PUTTING THEORIES TOGETHER TO MAKE SPECIFICATIONS

R.M. Burstall and J.A. Goguen*

Dept. of Artificial Intelligence
Edinburgh University
Edinburgh EH8 INW

Dept. of Computer Science
University of California at L.A.
Los Angeles, California 90024

order not significant

We have been developing a language in which
you can give structured descriptions of theories.

Why are we interested in theories? Because
you need a theory to specify a problem before you
can develop a program to solve it, whether you
intend to develop the program intuitively or to
synthesise it mechanically by rule. It only
makes sense to say 'We want a program which can
invert a matrix' in the context of some theory
about matrices and the operations on them such as
multiplication.

Why are we interested in structured descrip-
tions of theories? Because people find it very
hard to understand anything at all unless they
have a well-structured description of it; as for
machines, twenty years work in Artificial Intel-
ligence has taught us to beware of letting them
loose on an unstructured description.

What would an unstructured description of a
theory be like? Imagine 217 axioms in Predicate
Calculus telling you how to find your way around
SRI, or 217 semantic equations describing the
language Klugegol78. Minsky (1975) protests
about 'attempts to represent knowledge as collec-
tions of separate simple fragments'. No-one
could approve of such monsters as these.

Now consider the analogous situation with
programs. They are structured by statements,
iterations and procedures. For large programs
these have proved inadequate (217 LISP functions!),
and SIMULA classes, CLU clusters and ALPHARD forms
have been devised to ward off the threatened chaos
(Dahl et. al 1970, Liskov 1975, Wulf et al 1976).
They all introduce abstract data structures by
giving the collections of procedures which define
the primitive operations on them. They separate
the part of the program which implements a struc-
ture from other parts which use it but have
no concern with its representation. Similarly
in Al Minsky's frame notion (Minsky 1975) offers
a way of bundling together LISP functions into
some meaningful entities. Indeed one reason for
the move away from a 'logical' representation of
knowledge to a procedural one may be that we have
some skill at structuring programs but hardly any
at structuring theories.

Our work on theories derives from our
attempts to clarify and generalise the above
methods of building up programs in terms of
abstract data structures. Tackling problem
specifications rather than programs turned out to
use the same mathematical tools but to be rather
less difficult. It is also an area overdue for
illumination. The present paper sets forth in

Invited Papers-2:
10145

an informal way our first, tentative, proposal for
a language in which one may describe theories.
This language, called 'Clear', is intended prim-
arily as a tool for program specification, but it
might also serve to represent knowledge in a
machine manipulable form. We have largely worked
out the mathematical semantics of Clear, but we
have not attempted to implement it.

We will first explain our notion of theory in
general terms, then discuss possible areas of
application. After this we will describe our
theory language and give some simple illustrations
of its use.

What we mean by a theory

The notion of theory is a loose intuitive one
in mathematics. There should be axioms, rules of
inference and theorems, but the language in which
they are expressed is open to choice. A popular
choice of a formal language would be first order
predicate calculus, or more boldly a higher order
calculus. Some people, like the predicate cal-
culus programmers (Kowalski 1974), would use a
more restricted calculus, say Horn clauses with
free variables but no explicit quantifiers. We
have chosen an algebraic notion of theory, due to
Lawvere (1963), making it many-sorted (Goguen,
Thatcher and Wagner 1977) and with provision for
errors (Goguen 1977).

A many-sorted algebraic theory is given by
naming a set of sorts, a set of operators over
those sorts and a set of laws which those oper-
ators must satisfy. The laws take the form of
equations with free variables but no quantifiers.
Since we may introduce truth values as a sort and
two no-argument operators (constants) true and
false, we can introduce predicates as operators
producing a truth value as result (just like LISP).

Here are two examples:-

Vector spaces

The operators are scalar addition and multi-
plication, scalar zero and one, vector addition,
vector negation, vector zero, and vector-by-
scalar multiplication. The laws are associat-
ivity and commutativity for scalar addition,
identity for scalar zero with addition and so
on.

GPS (General Problem Solver) The sorts are states,
actions, action-sequences, state descriptions,
attributes, values and differences. (In GPS
attributes of states have values, which give
rise to differences between states.)

The operators are (i) apply, taking an action
and a state to a state, (ii) descriptionof,

The sorts are scalar and vector.

Burstall

taking a state to a description, (iii) valueof,
taking a description and an attribute to a
value, (iv) undefined, a constant for a state,
and so on.

There are some laws, for example:-
apply(a,undefined) = undefined,

concatenation of action sequences is associ-
ative.

Lawvere showed how such a theory description
can be taken to denote a more abstract algebraic
structure, namely a collection of operators
susceptible to 'composition' (substitution) and
'tupling’. This is important because he was
able to develop some theory about 'theories' (if
you can have a theory about 'groups' you can have
a theory about 'theories'), and his work enables
us to give a mathematical basis to our language
for denoting theories. It is not appropriate to
go into thi3 mathematics here, but it is a com-
fort to us that we have managed to outline a
proper semantics for our language; we hope to
develop this and write it up soon for publication*

Not only is it relatively easy to reason
about algebraic theories, but there is evidence
that it is relatively easy to reason within an
algebraic theory, indeed that is just the domain
which was tackled very successfully by Boyer and
Moore (1975) with their LISP theorem prover, sub-
sequently enhanced to deal with many sorts by
Aubin (1976).

We already have some encouraging experience
of using algebraic theories (but not structured
ones) as a specification tool (Goguen 1976,
Goguen, Thatcher and Wagner 1977).

The use of algebraic techniques for speci-
fying abstract data types has been studied
extensively by Zilles (1974) and by Guttag,
Horowitz and Musser (Guttag 1975, Guttag et al
1976) who give examples of program verification
using such specifications.

We should remark that although we have
chosen to use algebraic theories rather than
predicate logic or lambda calculus theories, the
methods we have used to combine them are rather
general and may well apply to other kinds of
theory.

We have not written out the above examples
of theories' in full because they would be long
and hard to understand; even eight operators and
a dozen laws is a lot to swallow in one bite. A
mathematics book would scarcely present the con-
cept of vector space without some preparation on
semigroups, groups and fields. Indeed most of
the structure can be explained by saying that the
scalars form a field and the vectors a group. We
then have to impose some extra conditions (e.g.
commutativity of vector addition) and enrich the
structure with an extra operator, multiplication
of vectors by scalars, which is distributive, etc.

Similarly GPS becomes much easier to under-
stand if we first describe a state-action system,
then say that action-sequences are just strings
of actions whose effect is the composition of the
effect of the component actions. We can indep-
endently enrich the idea of state with attributes

Invited Papers-2:
10i46

and values, saying that descriptions are just-
arrays (finite functions) from attributes to
values. Only then can we put it all together
and introduce the notion of the differences
reduced by an operator.

This then is intuitively what we mean by
building up a theory in a structured way: any
good textbook does it all the time. Luckily
Lawvere's notion of the category of theories
supplies the mathematical correlate of this
informal exposition and enables us to apply known
mathematical methods ('colimits') to the task of
constructing theories by using other theories as
ingredients.

