PANEL ON COMPUTER GAME

Chaired by

Hanr> Berliner
Carnegie-Mellon University
Pittburgh, Pa. 15213

Objectives

Historically, programs that use big search have been
distinctly superior to those that rely more on Knowledge
than search. We wish to discuss here why this is, and what
can be done to produce more successful programs in the
Al mold, i.e. using Knowledge to guide actions, rather than
discovering useful actions as the result of search.

Participants and Background
Hans Berliner CAPS-II, BKG
Cornegie Mellon Un iv.
Pi ttsburgh, Pa.
Richard Greenblatt Greenblatt Chess
MIT Program, CHEOPS
Cambridge, Mass.
Jacques Pi trat Planning in Chess
C.N.R.S.
Par is, France
Arthur Samuel Checkers, Signature
Stanford University Tables
Palo Alto, Calif.
David Slate CHESS X.X
Northuestern Univ.
Evanston, Illnoi s

SEARCH AND KNOWLEDGE'

Hans Berliner
Carnegie-Mellon University
Pittsburgh, Pa. 15213

Abstract
We discuss some important properties of various search
techniques, and some properties that Knowledge must
have in order to support adequate game playing
behavior.

I. Some Points on the Continuum

It seems that everything in game-playing (and possibly in
all of Al) ultimately comes down to Knowledge and search.
This is really another case of a space/time tradeoff. All
state-space problems can be solved by searching, if
there were enough time to do a complete search of the

PLAYING
problem space. Also all problems can be solved by
enough Knowledge, by merely having all pertinent
information available for every node in the problem
space; provided it is available and there is enough space
to store it. TasKs that can be solved by either of these

methods are considered not to be interesting.

To search without Knowledge when a complete search is
not possible does not maKe sense. To apply partial
Knowledge without search has not been very successful
in games such as chess. Turing achieved only mediocre
play with his (hand-simulated) chess program Turochamp
[Tur53], and other attempts since then have not realized
much improvement.

Thus interesting problems appear to require a combination
of search and Knowledge. However, there are many
possible methods, both for controlling the search and
for organizing the Knowledge. Knowledge must be able
to detect interim advantages. In non-terminal states
such interim advantages can be considered indicators of
how the game may go in the future.

A search
nodes at

with such Knowledge will be able to find leaf
the limit of its searching capability which
maximize its understanding of the universe. However,
such a search only understands "ends"; it does not
understand "means". Thus if it reaches a leaf node in a
search to an arbitrary depth, it does not understand how
it achieved its present success (or lacK of it). This creates
additional problems when a greater success can be
achieved in another branch by the same means, but at a
slightly greater depth. This is the Horizon Effect [Ber73].

Il. Some Tractable Search Techniques

It is convenient here to distinguish goal-directed
searches which develop and prune nodes based on
properties of a node (rather than the terminal value of

its branch), and "mindless" techniques which search all of

a predefined search space to find the optimal path,
basing decisions solely on the value of terminal nodes. To
date the latter techniques have been eminently
more successful in game-playing. This is no doubt due

to the tremendous amount of Knowledge that is required

" This worK was supported by the Advanced Research

Projects Agency of the Office of the Secretary of Defense
(contract F44620-73-C-0074) and is monitored by the Air
Force Office of Scientific Research.

Invited Panel-5; Berliner

975

to adequately guide a goal-directed search in a large
domain. We now discuss advantages and limitations of each
approach.

A. Techniques that search a uniform space
It is now rather clear that the old controversy of

depth-first vs. breadth-first search (if it was ever
really controversial) has been resolved in favor of a new

technique called depth-first search with iterative
deepening. This technique was discovered independently
by Slate & Atkin [Sla77] of the Northwestern University

chess group, and James Gillogly, then at
University. The technique searches depth-first fashion
to depth N, and reports its results. The search is then
itereated to depth N+I, using information gained in the
earlier searches. This information allows the guiding of the
search so as to produce a better ordering of alternatives,
which makes the alpha-beta mechanism more effective.
This makes an iterated depth-n search cheaper than a
depth-n search without the signposts (so to speak).
These results indicate that search to one additional ply
maintains much of the relative value structure of the
branches, at least in a domain such as chess and almost
certainly for any domain having structure. This technique is
also very effective in allocating time to a search as the
time for one additinal iteration can be well estimated from
the previously iterations. Thus this technique which
combines the best features of depth-first alpha-beta
(efficiency) and breadth-first (uniform coverage) appears
vastly superior to any other technique that searches a
uniform space.

