
PUTTING THEORIES TOGETHER TO MAKE SPECIFICATIONS

We have been developing a language in which
you can g ive s t ruc tu red descr ip t ions of t heo r i es .

Why are we i n te res ted in theor ies? Because
you need a theory to spec i fy a problem before you
can develop a program to solve i t , whether you
in tend to develop the program i n t u i t i v e l y or to
synthesise i t mechanical ly b y r u l e . I t only
makes sense to say 'We want a program which can
i n v e r t a mat r ix ' in the context of some theory
about matr ices and the operat ions on them such as
m u l t i p l i c a t i o n .

Why are we i n te res ted in s t ruc tu red descr ip ­
t i o n s o f theor ies? Because people f i n d i t very
hard to understand anyth ing at a l l unless they
have a w e l l - s t r u c t u r e d desc r ip t i on of i t ; as f o r
machines, twenty years work in A r t i f i c i a l I n t e l ­
l igence has taught us to beware of l e t t i n g them
loose on an unst ruc tured d e s c r i p t i o n .

What would an unst ructured desc r ip t i on of a
theory be l i k e ? Imagine 217 axioms in Predicate
Calculus t e l l i n g you how to f i n d your way around
SRI, or 217 semantic equations descr ib ing the
language Klugegol78. Minsky (1975) p ro tes ts
about 'attempts to represent knowledge as c o l l e c ­
t i o n s of separate simple f ragments ' . No-one
could approve of such monsters as these.

Now consider the analogous s i t u a t i o n w i th
programs. They are s t ruc tu red by statements,
i t e r a t i o n s and procedures. For large programs
these have proved inadequate (217 LISP func t ions !) ,
and SIMULA c lasses, CLU c lus te rs and ALPHARD forms
have been devised to ward o f f the threatened chaos
(Dahl et. al 1970, L iskov 1975, Wulf et al 1976).
They a l l in t roduce abst ract data s t ruc tu res by
g i v i n g the c o l l e c t i o n s of procedures which def ine
the p r i m i t i v e operat ions on them. They separate
the par t of the program which implements a s t r u c ­
tu re from other pa r ts which use i t but have
no concern w i t h i t s rep resen ta t ion . S i m i l a r l y
in AI Minsky's frame not ion (Minsky 1975) o f f e r s
a way of bund l ing together LISP func t ions i n t o
some meaningful e n t i t i e s . Indeed one reason f o r
the move away from a ' l o g i c a l ' representa t ion of
knowledge to a procedural one may be that we have
some s k i l l at s t r u c t u r i n g programs but hard ly any
a t s t r u c t u r i n g t heo r i es .

Our work on theor ies der ives from our
attempts to c l a r i f y and general ise the above
methods of b u i l d i n g up programs in terms of
abs t rac t data s t r u c t u r e s . Tack l ing problem
s p e c i f i c a t i o n s ra the r than programs turned out to
use the same mathematical t oo l s but to be ra the r
less d i f f i c u l t . I t i s also an area overdue f o r
i l l u m i n a t i o n . The present paper sets f o r t h in

an in fo rma l way our f i r s t , t e n t a t i v e , proposal f o r
a language in which one may describe t heo r i es .
This language, c a l l e d ' C l e a r ' , i s intended p r im­
a r i l y as a t o o l f o r program s p e c i f i c a t i o n , but i t
might a lso serve to represent knowledge in a
machine manipulable form. We have l a r g e l y worked
out the mathematical semantics of Clear, but we
have not attempted to implement i t .

We w i l l f i r s t exp la in our no t ion of theory in
general terms, then discuss possib le areas of
a p p l i c a t i o n . A f t e r t h i s we w i l l describe our
theory language and give some simple i l l u s t r a t i o n s
of i t s use.

What we mean by a theory

The no t ion of theory is a loose i n t u i t i v e one
in mathematics. There should be axioms, ru les of
in ference and theorems, but the language in which
they are expressed is open to choice. A popular
choice of a formal language would be f i r s t order
pred icate ca l cu lus , or more bo ld ly a h igher order
ca lcu lus . Some people, l i k e the predicate c a l ­
culus programmers (Kowalski 1974), would use a
more r e s t r i c t e d ca l cu lus , say Horn clauses w i th
f ree va r iab les but no e x p l i c i t q u a n t i f i e r s . We
have chosen an a lgebraic no t ion of theory, due to
Lawvere (1963), making i t many-sorted (Goguen,
Thatcher and Wagner 1977) and w i th p rov is ion f o r
e r ro rs (Goguen 1977).