One may view a theory as a natural general-
isation of the notion of abstract data type.
Such a type is characterised by the operations
which create its elements or apply to them. A
theory may consist of several such types with the
operations between them, thus avoiding the diffi-
culty of arbitrarily assigning an operation from
A's to B's to type A or to type B. Analogous to
a group of procedures which realise a data-type,
as in SIMULA, CLU or ALPHARD, would be a group of
procedures which realise a theory. We learned
recently that Nakajima, Honda and Nakahara (1977)
had also been working on this idea and had
designed a programming language to incorporate it.
Their use of theories in a programming language
is close to what we had in mind. We hope that
the mathematical methods we have for structuring
specifications can be adapted to give semantics
for such a programming language (see our tentative
remarks about programs as theory morphisms later
on).

Specifications required for -program verification,
transformation and synthesis

Program verification has been a continuing
concern since McCarthy's classic paper (1963)¢
Recently there has been considerable interest in
synthesising programs from their specifications
(Manna and Waldinger 1971, 1975), Dijkstra (1975),
Darlington (1975, 1976), one promising method
being to take a very naive program as the specif-
ication and transform it into an acceptably
efficient one (Darlington and Burstall 1976,
Burstall and Darlington 1977, Arsac 1977). All of
these techniques for obtaining correct programs
must start from a specification. Verification,
whether by hand or by machine, makes heavy weather
even of non-trivial 'text-book' programs and still
seems impractical for the much longer programs
met with in practice. This comparative lack of
success of verification techniques has obscured
the fact that for large programs not only are we
unable to carry through a correctness proof, but
usually we cannot even specify the problem which
the program is supposed to solve.* Similar
remarks apply to program synthesis.

* For an overview of specification techniques,
with many references, see Liskov and Berzins
(1977).

Burstall

There are exceptions. To specify a compiler,
and hence verify it, you need to define the source
language and the target machine. Scott and
Strachey (1971 and subsequent papers) battled
valiantly to give us precise semantic definitions
of programming languages. Unfortunately, for
large languages the specifications are very hard to
understand (Robert Milne had one for Algol-68
which he declined to publish on the grounds that
no-one would read it). We surmise that a good
part of the trouble may be the lack of structure
in such a formal definition, the structure that
the writer of an informal manual for a language
must be very careful to make clear.”

Thus we feel that a better grip on the way to
structure the theory in terms of which specific-
ations are made is a prerequisite for raising
verification and synthesis techniques above the toy
problem level.

Specifying Al problems

In Al research, as in other disciplines dealing
with complex programs, there is a tendency to
write the program but never get around to speci-
fying the problem. Further any large program
must be composed of subprograms, and these cannot
be understood without a clear specification of the
subproblems they are supposed to solve. Thus
better tools for problem specification are a
pressing need in Al.

Not only Slould the theories used in speci-
fying these problems and subproblems be well
structured, they should also be sufficiently
abstract. They should be concerned with the
abstract nature of the data and the operations to
be performed rather than the particular problem
domain or the specific machine representation of
the data. For example Walts's (1975) work is
about the abstract notion of networks of relations,
rather than just about blocks and shadows or about
LISP S-expressions; its full utility can only be
exploited if this is kept in mind (see Mackworth
1977). Our theory language must be able to
handle such abstraction and enable us to hide
unnecessary detail.

Representing knowledge within an Al program

Al programs are commonly conceived to embody
knowledge, whether as program or as data. Proced-
ural embedding of knowledge may promote efficiency,
and it may enable one to use existing program
structuring techniques to impose some order on the
embedded knowledge. However procedural embedding
has disadvantages of inflexibility, and it makes it
difficult to incorporate new knowledge, whether
input or from inductive learning. Much of the
disquiet with knowledge held as data seems to us to
stem from its lack of structure, a large collection
of axioms or facts unorganised, slowing processing
down with irrelevant information.

Again we are exhorted to consider our common-
sense knowledge of the world as composed of a
large number of micro-theories about particular

* Mosses (1977) makes a start in this direction.

Invited Papers-2:
1047

aspects. But we are left largely in the dark as
to how to put these micro-theories together. This
question of 'putting theories together' is close
to the heart of our concern.

Thus although we cannot yet speak from
experience, we very much hope that our theory-
building techniques may eventually give some
fresh insight into the appropriate organisation
of knowledge in Al programs. A way of
presenting theories so that people can under-
stand them might help us to see how machines can
make use of them.

Theories

We start our exposition of the language
Clear by looking more closely at the notion of
many-sorted algebraic theory. Our theories will
also make provision for errors, like division by
zero, but we will defer consideration of this
until we have the basic ideas straight.

First we need the notion of a signature,
that is a vocabulary of operators with given
sorts.

A signature is a set of sort names and a set
of operator symbols, each with a given sequence
of 3orts for its arguments and a sequence of sorts
for its results (possibly more than one result).

We write w : s4q,...,8 -> Sj,....... ,Sn' to show that
w is an operator with input 30rts s4.,..,s,m and
output sorts s¢',...,s",."
Example 1 Natural numbers
sorts nat, bool
operations zero -> nat
succ : nat -> nat
iszero: nat -> bool
true : -> bool
false -> bool
not : bool -> bool
or : bool, bool -> bool

Example 2 Geometry (a fragment)

sorts line, point, bool
operations .join point, point -> line
intersection: line, line -> point

colinear point,point,point->bool
true : -> bool

false : -> bool

not : bool -> bool

A theory presentation is a signature together
with a set of equations using the operators of the
signature and respecting their input and output
sorts. The equations have variables which are
implicitly universally quantified.

Example 1 (continued)

variables m,n: nat

equations iszero(zero) = true
iszero(succ(n)) = false
not(true) = false
not(false) = true

*

for multi-result operators we could use a syn-
tax like "...a...r... where <q,r> = quotient -
and -remainder(m,n)", but we will not need them.

Burstall

Example 2 (continued)
variables p,q,r: point; I,m: line
equations intersection(join(p.q).join(q,r)) = q
join(p,q) = join(q,p)
not(true) false etc.

A theory is a signature together with a set
of equations closed under inference by reflexivity,
transitivity and symmetry of equality and by sub-
stitution. For example 'false = iszero(succ(succ
(zero)))' is an equation in the theory defined by
the presentation above.

Thus each theory presentation gives rise to a
theory but the same theory can be presented in
more than one way by choosing different sets of
'axiom' equations to generate it, (The notion of
Theory is more basic than Theory Presentation in
the sense that one would like to talk about the
theory of groups,for example,irrespective of any
particular axiomatisation of it,)*

The interpretations of a theory are algebras,
where an algebra is a collection of sets, one for
each sort, with a function over these sets assign-
ed to each operator of the theory. These func-
tions must obey the equations of the theory. In
practice for theories containing bool we will only
be interested in 'consistent' interpretations in
which true g false.

Theory-building operations

In the last section we were just writing down
theories explicitly one at a time. As soon as
they get to be interesting they become incompre-
hensible. We wind up with a large set of
equations that no-one can understand and which are
almost certainly wrong. So we must build our
theories up from small intelligible pieces. For
this we need

(i) the ability to write (small!) explicit

theories, as above, thus
theory sorts
opns
egns ... endth

(ii) four operations on theories, combine.enrich.
induce and derive, which enable us to build
up theory expressions denoting complex
theories.

We will explain these operations informally,
using examples.

First we define two explicit theories which will
be useful

The theory HatO
theory sorts nat

opns O i => nat
succt nat -> nat
eqns endth

Technically we should call this a 'theory with
signature' rather than just a 'theory' because
the choice of a particular set of operators is
irrelevant to the abstract notion, just as is the
choice of particular axioms (see Lawvere 1963 or
Manes 1976).

