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Abs t rac t : It has been claimed that product ion systems have 
severa l advantages over other representat ional schemes. 
These include the potent ial for general self-augmentat ion 
(i.e., learn ing of new behavior) and the abil i ty to funct ion in 
complex env i ronments. The product ion system language, 
OPS, was implemented to test these claims. In this paper 
we exp lo re some of the issues that bear on the design of 
p roduc t i on system languages and t ry to show the adequacy 
of OPS for its intended purpose. 

I. INTRODUCTION 

Much of the work that has been done wi th 
p roduc t i on systems dur ing the past few years has had as 
i ts p r imary goal the development of systems that are 
expe r t in some part icular task. The tasks so far addressed 
inc lude: chemical inference [Buchanan and Lederberg, 
J 9 7 1 ] , medical diagnosis [Davis, Buchanan, and Short l i f fe, 
1 9 7 5 ] , d iscovery in mathematics [Lenat, 1976], speech 
recogn i t i on [Erman and Lesser, 1975; McCracken, 1977], 
and automatic programming [Barstow, 1977]. Although 
many of these systems have shown impressive power in 
the par t icu lar task for which they were designed, there 
remains a quest ion of how suitable the product ion system 
rep resen ta t i on is for large general problem solving 
p rograms. 

The Instructable Production System (IPS) project at 
CMU [Rychener and Newell , 1977] is attempting to answer 
th is quest ion. It has been claimed that product ion systems 
are capable of learning in a non-tr iv ia l way. If this is t rue, 
a p roduc t ion system should be able to learn not only facts, 
but also new behaviors. It should be able to generalize 
eas i ly ; something learned in one context should be readily 
accessible in other , only remotely similar, contexts. The 
learn ing mechanisms should not be complex; in part icular, 
t hey should not need to know much of the st ructure of the 
res t of the system. It has also been claimed that 
p roduc t i on systems are capable of functioning in complex 
env i ronments . If this is t rue, a product ion system should 
be i n te r rup tab le . It should be able to recognize and react 
immediate ly to important changes in its environment, and 
a f t e r w a r d , to re tu rn to its previous task wi th no loss. 
Whi le these claims are not without support (some of the 
expe r t systems mentioned above are capable of learning, 
for example) , they certa in ly have not yet been established. 
The IPS p ro jec t is at tempting to build a product ion system 
that d isp lays both characterist ics as ful ly as possible. 

1 This w o r k was suppor ted in part by the Defense 
Advanced Research Projects Agency 
( F 4 4 6 2 0 - 7 3 - C - 0 0 7 4 ) and monitored by the Air Force 
Off ice of Scientif ic Research. 

The f i rst phase of this project involved designing a 
p roduc t i on system language whose features support 
genera l i t y . To our knowledge, no one has enumerated or 
systemat ica l ly at tempted to just i fy a set of characteristics 
that are appropr ia te for such a language, though Newell 
[ 1 9 7 3 ] and Davis and King [1975 ] have suggested sets of 
d imensions that can be used to distinguish product ion 
sys tem languages f rom one another, and Lenat and Harris 
[ 1 9 7 7 ] have argued that a language designed to support 
tasks w i th in a part icular domain should have characteristics 
that explo i t the features of that domain. This paper f i rst 
discusses some of the more significant alternatives open to 
the designer of a product ion system language, and then 
descr ibes OPS2 and argues that it is a suitable language 
for the purposes of the IPS project. 