Carnegie-Mellon

B. Techniques that Search Selectively

Selective search techniques are generally classified as
best-first searches. It is very probably that the reason
that these techniques have not been very successful is
that at every node it is necessary to apply knowledge to
ciecide how to continue the search. The decision can range
from stopping, to jumping to another branch of the tree, to
selectively expanding the current node. The knowledge
that could be used for such purposes is extensive, and it
appears quite likely that no one has thus far been able to
ciccumulate a data base of sufficient size and detail in any
complex domain. However, it appears likely that there is
another reason too; one-pass evaluation which we take
up in section V. Of the present techniques, Harris'
bandwidth .search (an adaptation of the A* procedure)
appears very effective [Har74].

I have recently invented a new procedure called the B*
tree search procedure which combines the best facets of
best-first searching with branch and bound [Ber77]. This
procedure requires that an optimistic and pessimistic
value be assigned to every node at the time it is
generated. When the most optimistic (as seen from the
opponent's side) successor of node N is better for the
side on move at node N than the previously estimated
pessimistic value, then this pessimistic value is adjusted to
correspond with the most optimistic value of the opponent.
In the same way the optimistic value at node N must be
adjusted if the pessimistic value of the most pessimistic
successor to node N (as seen by the opponent) is
worse than the previously estimated optimistic value. In
this way values are backed up from newly expanded

nodes. To find the
necessary to trace the
path through the

next node to expand, it is only
most optimistic (for both sides)
tree and expand that node, although

other search strategies are possible. The search
terminates when it can be shown that the pessimistic
value of a successor node to the root is at least as good

a:;, the best optimistic value of the remaining successors to
the root.

DIAGRAM 1

In Diagram 1, we illustrate a simple search with B*. The
upper part shows an initial tree configuration, and the
lower shows the tree upon completion of the search. Nodes
in boxes have MAX to play; nodes in circles have MIN to
play. The numbers inside the node symbols indicate the
order in which nodes were expanded. The pair in brackets
are the optimistic and pessimistic values at a node
(updated by being crossed out). The search terminates
because the pessimistic value of the right-most descendant
of the root is no worse than the optimistic value of any
other descendant.

This search is guaranteed to converge as long as the
estimates are consistent (though not necessarily
correct). We believe that this algorithm will never expand
more nodes than any other procedure having access to the
same information. Thus it should be the best of the AND/OR
tree searching procedures. It can be trivially demonstrated
that in its OR/OR form, it can never do worse than the A*
[Nil70] procedure which is supposed to be optimal.
However, in all these procedures there are serious
difficulties in finding reasonable functions for computing
the bounding values.

Invited Pane1-5: Berliner

976

C. Mechanism within the Search

We consider that the actual tree search procedure is
strongly subordinate to the ability to reject searching of
sub-trees based on the semantics of the search. This
type of pruning is supported by mechanisms that collect

information (other than terminal values) during the
search and bacK this up as the search progresses.
Decisions are then made, based on the backed-up

information, which allow pruning of large sub-trees.

The first of these mechanisms to appear was the
Causality Facility [Ber74] in my chess program
CAPS-II. This facility collected descriptions from nodes
when backing up in a tree search. When it reached a
node where the side on move was not satisfied with the

backed up value of the search (measured against a
global expectation level), that side set in motion the
causality facility which examined the backed up
description (called the refutation description). Current

versions of the causality facility are able to determine
whether or not the problem described by the refutation
description was caused by the current move at this node.
If so, a lemma is posited which describes the partial
position (out of the current position) which makes the
refutation description possible. Lemmas are also posited
about winning moves. Whenever a move is suggested at
some future point in the search, the lemma file is first
examined to determine if a lemma exists about this move
and if the partial board description matches. If so, the
result of the move is assumed known and the search can
be foregone. A similar system has been described by
Adelson-Velsky, et. al. [Ade75].