Invited Papers-2:
1048

The theory BoolO

theory sorts bool
ophs true ¢ => bool
fulue: -> bool
T bool -> bool
At bool, bopl <> bool

sqne T true = faise
Tl falae = true
falas A p = false
true A P =D endth

(Strictly we ought to insert 'variable p: bool'

before 'eqns'. but we will assume that undeclared
single letter identifiers are variables; their
type will be obvious. We will also allow our-

selves to use traditional infixed symbols like A.)
Combine

This operation is dull but plays its part in
the larger scheme of things. We simply take two
theories and add them together. The sorts of the
resulting theories are the union of the sorts of
the given theories, the operators are the union of
their operators, and the equations are the union
of their equations. We use the + sign for the
combine operation.

For example BoolO + NatO could be written
explicitly as —_—

theory

sorts bool, nat
opna true : -> bool
falses => bool
A : bool -> bool
At bool, bool > bool
03 => nat
succ: nat => nat
gqng 7] true false
M falas true
false A p = falae
true A p P endth

wouonon

We will see later that combine does not
necessarily produce the disjoint union of two
theories; it allows for sharing of common sub-
theories.

Enrich

Suppose that we want to build up a useful
theory of the natural numbers,including operators
for ordering and for equality. The operators <
and eq belong neither to BoolO nor NatO, but they
can be added to their combination to obtain a new
theory

The theory Nat?

enrich BoolQ + Natd by
opns XT NEt, AAT -> bool
eq: nat, nat => bool

agns 0 € n=true
pucc{m) < 0 = falae
=m<{n

suce{m) < aucc ng
eq(m,n

This whole expression denctee the new
enriched theory.

In general one may add new sorts as well,

m&{nAn<m egnden

thus

Burstall

enrich by
aorta . ..

OPNS sa.
eqns .., enden

The enriched theory inherits all the serts.
operatora and squations of the original one, The

new operators can have ms input and output sorts
the original aoris or tha new sorts,

Given the enrichment operation we could just
start with the empty thecry, nay § , and regard
any explicitly written theory as sn enrichment of
Induce

The theory Nat! has an operator eq which
satisfies not onT¥ The three equations explicitly
given but alsc by substitution, the equations

quo ,0) =
eq succ(O) succ(O))
ﬂq(succ(aucc(ﬁ)}.succ(aucc(o))) true

But the eguation

aqln,n) = true

and 8¢ on.

is not inferable by subatitution and is not part
of the theory.

We would like to be able to extend the
equations of a theory so that an equation heolds
for & veriable, n, if it holdas for every eguation
obtained by substituting a constant, that iz a
variable-free term, for n. 50 we have an oper-
ation induce on a theory which does just this.*
Thue in the theory induce Nat1. which we will cgll
Nat, the esguaticna

eq?n,n = true reflexive
eqi{m,n) = aq}n,mg symmetric
eq{1,m) A eq(m,n}A™\ eal1,n) = false tranaitive

all held.

To find egquations holding in & theory
created by induce we may prove by induction on
the structure of terms, using the eguations of
the original theory, that a certain form of
aquation holds for every variable-free term; we
may then assert that the form with a varisble
must hold in the induced theory. (Such methods
of inference will not in general be compléts how-
avar, }

In BoolC every variable-free term is equive-
alent to true or fmlae by uging the equations for
- and A, 5o it suffices to show that mn equation

holds for both true and false to ase that the
goneral aquation holds in induce BoolD. Induction
here just gmounts to cmse analysis. or example
‘171 true = true and 77} falss = falae both hold in
BoolQ, 50 1T p = p holds in indueca BoplO. We
€all induce Bpoll simply Bool.

Deriva

The third operation derive enables us to take
a more complex theory than we need, perhaps built
by combining and enriching some familiar thecries,
and then to select out from it just those sorts

* Technically, induce T, is the theory of the
initial algebra of T7

Invited Papers-2:
1049

and operations which we require. For example, if
we only need eq from Nat (and not < or zero or
succ) we may write

The theory Natequal

derive
sorts element, bool
opns equal, true, false
from Nat by
element is nat
bool is bool
equal is eq
true is; true
false is, false endde

This denotes a new theory with two sorts and
three operators. The equations governing the new
operator, equal, are not specified. Indeed we
have only given the signature of the new thonry.
but. the properties of equel are given implicitly
by the correspondence equal is eq. Notiee- thet
the equations for eq use the auxiliary operator <.
In general an operator of the derived theory may
correspond to a A defined operator of the orig-
inal theory, thus "plus2 is A n.succ(succ(n))".

For brevity we will omit pairs of the form
'X i8S x', such as 'true is true'. Also if we
already have a theory T we may write'signature T'
to denote its signature.

We use derive when we want to define a theory
in terms of some other theories with which we are
already familiar but which, taken together, are
too rich for our purpose. We are making a con-
struction from familiar mathematical objects, but
the details of the construction are discarded in
the more abstract result. An analogy would be
the construction of the natural numbers in terms
of the sets @, [o] ,{@, [a]}.... The operations
we need on the natural numbers are, say, zero,
successor and <, Other possible operations on
these sets, such as cartesian product of two sets,
are not meaningful for numbers. In programming
work it is well-known that the operations on an
abstract data type are defined in terms of those
on a more concrete type which represents it; but
at the abstract program level the more concrete
operationsshould not be available.

Procedures for theory-building

We have some primitive operations on theories.
The next step is to enable the user to define his
own operations using these. For this we intro-
duce procedures - no self-respecting language
could be without them.

We shall introduce the simplest mechanisms
which provide tolerably convenient facilities,
namely

(i) Theory constants,
mame to a theory

enabling us to give a

(ii) Theory procedures, taking theories as
their parameters and producing a theory as
a result. Their bodies use the primitive
operations already defined and may call
other theory procedures (but we eschew
recursion])

Burstall

Local theory definitions, permitted in the
bodies of theory procedures, thus:-
let T= ... in

(iii)

These facilities would be very similar what-
ever domain we were working in. Let us introduce
them in the familiar domain of numbers and truth-
values as a warming up exercise. We will assume
the primitives * (multiply), /(divide) and if...
then...else...

A constant declaration, .just assigning a
fixed value to an identifier pi, would be

constant pi - 22/7

A procedure declaration for a procedure pro-
ducing a number as result would be

procedure f(x: number, b: boolean) =
if b then pi * x else 0

A procedure declaration with an auxiliary
local variable z would be

procedure g(y: number) =
let z = f(y * y, true) in s

* *

z 4

Now if we evaluate g(2), 7, takes the value
f(2*7?, true), i.e. (22/7)*2*2, and g(2) is the
cube of this value.

Now the same definitional methods and syntax
will apply to theories, using the theory-building
operations instead of * ,if-then-else etc. (we do
not need conditional expressions for theories).
We will need the type specification for parameters,
as in x: number, since it turns out that there is
notion of type for theory parameters.

There is one major difference however between
numbers and theories as a domain. Two theories
may share some common subtheory. For example
the theory of natural numbers has Bool as a sub-
theory since it has predicates like <, so does the
theory of character strings which has predicates
like isempty. We may want to enrich the combin-
ation of these two theories to allow operators
like

length: string -> nat

In this new theory we want the truthvalues
produced by < to be the same as those produced by
isempty. We want one copy of Bool not two. Thus
Bool is a shared subtheory.

