OPS, A DOMAIN-INDEPENDENT PRODUCTION SYSTEM LANGUAGE

C. Forgy and J. McDermott
Carnegie-Mellon University
Pittsburgh, Pa. 15213

Abstract: It has been claimed that production systems have
several advantages over other representational schemes.
These include the potential for general self-augmentation
(i.e., learning of new behavior) and the ability to function in
complex environments. The production system language,
OPS, was implemented to test these claims. |In this paper
we explore some of the issues that bear on the design of
production system languages and try to show the adequacy
of OPS for its intended purpose.

I. INTRODUCTION

Much of the work that has been done with
production systems during the past few years has had as
its primary goal the development of systems that are
expert in some particular task. The tasks so far addressed
include: chemical inference [Buchanan and Lederberg,
J 971], medical diagnosis [Davis, Buchanan, and Shortliffe,
1975], discovery in mathematics [Lenat, 1976], speech
recognition [Erman and Lesser, 1975; McCracken, 1977],
and automatic programming [Barstow, 1977]. Although
many of these systems have shown impressive power in
the particular task for which they were designed, there
remains a question of how suitable the production system
representation is for large general problem solving
programs.

The Instructable Production System (IPS) project at
CMU [Rychener and Newell, 1977] is attempting to answer
this question. It has been claimed that production systems
are capable of learning in a non-trivial way. If this is true,
a production system should be able to learn not only facts,
but also new behaviors. It should be able to generalize
easily; something learned in one context should be readily
accessible in other, only remotely similar, contexts. The
learning mechanisms should not be complex; in particular,
they should not need to know much of the structure of the
rest of the system. It has also been claimed that
production systems are capable of functioning in complex
environments. |If this is true, a production system should
be interruptable. It should be able to recognize and react
immediately to important changes in its environment, and
afterward, to return to its previous task with no loss.
While these claims are not without support (some of the
expert systems mentioned above are capable of learning,
for example), they certainly have not yet been established.
The IPS project is attempting to build a production system
that displays both characteristics as fully as possible.

1 This work was supported in part by the Defense
Advanced Research Projects Agency
(F44620-73-C-0074) and monitored by the Air Force
Office of Scientific Research.

Languages & Systems-2:

The first phase of this project involved designing a
production system language whose features support
generality. To our knowledge, no one has enumerated or
systematically attempted to justify a set of characteristics
that are appropriate for such a language, though Newell
[1973] and Davis and King [1975] have suggested sets of
dimensions that can be used to distinguish production
system languages from one another, and Lenat and Harris
[1977] have argued that a language designed to support
tasks within a particular domain should have characteristics
that exploit the features of that domain. This paper first
discusses some of the more significant alternatives open to
the designer of a production system language, and then
describes OPS? and argues that it is a suitable language
for the purposes of the IPS project.

I1. THE ALTERNATIVES

The members of the class of production system
languages share only a few common characteristics. All
make use of conditional statements called productions, and
their interpreters all have similar high level functions. The
interpreters have access to two memories, production
memory and data memory. Production memory is a place
to store the productions and any static relations (e.g., a
linear ordering) between productions. Data memory is a
place to store the data processed by the productions and
any static relations between the data. Most production
system languages require the maintenance of some
information in addition to that in these two memories (e.g.,
the name of the last production to fire). In this paper it
will be assumed that all this information is stored in a third
structure that we will call state memory. The interpreter
functions by repeatedly matching the productions against a
subset of the information held in the data and state
memories, selecting one or more of the productions with
true antecedent conditions, and then allowing the selected
productions to execute and effect changes to data memory.
If changes to state memory are necessary, the interpreter
itself makes these. This sequence of operations constitutes
what is called the recognize-act cycle.

Beyond this set of common characteristics,
production system languages have diverged from one
another in many ways. In some, for example, production

2 A. Newell and M. Rychener, together with the authors,
designed OPS. OPS contains many of the features found
in PSG [Newell and McDermott, 1975], PSNLST
[Rychener, 1976], and RETE, a system designed by
Forgy.