If the move in question did not cause the current
problem, then we know it to have existed when the
current node was reached. Thus the backed up
refutation description, describes this problem. The
causality facility has mechanisms for generating the set of
all moves (counter-causal moves) that can do something
about the refutation description. This can save a
tremendous amount of effort in ad hoc searching to find
a solution. Sometimes the counter-causal set is empty so
it is known that the problem cannot be solved at this node
and the search must back up further. Sometimes a
proposed counter-causal move leads to another problem
description which is also not caused by the move. Then it
is known that there is more than one problem to solve at
the current node, and any suggested move must be on the
list of counter-causal moves for each such problem, a fact
which radically reduces further search.

Another technique was recently demonstrated by Pitrat
[Pit77]. He used plans to guide the search. Plans were
formulated to satisfy goals of winning at least a certain
amount of material. If such a plan failed, the reason for its
failure was analyzed, and a plan for overcoming this
difficulty was inserted into the appropriate place in the
original plan. The description of the plan was pushed
down the tree as the search progressed and only moves
in accordance with the plan (as modified) were admitted to
the search. This method was shown to develop small
trees and solve many interesting chess problems.

Invited Panet-5:
977

The essence of techniques of this type is that a potential
move is analyzed with respect to a specific purpose. If the
move fails, then information is returned which can be used
to improve the selectivity of the remaining search. It
appears to this writer that these techniques are ripe for
application to other areas, e.g. theorem proving, planning
techniques..

Ill. Problems with certain Search Techniques

At times search is a very powerful technique, achieving
things that humans may have difficulty in replicating, e.g.
Samuel's checker program [Sam63"|, Dendral [Buc69], and
CIESS 4.5 [Sla77]. However, certain artifacts appear to be
associated with some well known search techniques.

Any piocedure which changes the mode of search
(including termination) at an arbitrary depth creates the
conditions necessary for the Horizon Effect [Ber73]. Thus
searches to fixed depths must reconcile themselves to the
possibility that the program will try to push unavoidable
consequences over its search horizon, by conceding lesser
(but avoidable) ones.

Techniques that search a large uniform space usually try
to get the maximum value for each CPU second of
evaluation. This is because there are many nodes to be
evaluated and a few extra microseconds per node may
add an intolerable amount of time to the whole search.
Therefore evaluation must be lean. If a tree contains two
or three reachable good nodes, the path to one of these
will be selected depending upon very arbitrary factors.
1 his is fine when all these nodes are very favorable.
However, in delicate situations it would be highly
desirable to isolate the competing nodes and apply
additional knowledge to them in an effort to find which
is really best.

The minimax alpha-beta procedure is undoubtedly the most
efficient of all known search procedures. However, a
minimax procedure does very poorly at defending losing
positions. In such cases, it will almost always choose the
path which postpones the opponent's win the longest.
However, this is seldom the best way. In bad to hopeless
situations it appears necessary to have an opponent model,
no matter how primitive, and select moves based on the
hope that the opponent is fallible and will thus not always
find the best way. Thus, for instance, it would be
emminently reasonable for a program to avoid losing a
rook in an otherwise even position, at the cost of the
opponent finding a difficult mate in five moves. However,
any program using the minimax approach and discovering
the opponent's mating possibility will defend against it
and leave the rook to its fate. Further, in near equal
positions it is sometimes wise to take small risks in the
hope of gaining an advantage. This, too, is impossible
with the minimax model.

IV. Knowledge Organization

When the search does not go to terminal nodes as
defined by the domain, knowledge is needed to evaluate
leaf nodes. In goal directed searches knowledge is also
needed to make guiding decisions, if any kind of
means-ends methods are used.

Berliner

The results of Samuel[$am63, Sam67] have always been

interpreted to mean that a linear polynomial cannot
adequately span a large domain such as checkers.
However, recently Slate & Atkin [Sla77] have had great
success with their chess program CHESS 4.5. This
program uses essentially one evaluation function for
the whole domain. The coefficients of the terms are
designed so that they change very slowly over the
domain, and thus provide a sort of rolling landscape in the
evaluation space. With this type of design, the

program appears to always find something constructive to
do. It seldom gets stuck on a hill, since there is always a
somewhat higher hill within searching distance from the
present one.

that it is
state-space

it is not difficult to show
to evaluate all states in a
correctly with a single (reasonable) function. In chess,
for instance, there are positions where changing the
location of one man by one square, or changing whose
turn it is, can make the difference between a win, loss,
or draw. For many of these positions, even expert
players will require some time to fully comprehend the
value of the situation. Therefore, the single function
approach appears to have definite limitations, and it may
he necessary to partition the state-space and make
evaluation functions which are expert in certain
state classes only.