Where have we met this situation before? In
LISP or any other language with pointers we have
shared substructures. Let us see how the defin-
itional mechanisms we have introduced would behave
with shared lists. We will then be ready to
tackle theories. We need atoms "A, "B etc., the
list constructor cons, the selectors car and cdr
and, crucially, the predicate eq which tests
whether two lists are equal in the sense of
starting with the same list cell, not just having
the same shape. We will not use LISP syntax, but
we intend LISP semantics, passing parameters by
pointer than than copying the list structure. Let
us look at examples (the intended values of the
expression are given on the right)

(i) eq(cons("A,"B),cons("A,"B)) false

Inviedt

Paners-2:
1050

(ii) constant ab = cons("A,"B)
eq(ab,ab) true

constant ab = cons("A, "B)

(iii)

eqg(cons(ab,"c),cons(ab,"C)) f alse
eqg(car(cons(ab,"c)) ,car(cons(ab, "c)))
true
(iv) procedure P(Il; list) = eq(l,l)
P(cons("A,"B)) true

(v) procedure P(I: list) -
let m - cons(l,"C) in e1(m,m)
P(cons(A,"B)) ... true

Thus every use of a constant, parameter or
local variable refers to the same list, to within
eq, but writing down an explicit expression twice
using cons refers to a different list (i). Two
different lists can share a common sublist (iii).

Now our theory-making operations, explicitly
writing a theory and enriching one, behave ju3t
like cons. But by using theory constants or
variables we can arrange for the theories we
create to contain shared sub-theories- Ore of
our main technical problems was to make this
remark precise, since for theories we do not have
the addre3s/value storage model as we do for data
structures. In fact the category theory ideas of
"diagram" and its "colimit" give a rather general
notion of shared substructure. We hope that the
reader's intuition using the LISP analogy will
give him a reasonably good grip on the intended
semantics. Those who wish to know the precise
method for determining the denotation of our
specifications must await the mathematical
semantics in the paper which we are preparing.

The specification language Clear

We will call our proposed specification
language "Clear". A specification in Clear con-
sists of a sequence of constant and procedure
declarations followed by an expression. The
expression denotes a theory, not explicitly but
using the theory-building operations and the
declared constants and procedures.

Clear can be viewed as a language for com-
municating a precise specification of a problem
to people, such as programmers- It could also be
implemented on a machine so that 'evaluation' of a
Clear specification yielded an explicit represent-
ation of the theory it denotes- A more useful
implementation however would be to link Clear to
an equatinnal theorem prover which would try to
prove that a given equation held in this theory
without producing the theory explicitly. Or it
could be incorporated in a system which tried to
show that a given program implemented some oper-
ations of this theory. This raises interesting,
but still unanswered questions, about the relation
between specification structure and program struc-
ture .

We will explain Clear by example. Let us
start by building up the theory Nat of natural
numbers using the constant facility and the let
facility, thus repeating in succinct form the
more fragmentary development of Nat above. We
start with Bool, the theory of truth values.

Rurstall

(const is short for constant)
const Bool =

induiceé theory

gorts bool
opna true, falae: -> bhool

™ s bool => bool
bool,bool => beel

vara p: beol
eqng =] true = false
- false = true
true A p = p
falae A p = false

The constant EBool now denctes the theory of truth
values, Sinee we mpplied the induce operstion it

alac has eguations such as J7 p = p obtained by
cagse analysis.

endth

ponst Nat =
induce let Natd =

theory sorts nat
opna i+ nat

gupn: nat =» nat endth
in enrich Natd + Hool hy
opns <, eq: mafr, nat => bool
varg m,n: nat
cans O<u = Lrue
Ezmr:(m) £ 0 = false
sueel{m) < sucei{n) = m<n

eq(m.n) = mén A nim enden

The constant Nat now denotes the theory of
natural numbers. It is built up by first making
a local definition of the simple theory NatO with
just zero and suec. We then combine this with
Boo], enriching the combination with extra pred-
icates < and eq. finally induce applied to the
whole expression ensures that the theory contains
general equations like eq(m,m) - true-

Procedures in Clear

We often build one theory on top of another.
Suppose for example that we have some partially
ordered set, then we can form strings from its
elements and define the predicate 'ordered' for
strings- This is just what we would have to do
if we wanted to specify some sorting task. A
theory of ordered strings can be developed for
any partially ordered set (poset) of elements and
the latter can be regarded as a theory parameter
(compare Form parameters in ALPHARI)). We can
write a procedure using the theory-building oper-
ations to construct the theory of ordered strings
from this parameter. Now we can apply this pro-
cedure to any theory which has a 'less than or
equal' operator satisfying the reflexivity,
transitivity and antisymmetry laws, for example
the theory Nat- Thus the procedure can only
accept as parameter a certain sort of theory; we
had better call it a 'meta-sort' to avoid con-
fusion with the sorts within theories. This meta-
sort is itself a theory, in this case the theory of
partial orderings-

A degenerate example would be a theory pro-
cedure which can take any set as parameter and
does not need any operators, for example the pro-
cedure which, given a set of elements, produces
the theory of 3tring3 of those elements. The

Invited Papers-2:
1051

nieta-sort here is the trivial theory with one sort
and no operators.

const Triv = theory sorts element endth

The theory procedure to make strings is then
(proc being short for procedure)

proec Strings (_JL_: Triv) =
induce ghrich X By

gorts gtring
opag’ unit: element => string

Mo = siring
+ & string, string =-> string

eqns J‘L.EI = 3

g.h =8

(s.‘t).u = s.(t.u)

As an example we can apply this procedure to Nat
to get strings of natural numbers, but we need

to associate the sorts and operators of the meta-
sort (Triv)of the formal parameter with those of
the actual parameter (Nat), that is we need a sort
to sort function and an operator to operator
function just as in derive. We write these in
brackets after the actual parameter, thus

enden

Strings (Nat [element is nat])
We may omit pairs of the form 'x is. x'-

The actual parameter theory must include all
the equations of the meta-sort theory as rewritten
under this operator to operator function. We
must prove this for every procedure application-
Unlike conventional type checking it is not in
general decideable.

Now to do ordered strings we need the theory
of partial order for use as a meta-sort.

const Poset =
enrich RBool by
gorts wlement
opns £, en: element, element -> hool
eqgns x £ x = true
x < yAy € 2A) (x £ &) = false
{tranaitivity)
eqlx,¥) = x ¢ ¥y Ay {x enden

(]

We can now write the procedure for ordered
stringsz, We use the procedure Strings defined
abova,

proe Orderedstrings {P: Poset) =
induce enrich Strings IEE _x_z;

opns ordered: string -> bool
eqna ordered = true
ordered{mit{z)) = true
ordered{unit(x),unit{y}) - r ¢ ¥
ordered{s.t.u) = ordered(a.t

A ordered(t.u) anden

Use of a theory as a meta-sort is rather
distinct from its use in defining some data
structure such as natural numbers- It enables
us to state the presuppositions for some task
which we wish to specify, and we are interested
in any interpretation of the theory rather than
some particular canonical one.