Forgy

memory can be partitioned to give an effect something like
subroutines in conventional languages [e.g., Newell and
McDermott, 1975]. Data memory can be partitioned in
some others and different access mechanisms provided for
each partition [Lenat and Harris, 1977]. Some languages
allow every satisfied production (that is, eVery production
whose antecedent condition is true) to fire on each cycle
[McCracken, 1977], others use a few simple decision
procedures to choose one or a few productions to fire
[Anderson, 1976; Newell and McDermott, 1975], and others
use complex decision procedures to choose with some care
which productions to fire [Erman and Lesser, 1975]. An
automatic backtracking search mechanism is included in
some interpreters (these are the "deductive" production
systems like Rita [Anderson and Gillogly, 1976] and Mycin
[Davis, Buchanan, and Shortliffe, 1975]), while the others
make it necessary to program all searches explicitly.
Differences such as these can be viewed as creating a
space of possible production system languages.

The remainder of this section presents arguments
for one region in this space. Because the goals of the IPS
project differ from the goals of most projects that use
production systems, the arguments differ from those that
might be made for other production system languages. We
will consider each of the four components of a production
system language (the interpreter and the three memories).

The Interpreter

Perhaps the most fundamental consideration in the
design of a production system language is the amount of
processing that will occur during a recognize-act cycle.
Existing production systems vary widely in this.
Productions in the HSIlI system [Erman and Lesser, 1975],
for example, accomplish far more in one firing than do the
productions in Mycin [Davis, Buchanan, and Shortliffe,
1975]. The production system language should not force a
discipline on the user (i.e., it should not force him to
perform a fixed amount of processing on each cycle), but it
should provide features that make it easy for the user to
adopt whatever discipline he finds appropriate.

The amount of processing that will be appropriate
on any one cycle is dependent on the current task of the
system. If some production is very knowledgeable about a
particular situation, it is appropriate that the production
take powerful actions. In chess, for example, if a
production recognized a book position in the opening, the
production should be able to make the move and avoid the
interference of other productions that are less able in this
situation. If there is no production that understands the
situation, however, the system should be more cautious in
its processing. If it takes a big step and that step is
wrong, it will progress far down the incorrect path before
it has a chance to recognize its mistake. Moreover, a big
step will make the system less able to use whatever store
of information it has about similar tasks because it will be
skipping over so many of the points where that information
could be appropriate. It will be less likely to notice events
such as the sudden feasibility of a new approach to the
current task, the arrival of a more important task, or the
unexpected satisfaction of a pending task. It can be
expected that a large task will be diverse; it will have some
sub tasks that are well understood by the production

system and others that are difficult or poorly understood.
The appropriate amount of processing, then, can vary
greatly from minute to minute even in the performance of
a single task.

Thus the production system language should
neither make it impossible to perform complex actions nor
make it economically infeasible to perform simple actions.
Unfortunately, these requirements tend to conflict. If the
monitor supports complex actions and powerful patterns,
there is likely to be significant overhead to the
recognize-act cycle. To perform only a few simple actions
when the overhead is high may not always be economically
feasible. The production system language must therefore
incorporate some compromise between unlimited power
and potential for short cycle times.

The recognize part of the cycle is potentially more
of a problem, but -current technology provides a
reasonable solution. The problem with using powerful
recognition criteria is that even though the productions
that contain the more powerful patterns may fire only
infrequently, the patterns must be tested on every cycle.
Powerful actions, in contrast, have a cost only when they
are executed. A solution to this problem is provided in the
methods now available that allow quite powerful patterns
while making the time to perform recognition almost
independent of the number of productions in the system
[Forgy, 1977; McDermott, Newell, and Moore, 1977]. These
methods do have one major limitation: they do not allow
the use of variables in Data Memory.3

In summary, the production system language should
allow antecedent conditions that are as powerful as
possible given the constraint that the time required to
perform recognition must be independent of the sizes of
data and production memories. The power that should be
allowed in the actions is less easy to characterize. While
there is not the same efficiency issue here as there is in
the case of antecedent conditions (actions have a cost only
when they are executed), actions whose power is
incommensurate with the power of the match would appear
to be wunusable. If there are limits to the power of
antecedent conditions, it will not be possible to describe
the character of a situation fully enough to insure that an
ultra-powerful (and hence ultra-specific action) is applied
only at appropriate times.