I I . THE ALTERNATIVES 

The members of the class of production system 
languages share only a few common characteristics. All 
make use of condit ional statements called productions, and 
the i r i n t e rp re te r s all have similar high level functions. The 
i n t e r p r e t e r s have access to two memories, product ion 
m e m o r y and data memory. Production memory is a place 
to s to re the product ions and any static relations (e.g., a 
l inear o rder ing) between productions. Data memory is a 
place to s to re the data processed by the productions and 
any stat ic relat ions between the data. Most product ion 
sys tem languages require the maintenance of some 
in fo rmat ion in addit ion to that in these two memories (e.g., 
the name of the last product ion to fire). In this paper it 
wi l l be assumed that all this information is stored in a th i rd 
s t r uc tu re that we wi l l call state memory. The in terpreter 
func t ions by repeated ly matching the productions against a 
subset of the informat ion held in the data and state 
memor ies, select ing one or more of the productions w i th 
t rue antecedent condit ions, and then allowing the selected 
p roduc t ions to execute and effect changes to data memory. 
If changes to state memory are necessary, the in terpre ter 
i tsel f makes these. This sequence of operations const i tutes 
what is cal led the recognize-act cycle. 

Beyond this set of common character ist ics, 
p roduc t i on system languages have diverged f rom one 
another in many ways. In some, for example, product ion 

2 A. Newel l and M. Rychener, together wi th the authors, 
des igned OPS. OPS contains many of the features found 
in PSG [Newel l and McDermott, 1975] , PSNLST 
[Rychener , 1976 ] , and RETE, a system designed by 
Forgy. 
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memory can be partitioned to give an effect something like 
subroutines in conventional languages [e.g., Newell and 
McDermott, 1975]. Data memory can be partitioned in 
some others and different access mechanisms provided for 
each partition [Lenat and Harris, 1977]. Some languages 
allow every satisfied production (that is, e\/ery production 
whose antecedent condition is true) to fire on each cycle 
[McCracken, 1977], others use a few simple decision 
procedures to choose one or a few productions to fire 
[Anderson, 1976; Newell and McDermott, 1975], and others 
use complex decision procedures to choose with some care 
which productions to fire [Erman and Lesser, 1975]. An 
automatic backtracking search mechanism is included in 
some interpreters (these are the "deductive" production 
systems like Rita [Anderson and Gillogly, 1976] and Mycin 
[Davis, Buchanan, and Shortliffe, 1975]), while the others 
make it necessary to program all searches explicitly. 
Differences such as these can be viewed as creating a 
space of possible production system languages. 

The remainder of this section presents arguments 
for one region in this space. Because the goals of the IPS 
project differ from the goals of most projects that use 
production systems, the arguments differ from those that 
might be made for other production system languages. We 
will consider each of the four components of a production 
system language (the interpreter and the three memories). 

The Interpreter 

Perhaps the most fundamental consideration in the 
design of a production system language is the amount of 
processing that will occur during a recognize-act cycle. 
Existing production systems vary widely in this. 
Productions in the HSII system [Erman and Lesser, 1975], 
for example, accomplish far more in one firing than do the 
productions in Mycin [Davis, Buchanan, and Shortliffe, 
1975]. The production system language should not force a 
discipline on the user (i.e., it should not force him to 
perform a fixed amount of processing on each cycle), but it 
should provide features that make it easy for the user to 
adopt whatever discipline he finds appropriate. 

The amount of processing that will be appropriate 
on any one cycle is dependent on the current task of the 
system. If some production is very knowledgeable about a 
particular situation, it is appropriate that the production 
take powerful actions. In chess, for example, if a 
production recognized a book position in the opening, the 
production should be able to make the move and avoid the 
interference of other productions that are less able in this 
situation. If there is no production that understands the 
situation, however, the system should be more cautious in 
its processing. If it takes a big step and that step is 
wrong, it will progress far down the incorrect path before 
it has a chance to recognize its mistake. Moreover, a big 
step will make the system less able to use whatever store 
of information it has about similar tasks because it will be 
skipping over so many of the points where that information 
could be appropriate. It will be less likely to notice events 
such as the sudden feasibility of a new approach to the 
current task, the arrival of a more important task, or the 
unexpected satisfaction of a pending task. It can be 
expected that a large task will be diverse; it will have some 
sub tasks that are well understood by the production 

system and others that are difficult or poorly understood. 
The appropriate amount of processing, then, can vary 
greatly from minute to minute even in the performance of 
a single task. 