Shared subtheories

We observed already that just as two lists
may share substructure so may two theories; this

Burstall

in accomplished by having the same variable appear
in both the expressions denoting these theories.
The details, which follow, are a little technical
and may be skipped if desired.

Suppose that we have a theory variable T
ei ther a formal parameter or bound by a let,"
Then the theory "enrich T by...enden" contains
this theory T as a subthe~ory, and so do "T+...
and "Induce T". The theory ''derive aigrigture T1
from T? by, .Tendde" contains T as a subtheory
if TInjontains it. Should T2. also contain T_ as
a subtheory then the "..." had better map its
operators identically (if they both contain Bool,
"true is false" would not be welcome). Now it we
combine two theories T1_and T2 which both have T
as a subtheory then TT+ T2 "only contains T once".
The same rules hold IT T Ts not a variable but is
introduced by "const T = ...". All this enables us
to have Bool, say, as"a subtheory of several
theories without proliferating many copies of it.
Sometimes we do need a fresh copy of a theory T,
so we let "copy T" denote one, to save writing it
out again explicitly.

When we apply a procedure P to an argument _T

the result always includes T just as if we had -
written P(T) + T instead of P(T). For example
String (Nat) is a theory whic has not only string

operators but also the operators like succ
defined in Nat, Of course when we are writing
the definition of the procedure String these
latter operators are not available; the import-
ance of such 'insulation' mechanisms has been
pointed out by Wulf and others.

Errors and conditionals

Before going on to look at examples of
specifications written in Clear we will incor-
porate two USEFU features: errors and condition-
als.

Some applications of ar operator to its
arguments will, not give a meaningful result, for
example dividing by zero or popping an empty
stack. Thus we need to consider errors, a topic
which is often glo33ed over in algebraically
oriented work, but whose proper treatment is
essentialfor a realistic specification language.
It is important too that the different levels of
abstraction provided by our language should not
become confused as soon as an error is encoun-
tered; we do' not want a stack underflow to pro-
duce an error message 'array subscript out of
bounds’. Gtoguen (1977) studies this topic in
depth, defining error algebras and error theories.
We will confine ourselves to an informal, glance
at error theories.

The idea is to extend each sort by a set of
error elements of that sort, and to have error
operators which produce these elements. Thus

the theory of stacks might have an error operator
underflow: -> stack

and the theory of arrays might have an error

operator
notdefinedfor: index -> value

meaning that there is no value for this index in

Invited Paners-2:

the array. The term 'notdefinedfor(7)" would

serve as an informative error result.

To say when an error occurs or to equate two
different error expressions we need to use error

equations, thus
pop(empty) = underflow
pop(underflow) = underflow

We call the non-error elements of a 3ort "OK
elements", the non-error operators "OK operators”
and the non-error equations "OK equations". Now
we can write a presentation of a theory with a set
of erroropns in addition to the previous (OK)opns,
and a set of erroregns in addition to the previous
(OK)eans. An interpretation of such a theory is
an 'error algebra', that is an algebra some of
whose elements are designated error elements.
designation must obey the following rules:-

This

(O Error operators always produce an error
element.

(?) OK operators produce an error element if any
of their arguments is an error element.

Now for an error algebra to satisfy the theory
an OK equation or an error equation does not have
to hold for all values of the variables. Only the
following must be the case

(1) An OK equation must hold if both sides eval-
uate to an OK element.

(2) An error equation must hold if either side
evaluates to an error element.

For example

theory sorts nat
opns zero: -> nat
succ: nat -> nat
pred: nat -> nat

erroropns neg: -> nat

egns pred(3ucc(n)) = n
erroregns pred(zero) = neg
succ(neg) = neg
pred(neg) = neg endth
Further examples, stack, array and symbol

table, later.

It often happens that two expressions are
equal only under a certain condition, thus

f(x) - g(x) if p(x)
Now we can permit such a conditional equation
by regarding it as an abbreviation for

it (p(x).f(x),g(x)) = g(x)

where 'if' is the usual conditional operator
defined for each type by the equations

are given

if (true,y,z) =y if (false,y,z) = z

Conditional axioms have been studied using a
different approach by Thatcher, Wagner and Wright
(1977).

Notice that the fact that our OK equations
automatically do not apply to error values often
saves us from adding a condition such as
" If s # underflow".

Notation

We should mention some small further points

Burstall

1052

about notation. If we are naming sorts in a con-
text where several theories are present, the same
sort name, s,
T1 and T2, making a reference to s ambiguous. We
then simply refer to "s of TV" or "s of T2.". A
similar notation "f of TT™ will disambiguate
operators.

Often a theory has a particular sort which
is so to speak its raison d'etre, for example sort
nat in theory Nat (even though Nat also has sort
bool). To enable us to distinguish such a sort
we define the principal sort of a theory to be
the first sort mentioned in its definition, thus
in 'theory sorts s,t endth' s is the principal
sort and similarly in 'enrich T by sorts s,t
enden'. Now a helpful convention is to allow the
theory name, in lower case, to denote its princ-
ipal sort. Also when we specify the corres-
pondence between sorts in a derive operation we
may omit a pair 's is t' if s and t are the
principal 3orts of their respective theories;
similarly for the [... notation used for actual
parameters of procedures, thus 'Strings (Nat)' is
acceptable for 'Strings (Nat [element is nat])".

Examples of specification

We will give two illustrations to show how
Clear can be used to build up theories from
pieces in a systematic way:-

(i) a theory to specify a symbol table such
as one might need in an Algol compiler (an
example given by Guttag et al_ 1976)

(ii) a theory to specify a problem solving
system for a two dimensional blocks world.

These are, of course, rather small, simple
examples, but we hope that they are .just complex
enough to give the reader some idea of the modular
structure that we wish to see in specifications.
We hope the reader can grasp this structure with-
out poring over every equation. The whole Clear
description denotes a theory which does not itself
have this structure, sc that the implementer would
be at liberty to organise his program in some
other way..,.3 (Just as we might describe the number
19683 as 3, but you are free to store it in the
machine in any way you like, 3uch as binary.)
Indeed by using derive we 'throw away' many of the
operators introduced in our Clear description of
the theory, so that they do not appear in the
final theory and need have no corresponding pro-
cedures in the program which implements it. For
example we describe a symbol table in terms of a
stack of arrays, because stack and array are
familiar concepts, but our specification does not
demand that it be implemented in this way.

Here is our plan of campaign showing the
main procedures or constants we will define and
which other ones will use them.

invited Papers-2i

may appear in two different theories,

Stack Array
Smbo&?ﬂﬂﬁble-tcp Commands State-action-sysmn
Blocks-world Frobl solver

Blocks-problem-aolver

We will use the theory 3et of sets without
defining it. The definitichi should be fairly
obvioua. We will nlso use expressions of the
form {f{x): x € X A p{x)} instend of defining
such sets by explicit equations.

Stack

Since we can put any kind of element on a
stack we take as a parameter theory a trivial
theory, one with a single sort and no operators.
This describes the 'values' which go on the stack.
The operators, such as push and pop, are well-
known. Notice that no 'side-effects' are allowed.
We explicitly produce a new stack from push and
pop.
proc Stack (Value: Triv) =
induFE BArith VAlus ¥ Bool by

stac
opng nilstack: -> stack
push : value,stack=>stack
empty ¢ stack -> bool

pop stack -> atack
top : ateck -> value

erroropng underflow: =-> stack
undef : -> value
egng empty(nllstackg = trus
empty push(v s))= false
pop{push v,s; =a
toplpushiv,s =¥
erroregns pop(empty) = underflow
top{empty) = undef
popl{underflow} = underflow
enden

AI‘I‘?JE

We define arrays with any kind of element as
indices, not just integers. However the indices
must have an equality relation defined over them
in order for us to 'look up' indices in the array,
so we have a parameter theory of meta-sort Id., a
theory of identifiers with one sort besides bool
and an equivalence operator == over that sort.