Another choice facing the designer of a production
system language is whether to include the backtracking
search feature of the deductive production systems.
Certainly search is important in the types of programs
most often written in production systems, and for many
environments an exhaustive depth first search s
appropriate. It seems not to be appropriate for systems
that must search through large spaces or that must learn
to modify old behavior. If the system is to modify old
behavior, including old search methods, the old methods
must be accessible to the system, not hidden inside the
interpreter.

3 Perhaps the methods could be extended to allow
variables in Data Memory, but since the necessary
studies have not yet been made, we are unsure.

Languages & Systems-2: Forgy

934

Data Memory

Complex environments are best handled by systems
that use a single uniform data memory of limited size. Any
system that is able to function intelligently in many
different situations will have available a great quantity of
Knowledge, much of which will be useful in more than one
situation. |If the system is not to be impossibly slow in its
response to changing situations, it must have means
whereby the information relevant to a new situation can be
located immediately. The interpreter provides one such
means in the mappings performed during the recognition
phase of the cycle. All long term information can be stored
in productions whose antecedent conditions express the
character of the situations in which the information is
potentially relevant. When a new situation arises or an old
situation is transformed, the relevant information is found
and possibly (that is, if the interpreter so chooses) brought
into data memory. Since this approach to storing long term
information makes data memory essentially an attention
focusing device, there is little advantage to having more
information in data memory than can be usefully attended
to all at once,

Partitioned data memories are often useful, but the
same purposes can be served by the more general
mechanism of tagging data. Consider, for example, how a
partitioned memory might be wused in a deductive
production system. In these systems, before execution of
each production a new partition can be created, and any
assertions made by the production affect only the new
partition. If the interpreter later needs to back up and
undo the effects of the production, it can do so simply by
deleting the appropriate partition and its contents. A
production system that performs its own searches can
achieve similar results with an unpartitioned data memory
by tagging the data to indicate that it is contingent, to
indicate what it is contingent upon, to indicate why it is
contingent (e.g., that it is a goal or that it is hypothesized
but not yet accepted), or any other purpose that might
arise. In contrast, since they are supplied with a fixed set
of mechanisms for the manipulation of the partitions and
their contents, partitions on data memory are often difficult
to use for purposes other than those that appeared useful
at the time the language was designed.

Production Memory

Production memory should, like data memory, be a
single uniform structure; unlike data memory, it should
have no size limit. The system would be unable to learn if
both data and production memories were limited. It should
be a single uniform structure to insure that all potentially
relevant knowledge is accessible to the system at all times.
Since a system functioning in a complex environment can
never know what the state of the world will be from cycle
to cycle, it makes no sense to exclude some set of
productions from consideration during a particular cycle.
To exclude productions Is to limit the amount of knowledge
that the system can bring to bear.

State Memory

If production memory is large and if the
environment is complex, considerable intelligence will be

required to select the most appropriate productions to fire
on each cycle. While most of the information on which the
selection should be made is found in data memory, the
information that is available in state memory (e.g., the set
of all currently satisfied productions and information about
the past actions of the production system) should not be
ignored. Because this information is hidden from the
production system in most existing production system
languages, the interpreter has to make the final decision of
which productions to fire. But certainly the interpreter is
less well-suited for such decision making than the
production system itself; production systems are, after all,
better suited than conventional programs for making quick
decisions based on large amounts of data and involving
many complex criteria. Thus productions should be allowed
to read state memory as well as data memory so that they
can have as large a role as possible in the selection
process®.

I11. A DESCRIPTION OF OPS

In the previous section we indicated a set of
characteristics that seem appropriate for a production
system language that is to be used for building production
systems capable of generality. In this section a particular
language, OPS, is described. With one exception, OPS has
these characteristics; the exception is that OPS does not
give the production system access to state memory. In the
description that follows, we attempt to justify our lower
level design choices.

The Data

The data processed by OPS are autonomous,
constant list structures. The elements are constant
because, as explained above, we do not yet know an
economical way to handle variables in data memory. The
data elements are autonomous structures for reasons of
simplicity. Because variables are allowed in productions, it
is possible to implicitly link two assertions simply by
including the same unique constant in both. Thus, to allow
explicit links between elements would add no expressive
power to the language.