Thus the production system language should 
neither make it impossible to perform complex actions nor 
make it economically infeasible to perform simple actions. 
Unfortunately, these requirements tend to conflict. If the 
monitor supports complex actions and powerful patterns, 
there is likely to be significant overhead to the 
recognize-act cycle. To perform only a few simple actions 
when the overhead is high may not always be economically 
feasible. The production system language must therefore 
incorporate some compromise between unlimited power 
and potential for short cycle times. 

The recognize part of the cycle is potentially more 
of a problem, but current technology provides a 
reasonable solution. The problem with using powerful 
recognition criteria is that even though the productions 
that contain the more powerful patterns may fire only 
infrequently, the patterns must be tested on every cycle. 
Powerful actions, in contrast, have a cost only when they 
are executed. A solution to this problem is provided in the 
methods now available that allow quite powerful patterns 
while making the time to perform recognition almost 
independent of the number of productions in the system 
[Forgy, 1977; McDermott, Newell, and Moore, 1977]. These 
methods do have one major limitation: they do not allow 
the use of variables in Data Memory.3 

In summary, the production system language should 
allow antecedent conditions that are as powerful as 
possible given the constraint that the time required to 
perform recognition must be independent of the sizes of 
data and production memories. The power that should be 
allowed in the actions is less easy to characterize. While 
there is not the same efficiency issue here as there is in 
the case of antecedent conditions (actions have a cost only 
when they are executed), actions whose power is 
incommensurate with the power of the match would appear 
to be unusable. If there are limits to the power of 
antecedent conditions, it will not be possible to describe 
the character of a situation fully enough to insure that an 
ultra-powerful (and hence ultra-specific action) is applied 
only at appropriate times. 

Another choice facing the designer of a production 
system language is whether to include the backtracking * 
search feature of the deductive production systems. 
Certainly search is important in the types of programs 
most often written in production systems, and for many 
environments an exhaustive depth first search is 
appropriate. It seems not to be appropriate for systems 
that must search through large spaces or that must learn 
to modify old behavior. If the system is to modify old 
behavior, including old search methods, the old methods 
must be accessible to the system, not hidden inside the 
interpreter. 

3 Perhaps the methods could be extended to allow 
variables in Data Memory, but since the necessary 
studies have not yet been made, we are unsure. 
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Data Memory 

Complex environments are best handled by systems 
that use a single uni form data memory of limited size. Any 
sys tem that is able to function intel l igently in many 
d i f f e ren t s i tuat ions wil l have available a great quanti ty of 
Knowledge, much of which wil l be useful in more than one 
s i tua t ion . If the system is not to be impossibly slow in its 
response to changing situations, it must have means 
w h e r e b y the in format ion relevant to a new situation can be 
located immediately. The interpreter provides one such 
means in the mappings performed during the recognit ion 
phase of the cycle. All long term information can be stored 
in p roduc t ions whose antecedent conditions express the 
charac te r of the situations in which the information is 
po ten t ia l l y re levant . When a new situation arises or an old 
s i tua t ion is t ransformed, the relevant information is found 
and poss ib ly (that is, if the in terpreter so chooses) brought 
in to data memory. Since this approach to storing long term 
in fo rmat ion makes data memory essentially an attent ion 
focus ing device, there is l i t t le advantage to having more 
in fo rmat ion in data memory than can be usefully attended 
to all at once, 