We write the array access function as a[i] instead
of, say, get(a,i).

const Id =
enrTch Bool by
aorts ldentifier
opng ==t identifjer,identifier -> bool
eqng i—-i = true
1‘:! -

{1=3) n(;;_-k) AT (i==k) = falme snden

Burstall

1053

proe Arpay (Inder: Id, Value: Triv) =

indute snrich IndeX + Y&lus by
BOrts APray
opne nilarray: => arrsy
put + index,value, array->array
..-[...}: arrey,index -> value
in ¢ index,array => bool
erroropng undef: index -> value
eqns put i‘r,v.a)[i:| = v if i==il
put(11,v,a)li =a[i] 4™ fe=il
inli,nilarray = false

in :|.,pu'f:(i1 v,a)] = i==i1 or in{i,a)
pu‘l;(i v,put(ﬂ v1 a}-put(ﬂ vl,
put('l v,a)}
Af 7 ie=it
arroreqns nilarray[i] = undef(l) enden

Symbol table

A compiler needs to maintain a symbol table
relating each identifier to a value such as a
machine address or an address plus a type. In
an Algol-like language with blocks each block
introduces new identifiers which may or may not
have occurred before. It associates new values
with them, and these override any previous values
until the end of the block is encountered and the
table reverts to its prior state. Thus we need
a theory with sorts: symbol, value, table; it
has operators: nilst - an empty table, extend -
used to mark entry to a new block, put - to add a
symbol value pair, get(written-,. [...]) - to
retrieve a value, contract - used when the end of
the block is reached. Guttag et al_ (1976) have
already given an equational specification of a
symbol table as an abstract data structure. In
contrast to their direct specification we will
build up ours from the familiar concepts of stack
and array, then use derive to extract just those
operations which are required for a symbol table.

proc Symtab (Symbol: Id, Value: Triv) =
1ot TEbIs ~ Tack (ATFay (Symbol, Talue)) in
let Tablsl = enrich Table BY
opnp ertend: tablé™—>r table
putst : symbol,velue,tabls <> table
...f.-.]! tabla,aymbol -> wvalue
nilst : ~> table
erroropns undef: symbol - value
aqne extend(t)} = pmh(m 1arrav t)
puts‘i(s,v,t) uah(put s,v,?op(t%} JDOP 1'))
if in 1,top

tis] = top(t)]s
t[a7 = pop(t){s] 1f 1 in(s top(t
erroreqns underflow|a] + undef 55 _1__11

let

I = enrich Symbol + Yalue by
Borte table
ogpng nilst ¢ => table
extend: table <> table
putat : aymbol,value,table -> table
. ...]: table,symbol => velue
contract: teble -> table
erroropns undef: symbol -> value enden in
derive pignature T from Table! by
nilat i€ nilstdck
contract ia pop endds

Tabletop and Blocks World

Now let us specify a very crude model of a
set of blocks on a tabletop together with some
commands for moving them. We will stick to two

Invited Papers-2:

dimensions and assume square blocks all of the
same size. We can do this in terms of a one-
dimensional array indexed by places on the table,
each element of the array is a stack of blocks.
We enrich this array of stacks theory with some
extra operations: create an empty array of stacks,
put a block on the stack at a given place, move a
block from the stack at a place onto the stack at
another place. We now use derive to get rid of
the unwanted operations on stacks and arrays, just
retaining these operations on an array of stacks,
which we rename a tabletop. We do however need
an equality for tabletops, because later we want
to do problem solving and see whether we have the
required goal tabletop. For this we use a theory
procedure Stackeq (Value: Id) of stacks with
equality (==: stack,stacic -> bool). Its defin-
ition from Stack (Value: Triv) by enrichment is
left as an easy exercise. Similarly for

Arrayeqg (index: 1d, Value: 1d).

proc Tabletop (Block: Id, Place: Id.) =
let Stackofblocka - Stackeq (Block) in
let ArravofstacTcs" = Arraveq (Place,StackofblocksX"
let T = enrich Array of stacks by
opns empty: -> arrayofst

put: place,block,arrayofst->arrayofst
move: place,place,arrayofst->arrayofst
erroropns error: -> arrayofst
eans empty[p] = nilstack
put(p,b,a) = put(p,push(b,afp]),a)
move(p,p',put(p,b,a)) - put(p'b.a)
erroregns mowe (p,p,a)=serror if isemptv(a[p])
enden in
derive signature enrich Block + Place by
sorts tabletop
opns empty: -> tabletop
put : place,block,tabletop -> tabletop
move : place,place,tabletop -> tabletop
=- : tabletop, tabletop — bool
erroropas euror: -> tabletop
from T by. tabletop is, arrayofst endde

The problem solver will seek a string of
actions to transform one tabletop to another.. To
provide these actions we define some commands,
just expressions of the form "makemove(place1,
place2)" using an operator "makemove" with no
equations (like succ for numbers). Now we can
define a dynamic Blocks World, in which you can
execute commands to change the tabletop,

proc Commands (Place: Triv) =

theory sorts command
opns makemove: place,place -> command
endth

proc Blocksworld (Block: Id, Place: Id) =
enrich combine (Tabletop (Block), Place,

Commmands Place by
opns execute: commands, tabletop -> Tabletop
egns execute(makemove(p,p1),t) = move(p,p1,t)
enden

State-action system and Problem Solver

Quite separately from the Blocks World, but
later to be combined with it, we define a Problem
Solver theory for some arbitrary system with
states and actions. First we define the state-

Burstall

action system alone with just these two sorts,
then we have a procedure lterate to enrich any
state-action system to give the" effect of a whole
string of actions. A problem solver is then
defined for such a system, with an operation
solve which must attain any reachable set of goal
states- Note that we do not say how solve is to
be programmed, just specify its desired result.

const Stote-action-system =
let StEtE=powy-MtimYet Action = copy Id in
enrich Stete + Ketion + Hef (Kction) ¥¥
opus dot action,state -3 state
actat > set(action)
erroropng error: => state enden

proc Iterate (Sas: State-action-aystem) =
let - Ting\oaglelement is action}}iﬂ_

enrich SastXotionsTring By
ppns d0% Actlon=-giring,state => ztate
eqns do(nil,s) = s
do(as.unit(a),s) = do(a,do(as,s)} enden

proc Problem-Spolver {Ses: State-action-gystem) =

enrig s)‘#‘Nat'Ez
obnz Toachable: net,atate -> set(stats)
solve + nat,state,net(state) =>

action~string
erroropns error: —> action-string
aqng reachable(0,s) =
reachable(n+1,s) = {do{a,s1)| a € acts
A al e readmble(n sl
de{solve(n,s,3),s) € § = true
erroreqns sclvein.s,3) = error
if reachablel s S=={}
enden

Blocks World Problem Solver

We now put this all together by deriving the
required operations for a state-action system
from the Blocks World, and applying the theory
producing procedure Problem-Solver to it. The
resulting theory specifies the notion of solving
a problem for our Blocks World, that is finding a
sequence of suitable moves to get from one state
to a specified set of states. (In practice we
would have to add extra operators to describe the
start and goal states.) We choose to represent
blocks and places by natural numbers, but we
leave as a parameter the set of natural numbers
determining just which places are involved.

const Setofnumbers = enrich Set (Nat) by
opns TAEt: =3 set{nat)
anden

Proc Blocks-problem—solver (S: Setofnumbers) =
1ot Sag = Horive Eignature TiaTecartih-system
. from Blacksworl " =

gtate ig tahleto
COmman

acticn
acts E_Tmova(php:?}: p! € naet
p2 € nseti
de is execute endde in

Problem-golver (2as)

Some open guestions
A mmmber of quesntions arise from these

Invited

Papers-2:
1055

examples.