The OPS data memory is a set of limited size. The
set nature of memory is maintained by automatically
deleting elements when identical new elements are
asserted. The limited size is maintained by automatically
deleting elements when they have been in data memory for
some fixed amount of time. Because data are deleted after
only a short stay, data memory is a temporary workspace
that focusses the system's attention on knowledge that is
currently relevant. There is no great significance to the

4 MYCIN, with its meta-rules, is one of the few systems to
allow this [see Davis, 1976].

5 A full description of OPS is given in Forgy and
McDermott [1976].

6 The amount of time, measured in actions executed, Is
specified by the user; the default is 300 actions.

Languages & Systems-2: Forgy

decision that data memory should be a set; there are styles
of programming that can be adopted when data memory
allows multiple occurrences of elements and other equally
good styles that can be adopted when it does not.

The Match

The search performed by the OPS interpreter is
complete; every legal instantiation of every production is
found. This makes OPS quite different from its
predecessor, PSG [Newell and McDermott, 1975]. Because
it does not perform exhaustive searches, the PSG
interpreter may fail to find an instantiation of a production
even though one exists. PSG's match algorithm is
dependent on the order in which a production's condition
elements occur. It was decided that this dependence on
order is unacceptable for a production system that is to
grow through the acquisition of new productions; to add a
suitable production is difficult enough without having to
contend with the problem of specifying an order on its
condition elements that would be appropriate for any
situation that the system might encounter.

The antecedent of an OPS production is composed
of one or more condition elements, each of which is a form
to be instantiated by one element from data memory. The
expressive power of OPS condition elements is greater
than that of condition elements in languages like PSG. It is
possible to give either exact or (somewhat) inexact
specifications for both the shape and content of the data
to be matched. Condition elements are, like data elements,
list structures. Generally, the shape of a condition element
must correspond exactly to that of a data element for the
two to match. Two means are provided, however, to allow
the matching of the head of a list without fully describing
its tail. The symbol "..." is used to specify that the tail of a
list is to be ignored in the match. For example, the
following condition element will match any data element
that begins with "a b"

(ab.)

The symbol "." makes it possible to specify that a tail is to
be matched and then to give information about the content
of the tail by following the "." by a pattern.

Several elementary pattern types, called match
functions, are allowed in OPS. The most basic match
function is the constant, which will match only itself. This
is seen in.the example above where the condition element
will match only those data elements whose first subelement
is an "a" and whose second subelement is a "b" It is also
possible to specify that a data subelement must be equal
to one of a group of constants, be not equal to a constant,
or be not equal to any one of a group of constants. The
ANY function provides the first of these capabilities; the
NOTANY function, the other two. For example, the
following condition element will match any data element
composed of two subelements where the first subelement
is one of "a", "b", and V and where the second
subelement is not a "d"

((ANY a b c) (NOTANY d))

NOTANY with no arguments is particularly useful; it will
match any sublement. Thus, the condition element

((NOTANY) (NOTANY))
will match any data element with two subelements.

Because data elements can be arbitrarily complex
list structures, the need was felt to be able to specify
something about the contents of data elements. The
CONTAINS and NOTCONTA1INS functions were included to fill
this need. As their names imply, the former allows the
specification that the subelement contain (at any level) at
least one occurrence of one of some set of specified
constants, and the latter that the subelement not contain
any occurrences of any of the specified constants. The
following condition element, which uses "." as described
above, will match any data element of two or more
subelements provided the constant "a" occurs somewhere
after the first subelement

((NOTANY). (CONTAINS a))

Two means are provided for specifying the
relationship among condition elements. Simply writing an
antecedent without putting separating marks between the
condition elements indicates that all condition elements
must be satisfied simultaneously in order for the
antecedent to be satisfied. For example, the antecedent

(@ .)(b.)

will be satisfied if there is an element in data memory
beginning with "a" and another beginning with "b". The
NOT match function allows another kind of grouping,
negated conjunction. An antecedent composed of one
condition element and one negated condition element is
satisfied when the non-negated condition element s
satisfied and the negated condition element is not. Thus,
the following antecedent,
(a ...) (NOT (b ...)),

ir which "(b ...)" has been negated, is satisfied only if data
memory contains a data element beginning with "a" and no
element beginning with "b". Negated conjunctions may of
course involve more than just two condition elements. Any
group of condition elements (including groups containing

other negated condition elements) may be negated and
conjoined to any other group. The antecedent condition

(@ ..) (NOT (b ..) (¢ .))

is satisfied when there is a data element in working
memory beginning with "a" but not both a data element
beginning with "b" and a data element beginning with "c".
When NOTs are nested, evaluation proceeds from the
innermost level outward.