Howevei,
impossible

show their worth when
representing very different

Such expert functions could
branches lead to leaf nodes
kinds of positions.

Consider Figure 1.

figure |
Wwhite fo play
White can win by playing QXP because the K&P ending is

won. But if the Black king were one square nearer to the
center of the board, the K&P ending is a draw. Therefore,

QxP is only effective now, and it is inconceivable that
White can win any other way. In the single function
approach, it is almost inevitable that Q vs. R+P will be
considered better than the materially even K&P ending.
It would be simple to design functions which would
judge both positions as superior for White. However,
for the state-class approach to succeed it is necessary
for the K&P endgame function to recognize that
endgame as a win. Otherwise, this opportunity will be

Invited Panel-5:

978

missed. This shows that at times it is necessary to have
excellent goodness ordering across state-class
boundaries. However, merely recognizing the goodness of
a position may not be sufficient. Consider Figure 2.

Figure 2

White to play

White has a winning position and can play K-B3, K-K3, or
K-K4, all of which retain the win. However, if he chooses
either of the first two alternatives, he will be back in the
current position in another three ply. This is an instance
of the "make-progress" problem which can frequently be
resolved by the search, which notices that no progress
has been made. Howevei, in more complicated examples,
this may not suffice. Notice that if in Figure 7 the White
king were at QB2 then it would be sufficient to recognize
the position resulting from K-B3 as a win because there

are no real competitors to it. Thus the make-progress
issue can be separate from the goodness issue. The
make progress issue was first treated by Huberman
[Hub66] by having predicates which recognized
nearness to a mate in simple winning chess endgames.
However, the problem exists both in winning positions
and also in positions that are not clearly won, but
where a path toward progress exists. Another issue is

"how to put up resistance"”, which arises in bad or losing
positions. This is not quite the inverse of make-progress,
because while there may be a guarantee of progress in
superior positions, it is up to the losing side to find the
method of resistance which requires the most knowledge
(or calculation) from the superior side.

To investigate the above knowledge issues, we have for
some time now been investigating backgammon, a
game which due to its non-deterministic nature has a
branching factor of about 800 at each node. Thus full
width searches in this environment (as in GO) are not
sensible. Our program achieved the ability to discriminate
generally favorable and unfavorable factors together with
appropriate coefficients for a single evaluation polynomial.
This design reached a high beginner level, but there
were great problems in having it understand more by
merely adding more terms and tuning coefficients. In
searching programs, some of these problems are
subordinated by the search, since the program does not
have to know about "means" up to the search depth, and
any position potential up to that depth also does not have

Berliner

to be inferred.

We have now implemented several state-classes which
allow a great deal of context to be brought to bear on
any evaluation. In some cases evaluation is iterative, so
that additional Knowledge is only invoked when

competitive moves exist. These steps have caused a great
jump in performance of the program; however, it is still too
early to evaluate the whole approach.

V. A modest Proposal

All these problems appear to be due to the fact that
game playing programs indulge in one-pass evaluation of
all nodes, i.e. the amount of knowledge that can be applied
to a node has been predetermined. It is thus an efficient
amount of knowledge, since applying all that is known
would not be cost-effective most of the time. While this
is fine for picking out the correct branch when there
are no real competitors, this does not work when
several nodes are very close in value or when there are
other factors such as creating opportunities for opponent
error. (Much of this was already pointed out in [New55]).
Here a multi-stage process which weighs the pros and
cons of each competitor for best node is required. It
would seem that an ideal framework in which to do this
search is the 8* algorithm. What is known about a node
will increase as nodes in its sub tree are expanded,
further, the amount of knowledge being applied can be a

function of the degree of competitiveness between

nodes. A first attempt at this type of problem solving

mechanism is reported in [Per77].