Par t i t ioned data memories are of ten useful, but the 
same purposes can be served by the more general 
mechanism of tagging data. Consider, for example, how a 
pa r t i t i oned memory might be used in a deductive 
p roduc t i on system. In these systems, before execution of 
each p roduc t ion a new part i t ion can be created, and any 
asser t ions made by the product ion affect only the new 
pa r t i t i on . If the in terpre ter later needs to back up and 
undo the ef fects of the product ion, it can do so simply by 
de le t ing the appropr ia te part i t ion and its contents. A 
p roduc t i on system that performs its own searches can 
achieve similar results w i th an unpart i t ioned data memory 
by tagging the data to indicate that it is contingent, to 
indicate what it is contingent upon, to indicate why it is 
cont ingent (e.g., that it is a goal or that it is hypothesized 
but not yet accepted), or any other purpose that might 
ar ise. In contrast , since they are supplied wi th a f ixed set 
of mechanisms for the manipulation of the part i t ions and 
the i r contents , par t i t ions on data memory are of ten diff icult 
to use for purposes other than those that appeared useful 
at the t ime the language was designed. 

Product ion Memory 

Product ion memory should, like data memory, be a 
s ingle un i form s t ruc ture ; unlike data memory, it should 
have no size limit. The system would be unable to learn if 
b o t h data and product ion memories were limited. It should 
be a single un i form st ructure to insure that all potential ly 
re levan t knowledge is accessible to the system at all times. 
Since a system funct ioning in a complex environment can 
never know what the state of the wor ld will be from cycle 
to cyc le , it makes no sense to exclude some set of 
p roduc t ions f rom considerat ion during a particular cycle. 
To exc lude product ions Is to limit the amount of knowledge 
that the system can br ing to bear. 

State Memory 

If p roduct ion memory is large and if the 
env i ronment is complex, considerable intelligence wil l be 

r e q u i r e d to select the most appropriate productions to f i re 
on each cycle. While most of the information on which the 
se lec t ion should be made is found in data memory, the 
in fo rmat ion that is available in state memory (e.g., the set 
of all cu r ren t l y sat isf ied productions and information about 
the past actions of the product ion system) should not be 
ignored . Because this information is hidden from the 
p roduc t i on system in most existing production system 
languages, the in te rp re te r has to make the final decision of 
wh ich product ions to f ire. But certainly the in terpreter is 
less we l l - su i ted for such decision making than the 
p roduc t i on system itself; product ion systems are, after all, 
b e t t e r su i ted than conventional programs for making quick 
decis ions based on large amounts of data and involving 
many complex cr i ter ia . Thus productions should be allowed 
to read state memory as well as data memory so that they 
can have as large a role as possible in the selection 
process4. 

I I I . A DESCRIPTION OF OPS 

In the previous section we indicated a set of 
character is t ics that seem appropriate for a product ion 
sys tem language that is to be used for building product ion 
sys tems capable of general i ty. In this section a part icular 
language, OPS, is descr ibed. With one exception, OPS has 
these character is t ics ; the exception is that OPS does not 
g ive the product ion system access to state memory. In the 
desc r ip t i on that fo l lows, we attempt to just i fy our lower 
level design choices. 

The Data 

The data processed by OPS are autonomous, 
constant list s t ructures. The elements are constant 
because, as explained above, we do not yet know an 
economical way to handle variables in data memory. The 
data elements are autonomous structures for reasons of 
s impl ic i ty . Because variables are allowed in productions, it 
is possib le to implici t ly link two assertions simply by 
inc luding the same unique constant in both. Thus, to allow 
expl ic i t l inks be tween elements would add no expressive 
powe r to the language. 

The OPS data memory is a set of limited size. The 
set na ture of memory is maintained by automatically 
de le t ing elements when identical new elements are 
asser ted . The l imited size is maintained by automatically 
de le t ing elements when they have been in data memory for 
some f ixed amount of time. Because data are deleted after 
on ly a shor t stay, data memory is a temporary workspace 
that focusses the system's attent ion on knowledge that is 
c u r r e n t l y re levant . There is no great significance to the 

4 MYCIN, w i th its meta-rules, is one of the few systems to 
al low this [see Davis, 1976]. 

5 A ful l descr ip t ion of OPS is given in Forgy and 
McDermot t [ 1976 ] . 

6 The amount of t ime, measured in actions executed, Is 
spec i f ied by the user; the default is 300 actions. 
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decis ion that data memory should be a set; there are styles 
of programming that can be adopted when data memory 
al lows mult iple occurrences of elements and other equally 
good sty les that can be adopted when it does not. 