Variables make it possible to specify that the
content of a condition element is dependent on the content
of other condition elements in the same antecedent. There
are four types of variables in OPS. The most important
type, denoted by preceding the variable name with "=", is
the "simple" variable. All occurrences of such a variable
must have EQUAL bindings. Thus the antecedent

(a.-x)(b.=x)

Languages & Systeros-2: Forpy

will match two elements, the first of which begins with "a",
the second of which begins with "b", and both of which
have identical tails. The second form of variable, denoted
by preceding the variable name with "#", may not be used
unless there is a simple variable with the same name
elsewhere in the same antecedent. Any data matching one
of these not-variables must differ from the data matching
the simple variable. For example, the antecedent

=x (NOT #x)

will be satisfied only if there is exactly one element in data
memory. The final two forms of variables, denoted by
preceding the variable names with ">" and "<", are used in
comparing numbers. Like the variables preceded by 'V",
use of these is legal only if there is a simple variable of
the same name elsewhere in the antecedent. A variable
preceded by ">" will match numbers greater than the
number matched by the simple variable; a variable
preceded by "<", numbers less than the number matched
by the simple variable. Thus, the antecedent

=x (NOT >x)
will bind x to the largest number in data memory.

It is often useful to be able to give multiple
specifications for a data element. For example, one may
want to specify that a data element be one of a set of
constants and then bind a variable to the element so that
the exact value may be determined; this can be denoted
using the symbol "$". For example,

(ANY abcde)$ =x

The symbol "$" indicates that the two condition elements
that it separates are both to match the same data element.
As other examples, the antecedent

=x -y $ >x (NOT <y S >x)

will bind x to a number and y to the next larger number;
the antecedent

=x =y $ #x (NOT #x 8 #y)

will succeed if there are exactly two elements in data
memory.

Finally, OPS provides a QUOTE function so that the
match functions can be used as constants. For example, to
use "(NOT x)" as a constant, one would write

(QUOTE (NOT x))

Conflict Resolution

On each cycle OPS selects a single production
instantiation to execute. The selection is a two step
process in which first the set of all legal instantiations of
all productions are found and then one instantiation chosen
from that set. The second step, called conflict resolution.
must be performed solely by the interpreter because state
memory, which holds the information on which the selection

Languages & g’gStemS-Zi

is made, is closed to the productions. The decision not to
allow the productions to access state memory wa'. based
on our (since reformed) belief that sufficiently general
selection rules could be built into the interpreter to allow
it to function adequately in all situations. Conflict
resolution is performed in five steps using a different rule
on each step. The first rule is absolute in its effect; if
there is no instantiation that meets its condition, the
system halts. If a set of instantiations do meet its
condition, then the remaining rules are applied, in the
order given below, until all but one have been rejected.

1. No
once.

instantiation may be executed more than

2. The instantiations containing the most recently
asserted data are given preference. In comparing
two instantiations, the rule first compares the most
recent data element of each. If these elements
differ in recency, the rule selects the instantiation
containing the more recent element. If both
elements are of equal recency, the next most
recent elements are compared, and so on. If the
data contained in one instantiation is exhausted
before that contained in the other, the instantiation
containing more data is chosen. Only if both
instantiations are exhausted simultaneously and no
elements of differing recency are found are the
two instantiations considered equal under this rule.

3. The instantiations of productions with the
greatest number of condition elements are given
preference. Negated condition elements, including
nested negated condition elements, are taken into
account.

