegie-Mel lon Universi ty, 1976.

Rychener, M. and Newell, A. An instructable production
sys tem: init ial design issues. In D. A. Waterman and F.
Hayes-Roth (eds), Pattern-Directed Inference Systems.
Academic Press, 1977 (forthcoming).

Languags & Systems-2: Forgy
939