The Match 

The search performed by the OPS interpreter is 
comple te ; every legal instantiation of every production is 
found. This makes OPS quite dif ferent from its 
predecessor , PSG [Newell and McDermott, 1975]. Because 
it does not per form exhaustive searches, the PSG 
i n te rp re te r may fail to f ind an instantiation of a product ion 
e v e n though one exists. PSG's match algorithm is 
dependent on the order in which a production's condition 
e lements occur. It was decided that this dependence on 
o rde r is unacceptable for a production system that is to 
g r o w th rough the acquisition of new productions; to add a 
su i tab le product ion is diff icult enough without having to 
con tend w i th the problem of specifying an order on its 
condi t ion elements that would be appropriate for any 
s i tuat ion that the system might encounter. 

The antecedent of an OPS production is composed 
of one or more condit ion elements, each of which is a form 
to be instant iated by one element from data memory. The 
express ive power of OPS condition elements is greater 
than that of condit ion elements in languages like PSG. It is 
possib le to give either exact or (somewhat) inexact 
speci f icat ions for both the shape and content of the data 
to be matched. Condition elements are, like data elements, 
list s t ruc tures . Generally, the shape of a condition element 
must cor respond exactly to that of a data element for the 
t w o to match. Two means are provided, however, to allow 
the matching of the head of a list without fully describing 
its ta i l . The symbol "..." is used to specify that the tail of a 
l ist is to be ignored in the match. For example, the 
fo l low ing condi t ion element will match any data element 
that begins w i t h "a b" 

(a b ...) 

The symbol "." makes it possible to specify that a tail is to 
be matched and then to give information about the content 
of the tai l by fo l lowing the "." by a pattern. 

Several elementary pat tern types, called match 
funct ions, are al lowed in OPS. The most basic match 
func t ion is the constant, which will match only itself. This 
is seen in . the example above where the condition element 
wi l l match only those data elements whose f irst subelement 
is an "a " and whose second subelement is a "b" It is also 
possible to speci fy that a data subelement must be equal 
to one of a g roup of constants, be not equal to a constant, 
or be not equal to any one of a group of constants. The 
ANY funct ion provides the f irst of these capabilit ies; the 
NOTANY funct ion, the other two. For example, the 
fo l lowing condi t ion element wil l match any data element 
composed of two subelements where the f irst subelement 
is one of "a", "b", and V and where the second 
subelement is not a "d" 

( (ANY a b c) (NOTANY d) ) 

NOTANY w i t h no arguments is part icular ly useful; it wi l l 
match any sublement. Thus, the condit ion element 

( (NOTANY) (NOTANY) ) 

wi l l match any data element wi th two subelements. 

Because data elements can be arbi t rar i ly complex 
list s t ruc tures , the need was felt to be able to specify 
something about the contents of data elements. The 
CONTAINS and NOTCONTA1NS functions were included to fil l 
this need. As their names imply, the former allows the 
speci f icat ion that the subelement contain (at any level) at 
least one occurrence of one of some set of specif ied 
constants, and the latter that the subelement not contain 
any occurrences of any of the specif ied constants. The 
fo l lowing condit ion element, which uses "." as described 
above, wi l l match any data element of two or more 
subelements prov ided the constant "a" occurs somewhere 
af ter the f i rst subelement 

( (NOTANY). (CONTAINS a) ) 

Two means are provided for specifying the 
re la t ionship among condit ion elements. Simply wr i t ing an 
antecedent wi thout put t ing separating marks between the 
condi t ion elements indicates that all condition elements 
must be sat isf ied simultaneously in order for the 
antecedent to be satisf ied. For example, the antecedent 