4. The instantiations of the most recently created
production are given preference.

5. An instantiation is selected at random.

These rules, because they make use of a variety of
state information that is not available to the productions,
provide considerable additional discriminative power.
Briefly, the first rule helps insure that the system will
consider information that has not yet been taken into
account. The second rule, by giving preference to more
recent information, encourages the system to continue to
attend to whatever task it is currently engaged in; in
addition, if given a choice among several productions which
are relevant to the same situation, it prefers the most
discriminating. The third rule simply extends the definition
of "discriminating" implicit in the second rule. The fourth
rule provides a way in which the system can mask older
productions with newer, more adequate ones.®

7 Recall that reasserting a data element will result in the
deletion of the existing element. The instantiations
containing the new element will have no inhibitions even
though they may be identical to instantiations that have
already fired.

8 For a more complete discussion of how these rules
provide support for domain-independent systems, see
McDermott and Forgy [1977].

Forgy
7

The Actions

After a production is chosen, it is executed by
individually executing each of its actions in order. The
actions are simple functions that can modify the contents
of data memory, modify the contents of production
memory, or interact with the system's environment.

There are only two methods by which the contents
of data memory may be modified; an action may assert a
new data element or delete an existing element. This is a
complete, if primitive, set of actions. The means by which
the elements to be asserted or deleted are constructed are
equally primitive. On the action side of a production there
are a number of elements similar in form to condition
elements. The execution of an action involves instantiating
the element, performing whatever operations are specified
by the element, and then if a value results, asserting that
value.

If variables occur in an action element, they are
replaced by the values to which they were bound during
the match. The ability to bind variables in the antecedent
provides a quite general extractor mechanism. The ability
to recover the bindings while instantiating a form provides
a general constructor mechanism. The list manipulation
abilities of OPS are comparable to those of LISP. For
example, to extract the CAR and CDR of a list, one writes
the condition element

(=car . =cdr)

To extract other subelements, one can write condition
elements like

(=car (=caadr ..) ..)

Variables and "." may also be used in action elements in
order to build lists. In an action element, "." has the effect
of stripping away the top level of the following Ilist
structure and leaving the etements of the list. Thus, the
production

(@a.=x) —>(a.-x)

will do nothing but reassert the matched element. More
complex processing is of course possible. For example, the
transformation of data performed by the production

Ox . =y) —> (. =y =x)

is similar to that of

(APPEND (CDR Z) (LIST (CAR Z))).

Self Modification

Since extensive use may be made of OPS's list
processing capabilities in manipulating productions, only
three functions are provided expressly for this purpose.
One of these, READP, takes as its argument the name of a
production and causes a copy of that production to be
deposited in data memory. Once in data memory the
production can be processed as any other data element. A

second function, BUIl D, takes a data element having the
form of a production as its argument and adds it to
production memory. The third function, EXCISE, takes the
name of a production as its argument and deletes that
production from production memory. This is, again, a
primitive but complete set of functions. These three
functions give the system the capabilities of creating new
productions and of modifying existing productions. To
modify an existing production, the system would bring the
production into data memory with READP, delete the
existing production with EXCISE, modify the copy using the
general processing capabilities of OPS, and then place the
modified production in production memory using BUILD.

Input and Output

As with the other capabilities, only a minimal set of
functions are provided for interaction with the outside
world. There are two functions, READ and WRITE. WRITE
instantiates one or more forms and writes them on user's
terminal. READ .accepts one or more list structures from
the user and deposits them in data memory.

IV. CONCLUDING REMARKS

OPS has been in use for more than a year. During
that time it has been the primary tool of a research group
that has as its goal the construction of an instructable
production system whose production memory will
eventually contain several thousand productions. OPS has
proven to be basically satisfactory, but it has not been
without its problems. Three problems have been
particularly irksome; OPS is slow, it is somewhat inflexible,
and the information in state memory is hidden from the
system. On a KL version of the PDP-10, OPS executes
about 5 actions per second (this figure is almost
independent of the number of productions in the system).
In the successor to OPS, which is scheduled to be
completed in the summer of 1977, we expect a speed
increase of at least one order of magnitude. The
inflexibility of OPS has caused trouble in several ways. No
mechanism was provided to make it easy for a user to
modify the set of match functions or the set of conflict
resolution rules. Yet it became apparent rather quickly
that neither the set of match functions nor the set of
conflict resolution rules was completely satisfactory. Some
of the match functions (e.g., CONTAINS and NOTCONTAINS)
received almost no use, while other functions that appear
to have promise have not yet been implemented. In the
first version of OPS, a mechanism was provided that
allowed the user to add his own action functions. In the
second version of OPS this mechanism is being expanded to
allow adding new match functions as well. Unfortunately,
no solution to the problems with conflict resolution
strategies has been found. A number of sets of conflict
resolution rules have been tried, but no universally
appropriate set has emerged. Simply allowing the user to
modify the conflict resolution rules at will is not a solution;
it now appears that the problems with conflict resolution
have resulted, at least in part, from the decision not to
allow productions to read the information in state memory.