References

[Ade75], Adelson-Velskiy, G. M., Alazarov, V. L, and
Donskoy, M. V., "Some Methods of Controlling the
Tree Search in Chess Programs", Artificial
Intelligence", 1975, Vol. 6, No. 4, pp. 361-371.

[Ber73], Berliner, H. J., "Some Necessary Conditions for
a Master Chess Program", Proceedings 3rd
International Joint Conference on Artificial
Intelllicnce, August 1973.

[Ber74], Berliner, H. J., "Chess as Problem Solving: The
Development of a Tactics Analyzer", Ph. D.

Thesis, Carnegie-Mellon University, Pittsburgh, Pa.,

March, 1974.
[Ber77], Berliner, H. 1, "The B* Tree Search Procedure:
Best-first Search Combined with Branch and

Bound", Computer Science Dept., Carnegie-Mellon
University, July 1977.

[Buc69], Buchanan, B., Sutherland, G., and Feigenbaum, E.
A., "Heuristic DENDRAL: a Program for Generating
Explanatory Hypothese in Organic Chemistry", in
Machine Intelligence 4, (B. Meltzer, et. al., Eds),
pp. 209-254, Amerkan Elsevier, 1969.

[Har74], Harris, L. R, "The Heuristic Search under
Conditions of Error", Artificial Intelligence,
1974, Vol. 5, No. 3, pp. 217-234.

Invited Panel-5:

979

(Hub68], Hubermann, B. J.,, "A Program to play Chess
lind Games", Stanford Technical Memo Cs
106, 1968, Computer Science Department,
Stanford University.

INew55], Newell, A, "The Chess Machine: An Example of

dealing with a Complex Task by Adaptation"”,
Proceedings of the 1955 Western Joint Computer
Conference, March 1955, pp. 101 108.

INil/0], Nilsson, N., Problem Solving Methods in Artificial
Intelligence, McGraw-Hill, 1971.

[Per//], Perdue, C, and Berliner, Il., "EG, A Case Study in
Problem Solving with King and Pawn Endings",
Proceedings of the Sirth IJCAI, Boston, 19/7.

[Pil771, Pittat, J. "A Chess Progtam which uses Plans", To
appear in Artificial Intelligence.

[Sam63], Samuel, A. L, "Some Studies in Machine Learning
Using the Game of Checkers", in Computers and
Thought, (feigenbaum, I. A. and eldman, J.,
Eds.), pp. 71-105, McGiaw Hill, 1963.

[Sam67], Samuel, A. I|., "Some Studies in Machine Learning
Using the Game of Checkers, |l Recent
Piogress", IBM Journal of Research and
Development, Nov. 1967, pp. 601 617.

|Sla77], Slate, D. J., and Atkin, I.R, "CHI SS 45)

The Northwestern University Chess Program", in

Chess Skill in Man and Machine, (P. Frey, Ed),

Springer Verlag, 1977.

|[lur53|, luring, A. M., "Digital Computers applied to
Games", in Faster than Thought, (B V Bowden,

Ed.), pp. 286 310, Pitman, London, 1953.

USING PLANS IN A CHESS PLAYING PROGRAM

Jacques Pitrat
C.N.RS.
Paris, France

1 present a program which does not develop systematically
a large tree; but it analyzes carefully the initial situation
and generates plans which it then executes. The analyses
deeper in the tree are made only when something goes
wrong and are always directed towards a goal. With this
method, it is possible to find combinations requiring many
ply-

Today the chess playing programs do not play as well as
the grandmasters. One reason is that there are serious
problems for developing the tree. This tree is necessary

for finding possible combinations. Programs develop very
large trees, but it often occurs that important moves are
not included in the tree; the minimax procedure backs up

an incorrect value if somewhere in the tree the best move

Berliner

is omitted As it is difficult to generate large trees, the
solution seems to be to improve the choice of the moves at
all the levels in the tree.

| have realized a program founded on this principle. This
ptogtam cannot play a game, but only indicates if a
combination exists in the given position. The program
analyzes, this position very meticulously. It does not, as
anany programs, generate all the legal moves and then
eliminate some of them later. But it searches for the
characteristics of the position and, using these

chanactics, it generates
actions that may be tried.

plans, ie., a sequence of

The program looks for various characteristics, one of the
most important is finding men which could be attacked,
cither because they are not protected or because their
value is high. When these men have been found, the
program checks if two of them can be attacked
simultaneously (double attack or pinning one of them if
they are on the same line). Eventually, if there are some
obstacles which are in the way, it indicates that they first
have to be removed. If a man has a low mobility (as the
King), it looks for an attack on him alone. In some cases, it
first prompts an enemy man to move to some square
before realizing the combination.