(a ...) (b ...) 

wi l l be sat isf ied if there is an element in data memory 
beginn ing w i th "a" and another beginning with "b". The 
NOT match funct ion allows another kind of grouping, 
negated conjunct ion. An antecedent composed of one 
cond i t ion element and one negated condition element is 
sat is f ied when the non-negated condition element is 
sat is f ied and the negated condition element is not. Thus, 
the fo l lowing antecedent, 

(a ...) (NOT (b ...) ), 

ir wh ich "(b ...)" has been negated, is satisfied only if data 
memory contains a data element beginning wi th "a" and no 
element beginning w i th "b". Negated conjunctions may of 
course involve more than just two condition elements. Any 
g r o u p of condi t ion elements (including groups containing 
o ther negated condit ion elements) may be negated and 
con jo ined to any other group. The antecedent condition 

(a ...) (NOT (b ...) (c ...) ) 

is sat is f ied when there is a data element in work ing 
memory beginning w i th "a" but not both a data element 
beginn ing w i th " b " and a data element beginning wi th "c". 
When NOTs are nested, evaluation proceeds from the 
innermost level ou tward . 

Variables make it possible to specify that the 
content of a condit ion element is dependent on the content 
of o ther condi t ion elements in the same antecedent. There 
are four t ypes of variables in OPS. The most important 
t y p e , denoted by preceding the variable name wi th "= " , is 
the "s imple" var iable. All occurrences of such a variable 
must have EQUAL bindings. Thus the antecedent 

(a . - x ) (b . =x) 
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wi l l match two elements, the first of which begins wi th "a", 
the second of which begins wi th "b" , and both of which 
have identical tails. The second form of variable, denoted 
by preced ing the variable name wi th "≠", may not be used 
unless there is a simple variable wi th the same name 
e l sewhere in the same antecedent. Any data matching one 
of these not -var iab les must differ from the data matching 
the simple var iable. For example, the antecedent 

=x (NOT ≠x ) 

w i l l be sat isf ied only if there is exactly one element in data 
memory. The final two forms of variables, denoted by 
p reced ing the variable names wi th ">" and "<", are used in 
compar ing numbers. Like the variables preceded by 'V" , 
use of these is legal only if there is a simple variable of 
the same name elsewhere in the antecedent. A variable 
p receded by ">" wil l match numbers greater than the 
number matched by the simple variable; a variable 
p receded by "<" , numbers less than the number matched 
by the simple variable. Thus, the antecedent 

=x (NOT >x ) 

wi l l b ind x to the largest number in data memory. 

It is o f ten useful to be able to give multiple 
speci f icat ions for a data element. For example, one may 
want to speci fy that a data element be one of a set of 
constants and then bind a variable to the element so that 
the exact value may be determined; this can be denoted 
using the symbol "$". For example, 

(ANY a b c d e) $ =x. 

The symbol "$" indicates that the two condition elements 
that it separates are both to match the same data element. 
As o ther examples, the antecedent 

=x - y $ >x (NOT <y S >x ) 

wi l l b ind x to a number and y to the next larger number; 
the antecedent 

=x =y $ ≠x (NOT ≠x 8 ≠y ) 

wi l l succeed if there are exactly two elements in data 
memory. 