Languages & Systems-2: Forgy
938

ACKNOWLEDGEMENTS

The development of many of the ideas discussed
above owes much to the members of the instructable
production system project at Carnegie-Mellon University.
The members of this project, in addition to the authors, are

J. Laird, P. Langley, A. Newell, K. Ramakrishna, P.
Rosenbloom, and M. Rychener.

REFERENCES
Anderson, J. Language, Memory, and Thought. Lawrence

Erlbaum Associates, 1976.

Anderson, R. H. and Gillogly, J. J. Rand intelligent terminal
agent (RITA): design philosophy. Report R-1809-ARPA.
The Rand Corporation, Santa Monica, CA, 1976.

Barstow, D. Automatic construction of algorithms and data

structures using a knowledge base of programming
rules. Artificial Intelligence Laboratory, Stanford
University, 1977.

Buchanan, B, and Lederberg, J. The heuristic DENDRAL
program for explaining empirical data. IFIP, 1971, pp.
179-188.

Davis, R. Applications of meta level knowledge to the

construction, maintenance, and use of large knowledge
bases. SAIL AIM-271. Artificial Intelligence
Laboratory, Stanford University, 1976.

Davis, R, Buchanan, B., and Shortliffe, E. Production rules
as a representation for a knowledge-based consultation

program. Report STAN-CS-75-519, Memo AIM-266.
Computer Science Department, Stanford University,
1975.

Davis, R. and King, J. An overview of production systems.
Report STAN-CS-75-524, Memo A1M-271. Department
of Computer Science, Stanford University, 1975.

V. A multi-level organization for
using many, diverse, cooperating
IJCAI 4, 1975, pp 483-490.

Erman, L. and Lesser,
problem solving
sources of knowledge.

Forgy, C. A production system monitor for parallel
. computers. Technical Report. Department of Computer
Science, Carnegie-Mellon University, 1977.

The OPS
Science,

reference manual.
Carnegie-Mellon

Forgy, C. and McDermott, J.
Department of Computer
University, 1976.

Lenat, D. AM: an artificial intelligence approach to
discovery in mathematics as heuristic search. Report
STAN-CS-76-570, Memo AIM-286. Computer Science
Department, Stanford University, 1976.

Lenat, D. and Harris G. Designing a
searches for scientific discoveries.

rule system that
In D. A. Waterman

and F. Hayes-Roth (eds), Pattern-Directed Inference
Systems. Academic Press, 1977 (forthcoming).
McCracken, D. A parallel production system architecture
for speech understanding. Technical Report.
Carnegie-Mellon University, Computer Science

Department, Pittsburgh, PA, 1977.

McDermott, J. and Forgy, C. Production system conflict
resolution strategies. In D. A. Waterman and F.
Hayes-Roth (eds), Pattern-Directed Inference Systems.

Academic Press, 1977 (forthcoming).

McDermott, J., Newell, A., and Moore, J. The efficiency of

certain production system implementations. In D. A.
Waterman and F. Hayes-Roth (eds), Pattern-Directed
Inference Systems. Academic Press, 1977
(forthcoming).

Newell, A. Production systems: models of control
structures. In Chase, W. (ed.), Visual Information

Processing. Academic. Press, 1973, pp. 463-526.

Newell, A. and McDermott, J. PSG manual. Department of
Computer Science, Carnegie-Mellon University, 1975.

Rychener, M. D. Production systems as a programming
language for artificial intelligence applications.
Technical Report. Department of Computer Science,

Carnegie-Mellon University, 1976.

Rychener, M. and Newell, A. An instructable production
system: initial design issues. In D. A. Waterman and F.
Hayes-Roth (eds), Pattern-Directed Inference Systems.

Academic Press, 1977 (forthcoming).

Languags & Systems-2: Forgy

939