Figure 1

Black to Play

Fx. figure 1. This position was taken from a game
IORRF Fdward Lasker. The combination was not seen by
Laskrr who played f7 - f6.

| be knight on e5 is attacked once and protected once. The
first plan is: Play Qd6xe5. It failed because White plays
Bb2xe5. So the program modifies its plan and first adds a
subplan for correcting this. For instance:

Move one of my men to c3 such that this man creates a
threat.

Then play Qd6xe5.

'K for king. Q for queen. R for rook. B for bishop, N for
knight. P for pawn. Each square is name by the
combination of the letter of the file and the number of the
rank.

Invitsct

Panel-5:
980

Figure 2
Blach to Piay

Fx. Figure 2. The white King cannot move. So the program
tries to attack it. One possibility is to play a bishop on a3
after removing the pawn on b2. For playing a bishop on
a3, it is necessary to first remove the pawn from d6. The
following plan is generated:

Remove the pawn from d6 so that it creates a
threat. Remove the pawn from b2. Play Bf8~a3.
Play Ba3xcJ.

In general, if the king and an unprotected knight are on the

same file, the program tries to play a rook or the queen on
this file. But it never considers a priori all the moves of
the rooks,

This analysis is very slow, but it is done only once. The
program usually produces several plans and then it tries to
execute them.

Fx. Figure 1. For realizing its plan, Black can move a pawn
to c3, threatening the bishop, therefore:
Play t4-e.3 Then play c3xb2 or Qd6xe5.

Fx. Figure 2. Black removes the pawn on d6, if it plays
d6-d5 threatening d5xc4. If after d6-d5, White plays
Bc4xd5, the program tries the second element of the plan,
i.,e., remove the pawn from b2. The principal methods for
removing an enemy man and leaving the square empty are:
threatening it or capturing a man which it protects. Here
the pawn protects the pawn on ¢3. The program looks for
the moves capturing c3: Qf6xc3. If White replies with
b2xc3, Black considers immediately the third element of the
plan, i.e., Bf8-a3 mate.

We see that it is not necessary to analyze fully the other
positions, when the plan is in action. It is sufficient to
generate the moves which can realize some goal, for
instance removing some enemy man or verifying that some
move is always legal. There are two advantages: the
analysis is fast and the program generates few moves:
usually only a few moves satisfy a goal.

At each level of the tree, only "obvious" moves are
considered. A move is added to the tree only if there is

some reason to do so. If there is some problem, if the plan

Berliner

cannot bo executed as it was foreseen, the program looks
for the enemy moves which hinder the success of the plan.
Then it modifies the original plan as follows: it adds a
subplan which corrects the problem.

This entire method is applied for generating the moves of
both players.

The program analyzes quickly the intermediate positions
when all the plans fail. The main principle is to search for
new possibilities to capture an opponent (moves which did
not exist two ply before) such that this capture is
advantageous (capture of an unprotected man or of a man
whose value is greater than that of the capturing man).

Fx. Figure 1. After c4-c3, White has two new possibilities
to capture: the first is d2xc3, but the second element of
the Black's plan, i.e., Qdxe5, succeeds. The other is Bb2xc3
which also destroys the threat c3xb2. If now Black plays
Qd6xeb, there is the new opportunity to capture: Bc3xe5
and Black's plan fails.

Another way of using the initial analysis is to see if one of
the initial plans cannot also be executed deeper. This can
be done if the first condition of the plan is now fulfilled.
In the case of Figure 1, the program generated several
initial plans, and among them was:

Remove Bb2
Then play Qd6xa3
After c¢4-c3 Bb2xc3, it sees that the first element of the

preceding plan is satisfied. Then it considers the second
element, Qd6xa3 and the combination succeeds.