Finally, OPS provides a QUOTE function so that the 
match funct ions can be used as constants. For example, to 
use "(NOT x)" as a constant, one would wr i te 

(QUOTE (NOT x) ) 

Confl ict Resolution 

On each cycle OPS selects a single product ion 
ins tant ia t ion to execute. The selection is a two step 
process in which f i rst the set of all legal instantiations of 
all p roduct ions are found and then one instantiation chosen 
f r o m that set. The second step, called conflict resolut ion. 
must be pe r fo rmed solely by the in terpreter because state 
memory , wh ich holds the information on which the selection 
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is made, is closed to the productions. The decision not to 
al low the product ions to access state memory wa r. based 
on our (since reformed) belief that sufficiently general 
se lect ion rules could be built into the interpreter to allow 
it to funct ion adequately in all situations. Conflict 
reso lu t ion is per formed in f ive steps using a dif ferent rule 
on each step. The f irst rule is absolute in its effect; if 
t he re is no instantiat ion that meets its condition, the 
sys tem halts. If a set of instantiations do meet its 
cond i t ion , then the remaining rules are applied, in the 
o rder g iven below, until all but one have been rejected. 

1. No instant iat ion may be executed more than 
once. 

2. The instantiat ions containing the most recently 
asser ted data are given preference. In comparing 
t w o instant iat ions, the rule first compares the most 
recent data element of each. If these elements 
d i f fer in recency, the rule selects the instantiation 
containing the more recent element. If both 
elements are of equal recency, the next most 
recent elements are compared, and so on. If the 
data contained in one instantiation is exhausted 
be fo re that contained in the other, the instantiation 
containing more data is chosen. Only if both 
instant iat ions are exhausted simultaneously and no 
elements of d i f fer ing recency are found are the 
two instantiat ions considered equal under this rule. 

3. The instantiations of productions with the 
greatest number of condition elements are given 
p re fe rence . Negated condition elements, including 
nested negated condit ion elements, are taken into 
account. 

4. The instantiat ions of the most recently created 
produc t ion are given preference. 

5. An instant iat ion is selected at random. 

These rules, because they make use of a var iety of 
s ta te informat ion that is not available to the productions, 
p rov ide considerable additional discriminative power. 
B r ie f l y , the f irst rule helps insure that the system wil l 
consider informat ion that has not yet been taken into 
account. The second rule, by giving preference to more 
recent in format ion, encourages the system to continue to 
a t tend to whatever task it is current ly engaged in; in 
add i t ion , if g iven a choice among several productions which 
are re levant to the same situation, it prefers the most 
d iscr iminat ing. The th i rd rule simply extends the defini t ion 
of "d iscr iminat ing" implicit in the second rule. The four th 
ru le prov ides a way in which the system can mask older 
p roduc t ions w i th newer, more adequate ones.8 

7 Recall that reasser t ing a data element wil l result in the 
de le t ion of the exist ing element. The instantiations 
conta in ing the new element will have no inhibit ions even 
though they may be identical to instantiations that have 
a l ready f i red . 

8 For a more complete discussion of how these rules 
p rov ide suppor t for domain-independent systems, see 
McDermot t and Forgy [1977] . 
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The Actions 

Af te r a product ion is chosen, it is executed by 
ind iv idual ly execut ing each of its actions in order. The 
act ions are simple functions that can modify the contents 
of data memory, modify the contents of production 
memory , or interact w i th the system's environment. 

There are only two methods by which the contents 
of data memory may be modified; an action may assert a 
new data element or delete an existing element. This is a 
comple te , if pr imi t ive, set of actions. The means by which 
the elements to be asserted or deleted are constructed are 
equal ly pr imi t ive. On the action side of a production there 
are a number of elements similar in form to condition 
e lements. The execut ion of an action involves instantiating 
the element, per forming whatever operations are specified 
by the element, and then if a value results, asserting that 
value. 

If var iables occur in an action element, they are 
rep laced by the values to which they were bound during 
the match. The abi l i ty to bind variables in the antecedent 
p rov ides a quite general extractor mechanism. The abil i ty 
to recover the bindings while instantiating a form provides 
a genera l constructor mechanism. The list manipulation 
abi l i t ies of OPS are comparable to those of LISP. For 
example, to extract the CAR and CDR of a list, one wri tes 
the condi t ion element 

(=car . =cdr) 

To ex t rac t other subelements, one can wri te condition 
e lements like 

(=car (=caadr ...) ...) 