(i) The language pays for the extra structure and
localness by being rather cumbersome. Is
this inevitable? We tried to moderate the
longwindedness by 3ome conventions, but
feared to sprinkle too much 3Ugar lest the
reader lose sight of the basic mechanisms.

(ii) Should we distinguish two kinds of enrich-
ment (a) adding new sorts and operators and
equations about them, but without constrain-
ing existing operators further, (b) imposing
further equations on the existing operators?

(iii) Could we improve on the rather clumsy way
sharing is indicated in derive?

(iv) The induce operation is rather different from
the others, a little mysterious. We stuck
it in whenever we were talking about a part-
icular data structure. Could it be inserted
more systematically? Perhaps we should
distinguish between theories used as meta-
sorts, which generally do not need induce,
and other theories, which generally do.

Does induce allow us to make all the induc-
tive inferences we need?

(v) Is our transfer of the LISP sharing paradigm
to theories the best approach? Can we make
good our claim to understand its semantics?

Programs and theory morphisms

In this section we discuss in a tentative way
how programs, as opposed to specifications, might
fit into our algebraic framework. For this we
will need to define a 'morphism' between theories,
which represents one theory in another. (The
theories and their morphisms form a category,
Lawvere 1963). The idea is that a program is
essentially a means of representing one theory
(the specification) in another theory (the
machine), that is a morphism from one to the
other.

We can often represent operators of one
theory by operators of another, to be precise by
derived operators of the other theory. By a
derived operator of a theory we mean one which
can be expressed in terms of the primitive oper-
ators. In a theory with primitives 'not' and
'and' the operator

Azy. 1 (A Y)

is a derived operator ('or'). In general we
may build any term in the primitive operators
using suitable variables, using the familiar A
notation to bind these variables. These oper-
ators include miliary ones, that is constant
terms. An operator may be represented by more
than one derived operator of the other theory.
Since our theories may involve several sorts we
must also represent each sort of the first theory
by a sort of the second.

Now the operators of the first theory obey
certain equations, so naturally the same equations
must be true of the corresponding derived oper-
ators of the second theory.

We call such a connection between two

Burstall

theories a theory morphism. Here is the defin-
ition.*

A theory morphism from a theory T to a theory
T is
(i) A function f from the sorts of T to the sorts

of T. WWe write s is s' to mean f(s) = s'.

(ii) A function g from the operators of T to non-
empty sets of derived operators of T', such
that any equation of T gives rise to an
equation of T' when each operator & of T is
replaced by any operator in g(W - The input
and output sorts of an operator in g(H) must
be the f-images of those of W - We write
Wis W' to mean g(ﬂ) - W,

By the obvious extension,the* theory mormphiam
maps each derived operator of T to a set of
derived operators of T'; this holds in particular
for nullary operators i.e. constant terms.

Consider for example Id., "the theory of ident-
ifiers with an equivalence operator, and Nat the
theory of natursl numbers. We can defing & mor—
phiam from Id to Nat by

== -

sorts identifier jip nat

bool is bool
opng == is oql
true is tru(-ﬂ false is falsa]
4 1 1V A iz (A

Suppose that we enrich Nat with a multiplie-
ation operator to get, say, Fafmult. Then we cou
have s morphism f'rom Bool to Nastmult

sorts boel is nat
opna false is 0.2.4..-.;
true is 11,%,5,...
N is Succ}
A is (%]
Representing sets by strings and stacks by
array-index pairs are other well-known examples.

*

As a matter of fact such theory morphisms play
an essential role in our mathematical semantics
for Clear. But here we are concerned with their
connection with programs. It seems that if we
restrict ourselves to an applicative language
(without assignment) our theory morphisms are the
mathematical correlate of a SIMULA class, CLU
cluster or ALPHARD form, with the theory T playing
the (generalised) role of the newly defined data
type and the theory T' being the existing data
type used to represent it. The derived operators
in the morphism from T to T' are the procedures in
the class, cluster or form declaration.

We do need one generalisation however since
in the programming case the procedures may well be
recursive. Fortunately Wright, Thatcher, Wagner
and Goguen (1976) have defined a notion of rational
theories and their morphisms** allowing recursively

* QOur theory morphisms are different from Lawvere's
which represent an operator by a single derived
operator.

** We would also need rational theories to make
Clear deal properly with infinite data, such as
infinite trees, defined inductively.

Invited Papers-2:

derived operations (not just X but recursion too);
this seems to model the real programming situation
(always provided that we regard an imperative pro-
gram as a notational variant of an applicative
onel).

Now we see that a specification is just a
theory, a machine (or more abstractly the prim-
itive operators and sorts of a programming lang-
uage) is another theory, and a program to realise
the specification is just a (rational) morphism
from the specification theory to the machine
theory.

Of course we should not describe this mor-
phism in an unstructured way, indeed there should
be a programming language analogous to the specif-
ication language Clear, but describing morphisms
not theories.** This would be the correlate of
SIMULA etc. or more closely of the iota language
of Naka.jima et al, and of Parnas' (197?) method
of programming with modules. We have worked on
such a language but decided to first get straight
the rather easier case of a specification lang-
uage .

How would the structure of such a program
relate to the structure of the specification which
it implements? The degree of closeness would be
up to the implementer, but it would be natural to
use the various theories defined for specification
purposes to define the task of subparts of the
program. In general one would expect the specif-
ication would be simpler than the program, and to
specify parts of the program one would need to
elaborate the theories used in the specification
with new sorts and operators. For example one
might decide to use the GPS method to solve the
blocks world problem, and one would have to enrich
the state-action theory with new sorts like
'difference' and operators like ‘reduces’.

A speculative conclusion: the main intel-
lectual task of programming is elaborating the
theories which describe all the concepts used in
the actual program. Writing the code (defining
the morphisms) is a much more humdrum business.

Ah well! This is all delightfully vague
and a great deal of work needs to be done. But
it does promise to be interesting.

Conclusions

The main point of this paper is that it is
possible to specify complex tasks provided that
we do not try towrite the specifications in an
unstructured way. Our particular language pro-
posal is only important in bringing into fbcus the
problem of devising structured descriptions of
specifications and suggesting the kind of oper-
ations which should be used to build them up. The
basic ideas developed for data abstraction in
programming languages should guide us in this
task, and we firmly believe that the mathematical
ideas about the category of theories can help us
to grasp the rather deep concepts involved-

** We have a base for such development in the
equational languages we have already implemented
OBJ (Goguen and Tardo 1977) and NPL (Burstall
1977).