If there is a new opportunity to capture, the program adds
it in all its plans which are possible in this position. For
instance, for Figure 1, if, after c4-c3, White plays Qa3xd6,

the plan:
Play ¢3xb2 or Qd6xeb5
becomes:
Play ¢c3xb2 or c¢7xd6

since Qd6xe5 is no longer legal and c7xd6 becomes a new
possibility to capture. After Black plays c7xd6, Black has a
new chance to capture: déxe5 and after c7xd6, it
considers the plan:

Play c3xb2 or d6xeb
White cannot do

combination still
variations.

against this plan, and the
Naturally there are other

anything
succeeds.

The initial analysis of a position generates a set of plans.
These plans generate a set of moves at the first level of
the tree. If one of these moves leads to a failure, the
program analyzes the reasons for this failure and
eventually creates some new plans. With these plans, we
may generate moves which were not considered before.

”// //; //

Figure 3
White to Play
x. Figure 3. The program finds only one useful
characteristic: the queen on d5 is vulnerable. Only one

plan is created:
Play Qd2xd5

After this move, Black plays Rd8xd5 and White has no
advantage. So it tries to destroy the possibility of playing
Rd8xd5. One way is to remove the rook. So a new plan is:

Remove the rook from d8
Play Qd2xd5

A method for removing a piece is to threaten it. It is
possible with the rook fl:

Play Rf)-(8

Then play Rf8xd8 or Qd3xd5

So the program considers Rf1-f8 which was not first
consiclered. It is not an obvious move, because the rook
on f8 is not protected and is attacked twice. This is a
check move, but the program does not consider it because
the black king can move to h7 and because if the white
rook is on f8, it may be captured. After Rfl-f8, Black may
play Rd8xf8, and then White executes the following move
in the plan: Qd2xd5. So Black considers Kh8-h7. If White
plays the following move Rf8xd8, Black replies Ra8xd8 and
the combination fails. But the alternative move of the plan,
Qd2xd5 is good. Black plays Rd8xd5 and there is a new
possibility to capture: Rf8xa8.

In the same way (see Figure 1), we have seen that c4-c3
was considered only because Black realized that it was
interesting to obstruct the diagonal a3-d6.

The program does not develop the tree in depth first. It
develops the nodes before or after the enemy moves, such
that, if they were not legal, the balance backed up with the
minimax procedure would be advantageous. If it succeeds,
it applies the same method for the other player. Therefore
it is necessary to represent the tree in the computer. But
this is feasible, because the tree is not very large. It is

Invited Panel-5: Berliner

not possible to use the alpha-beta procedure, because
after each node the program may later add new nodes.
But the method used takes into account the provisory
balance found with the minimax. It is difficult to compare
my method with the alpha-beta procedure, but my method
is also very selective: the program considers only the
advantageous moves. If, for instance, some enemy move
evaders an attack, it does not develop the other enemy
moves at the same level.

The main difficulty in implementing this method is
programming the analysis of the initial position. This is not
a problem of computer time, because this analysis is made
only once, but this program is large and difficult to define.
For this reason, | do not program the detection of all the
possible types of combinations. For this, it would be
necessary to add some subroutines to the program. But |
do not believe that it is possible to write a chess program
which is simple and effective. Playing chess is a difficult
problem and it would be necessary for several scientists to
work several years to create a chess program playing as
well as a grandmaster.

Berliner has written independently a very interesting
program which has several similar features. For instance,
if a node has been developed, and if the opponent has a
combination after this move, then it is possible, with the
causality facility, to generate new moves which destroy the
combination. But most of the chess playing programs do
not use such methods and systematically develop large
tiees. Now they have better results because the authors
use very clever methods to develop the tree. It is now
necessary to work in another direction, using methods
developed by Berliner and myself (and certainly some
other methods which have not yet been found). The
results are not always successful at this time, because it is
difficult to write and check large programs, but, in my
opinion it is possible to considerably improve the
performance.

References

Berliner, H. J. "Chess as Problem Solving: The
Development of a Tactics Analyzer", Ph.D. Thesis,
Department of Computer Science, Carnegie-Mellon
University. March 1974.

Pitrat, J. "A Chess Program which uses Plans", To appear
in Artificial Intelligence,.

Invited Panel-5:

982

Berliner