Var iables and "." may also be used in action elements in 
o rde r to bui ld l ists. In an action element, "." has the effect 
of s t r i pp ing away the top level of the fol lowing list 
s t r uc tu re and leaving the etements of the list. Thus, the 
p roduc t i on 

(a . =x) — > (a . - x ) 

wi l l do noth ing but reassert the matched element. More 
complex processing is of course possible. For example, the 
t rans fo rmat ion of data performed by the production 

O x . =y) —> ( . =y =x) 

is similar to that of 

(APPEND (CDR Z) (LIST (CAR Z))). 

Self Modification 

Since extensive use may be made of OPS's list 
processing capabil i t ies in manipulating productions, only 
th ree funct ions are provided expressly for this purpose. 
One of these, READP, takes as its argument the name of a 
p roduc t ion and causes a copy of that production to be 
depos i ted in data memory. Once in data memory the 
p roduc t ion can be processed as any other data element. A 

second funct ion, BUIl D, takes a data element having the 
form of a product ion as its argument and adds it to 
p roduc t ion memory. The th i rd function, EXCISE, takes the 
name of a product ion as its argument and deletes that 
p roduc t ion f rom product ion memory. This is, again, a 
pr imi t ive but complete set of functions. These three 
funct ions give the system the capabilities of creating new 
product ions and of modifying existing productions. To 
modify an exist ing product ion, the system would br ing the 
p roduc t ion into data memory wi th READP, delete the 
ex is t ing product ion w i th EXCISE, modify the copy using the 
genera l processing capabil it ies of OPS, and then place the 
modi f ied product ion in product ion memory using BUILD. 

Input and Output 

As w i th the other capabilit ies, only a minimal set of 
funct ions are prov ided for interaction wi th the outside 
wor ld . There are two functions, READ and WRITE. WRITE 
instant iates one or more forms and wri tes them on user's 
terminal . READ .accepts one or more list structures f rom 
the user and deposits them in data memory. 

IV. CONCLUDING REMARKS 

OPS has been in use for more than a year. During 
that time it has been the primary tool of a research group 
that has as its goal the construction of an instructable 
p roduc t ion system whose production memory wil l 
eventua l ly contain several thousand productions. OPS has 
p r o v e n to be basically satisfactory, but it has not been 
w i thou t its problems. Three problems have been 
par t i cu la r ly irksome; OPS is slow, it is somewhat inf lexible, 
and the informat ion in state memory is hidden from the 
system. On a KL version of the PDP-10, OPS executes 
about 5 actions per second (this f igure is almost 
independent of the number of productions in the system). 
In the successor to OPS, which is scheduled to be 
completed in the summer of 1977, we expect a speed 
increase of at least one order of magnitude. The 
in f lex ib i l i ty of OPS has caused trouble in several ways. No 
mechanism was prov ided to make it easy for a user to 
modi fy the set of match functions or the set of confl ict 
reso lu t ion rules. Yet it became apparent rather quickly 
that nei ther the set of match functions nor the set of 
conf l ic t resolut ion rules was completely satisfactory. Some 
of the match functions (e.g., CONTAINS and NOTCONTAINS) 
rece ived almost no use, while other functions that appear 
to have promise have not yet been implemented. In the 
f i rs t vers ion of OPS, a mechanism was provided that 
a l lowed the user to add his own action functions. In the 
second vers ion of OPS this mechanism is being expanded to 
al low adding new match functions as well. Unfortunately, 
no solut ion to the problems with conflict resolut ion 
s t ra teg ies has been found. A number of sets of conflict 
reso lu t ion rules have been t r ied, but no universally 
appropr ia te set has emerged. Simply allowing the user to 
modi fy the confl ict resolut ion rules at will is not a solution; 
it now appears that the problems with conflict resolut ion 
have resu l ted, at least in part, f rom the decision not to 
al low product ions to read the information in state memory. 
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