Burstall

1056

Acknowledgements

We owe a deep debt to the pioneers McCarthy,
Landin, Eilenberg, MacLane and Lawvere, also to
James Thatcher, Eric Wagner and Jesse Wright at
IBM and to John Darlington at Edinburgh (now
London) for long and educative collaboration.
Many other colleagues have been very helpful
especially Patrick Cousot (Grenoble), John
Reynolds (Syracuse/Edinburgh), Gordon Plotkin,
David MacQueen and Jerald Schwarz (Edinburgh) and
Joseph Tardo (Los Angeles). J.A.G. wishes to
thank Saunders MaclLane for initiating him into
category theory, and William Lawvere for help on
the way. R.M.B. wishes to thank members of IFTP
Working Group 2.3 for much education and encourage-
ment, also Professor Veillon for a visit to USMG
Grenoble where he started on this work, and to
Professor Avizienis for help in visiting Los
Angeles. Alan Bundy and Michael Woodger kindly
read and made helpful comments on a draft.

We are grateful to the National Science
Foundation and the Science Research Council for
supporting this work, including an SRC Visiting
Fellowship at Edinburgh for J.A.G.

Our very sincere thanks to Eleanor Kerse for
her meticulous, speedy and cheerful typing.

Personal thanks go to Sei.ja Burstall,
Charlotte Linde and Chogyam Trungpa Rinpocho.

References

Arsac, J. (1977) Program transformations as a
programming tool. Research Report, Institut de
Programmation, University de Paris VI.

Aubin, R. (1976) Mechanising structural induction.
Ph.D. thesis. Depts. of Artificial Intelligence
and Computer Science, University of Edinburgh.

Boyer, R.S. and Moore, J S. (1975) Proving
theorems about LISP functions. JACM, 22, 1,
129-144.

Burstall, R.M. and Darlington, J. (1977) A trans-

formation system for developing recursive
programs. JACM, 14, 1, 44-67.

Burstall, R.M. (1977) Program proof, program
transformation, program synthesis for recursive
programs. Lecture notes at Summer School,
Erice, Sicily, 1976. To appear in Information
the Journal of the lItalian Association for
Computer Science.

Dahl, 0-J., Myhrhaug, B. and Nygaard, K. (1970)
The SIMULA 67 Common Base Language. Public-
ation S22. Norwegian Computing Centre, Oslo.

Darlington, J. (1975) Application of program
transformation to program synthesis. Proc.
of International Symposium on Proving and
Improving Programs, Arc-et-Senans, France, pp.
133-144.

Darlington, J. (1976) The use and implementation
of very high level specifications. Invited
paper at IFIP WG 2.3 Conference on Software
Specifications. St. Pierre-de-Chartreuse,
France.

Invited Papers-2:
1057

Darlington, J. and Burstall, R.M. (1976) A system
which automatically improves programs. Acta

Informatica, 6, 41-60.

Dijkstra, EW. (1975) Guarded commands, non-
determinacy and formal derivation of programs.
CACM, 18, 8, 453-457.

Goguen, J.A. (1976) Correctness and equivalence
of data types. Proc. of 1975 Conference on
Algebraic Systems, Udine, Italy, pp. 352-358.
Springer-Verlag.

Goguen, J.A. (1917) Abstract errors for abstract
data types. To appear in Proc. of IFIP Working
Conference on the Formal Description of
Programming Concepts, New Brunswick, N.J.

Goguen, J.A. and Tardo, J. (1977) OBJ-0 Prelim-
inary Users Manual, Semantics and Theory of
Computation Report, UCLA, Los Angeles.

Goguen, J.A., Thatcher, J.W. and Wagner, E.G.
(1977) An initial approach to the specific-
ation, correctness and implementation of
abstract data types. To appear in Current
trends in programming methodology, Vol. 3.

Data Structuring (ed. R.T. Yeh) Prentice Hall.

Guttag, J.V. (1975) The specification and
application to programming of abstract data
types. Computer Systems Research Technical
Report CSRG-59, University of Toronto.

Guttag, J.V., Horowitz, E. and Musser, D.R. (1976)
Abstract data types and software validation.
Report ISI/RR-76-48, Information Sciences
Institute, Marina del Rey, California.

Kowalski, R. (1974) Predicate logic as a program-
ming language. Proc. of IFIP Congress '74,
pp 569-574, North Holland.

Lawvere, FW. (1963) Functional semantics of
algebraic theories. Proc. of National Academy
of Science. 50, pp. 869-872.

Liskov, B.H. (1975) A note on CLU.
Cambri dge, Masse

Liskov, B.H. and Berzins, V. (1977) An appraisal
of program specifications. Computation
Structures Group Memo 141-1, MIT, Cambridge,
Mass.

Mackworth, A.K. (1977) Consistency in networks
of relations. Artificial Intelligence, 8, 1_,

MAC-TR, MIT,

99-118.

Manes, E.G. (1976) Algebraic theories. Springer
Verlag.

Manna, Z. and Waldinger, R. (1971) Toward auto-
matic program synthesis. CACM, 14, 3. 151-165.

Manna, Z. and Waldinger, R. (1975)
reasoning in program synthesis.
Intelligence, 6, 2, 175-208.

McCarthy, J. (1963) A basis for a mathematical
theory of computation. Computer Programming
and Formal Systems (eds. P. Braffort and
D. Hirschberg) North Holland.

Minsky, M. (1975) A framework for representing
knowledge. The Psychology of Computer Vision
(ed. P. Winston) McGraw-Hill: New York.

Knowledge and
Artificial

Burstall

Mosses, P. (1975) Making denotational semantics
less concrete. To appear in Proc. of the Bad
Honnef Workshop on Semantics of Programming

Languages.

Nakajima, R., Honda, M. and Nakahara, H. (1977)
Programming and verification schemes in the iota
system. To appear in Proc. of IFIP Working
Conference on the Formal Description of Program-
-ing Concepts, New Brunswick, N.J.

Parnas, D.L. (1972) A technique for module specif-
ication with examples. CACM, 15, 5, 330-336.

Scott, D. and Strachey, C. (1971) Towards a math-
ematical semantics for computer languages.
Technical Monograph PRG 6, Computing Laboratory,
Oxford University.

Thatcher, J.W., Wagner, E.G. and Wright, J.B.
(1977) Specification of abstract data types
using conditional axioms. Report IBM Laborat-
ories, Yorktown Heights, N.Y.

Waltz, D. (1975) Understanding line drawings of
scenes with shadows. The Psychology of Computer
Vision (ed. P. Winston) MoCraw Hill: New York.

Wright, J.B., Thatcher, J.W., Wagner, E.G. and
Goguen, J.A. (1976) Rational algebraic theories
and fixed point solutions. Proc. of IEEE 17th
Symposium on Foundations of Computer Science,
Houston, pp. 147-158.

Wulf, W.A., London, R.L. and Shaw, M. (1976)
Abstraction and verification in ALPIIARD.
ISI/RR-76-46, Information Sciences Institute,
Marina del Rey, California. Also as a Carnegie-
Mellon Computer Science Report.

Zilles, S. (1974) Algebraic specification of data
types. Computation Structures Group Memo 119,
MIT, Cambridge, Mass.

Invited Papers-2:

1058

Burstall