A many-sorted a lgebra ic theory is given by
naming a set of s o r t s , a set of operators over
those so r t s and a set of laws which those oper­
ators must s a t i s f y . The laws take the form of
equations w i t h f ree va r i ab les but no q u a n t i f i e r s .
Since we may in t roduce t r u t h values as a sor t and
two no-argument operators (constants) t rue and
f a l s e , we can in t roduce predicates as operators
producing a t r u t h value as r e s u l t (j u s t l i k e L ISP) .

Here are two examples:-

Vector spaces The so r ts are sca lar and vec to r .

The operators are sca lar add i t i on and m u l t i ­
p l i c a t i o n , sca lar zero and one, vector add i t i on ,
vec tor negat ion , vec to r zero, and vec to r -by -
scalar m u l t i p l i c a t i o n . The laws are assoc ia t ­
i v i t y and commutat iv i ty f o r scalar a d d i t i o n ,
i d e n t i t y f o r sca la r zero w i th add i t i on and so
on.

GPS (General Problem Solver) The so r t s are s ta tes ,
a c t i o n s , act ion-sequences, s tate d e s c r i p t i o n s ,
a t t r i b u t e s , values and d i f f e rences . (In GPS
a t t r i b u t e s of s tates have values, which g ive
r i s e to d i f fe rences between s ta tes .)
The operators are (i) apply, t ak ing an ac t i on
and a s ta te to a s t a t e , (i i) d e s c r i p t i o n o f ,

R.M. B u r s t a l l
Dept. o f A r t i f i c i a l I n t e l l i g e n c e
Edinburgh Un ivers i t y
Edinburgh EH8 9NW

and J.A. Goguen*

Dept. of Computer Science
Un ive rs i t y of C a l i f o r n i a at L.A.
Los Angeles, C a l i f o r n i a 90024

order not s i g n i f i c a n t

I n v i t e d Papers-2: B u r s t a l l
10145

t ak ing a s ta te to a d e s c r i p t i o n , (i i i) valueof,
t ak ing a d e s c r i p t i o n and an a t t r i b u t e to a
va lue , (i v) undef ined, a constant f o r a s t a t e ,
and so on.
There are some laws, f o r example:-
apply(a,undef ined) = undef ined,
concatenat ion of ac t ion sequences is assoc i ­
a t i v e .

Lawvere showed how such a theory desc r i p t i on
can be taken to denote a more abst rac t a lgebra ic
s t r u c t u r e , namely a c o l l e c t i o n of operators
suscept ib le to 'composi t ion ' (s u b s t i t u t i o n) and
' t u p l i n g ' . This is important because he was
able to develop some theory about ' theor ies ' (i f
you can have a theory about 'groups ' you can have
a theory about ' t h e o r i e s ') , and h is work enables
us to g ive a mathematical basis to our language
f o r denot ing t heo r i es . I t i s not appropr ia te t o
go i n t o t h i 3 mathematics here, but i t is a com­
f o r t to us tha t we have managed to o u t l i n e a
proper semantics f o r our language; we hope to
develop t h i s and w r i t e i t up soon f o r p u b l i c a t i o n *

Not only i s i t r e l a t i v e l y easy to reason
about a lgebra ic t heo r i es , but there is evidence
tha t i t i s r e l a t i v e l y easy to reason w i t h i n an
a lgebra ic theory , indeed t h a t is j u s t the domain
which was tack led very success fu l l y by Boyer and
Moore (1975) w i t h t h e i r LISP theorem prover , sub­
sequently enhanced to deal w i t h many sor ts by
Aubin (1976).

We already have some encouraging experience
of us ing a lgebra ic theor ies (but not s t ruc tu red
ones) as a s p e c i f i c a t i o n t o o l (Goguen 1976,
Goguen, Thatcher and Wagner 1977).

The use of a lgebra ic techniques f o r s p e c i ­
f y i n g abs t rac t data types has been s tud ied
ex tens ive ly by Z i l l e s (1974) and by Guttag,
Horowitz and Musser (Guttag 1975, Guttag et al
1976) who g ive examples of program v e r i f i c a t i o n
us ing such s p e c i f i c a t i o n s .

We should remark tha t al though we have
chosen to use a lgebra ic theor ies ra the r than
pred ica te l o g i c or lambda ca lcu lus t heo r i es , the
methods we have used to combine them are ra the r
general and may w e l l apply to other k inds of
theory .

We have not w r i t t e n out the above examples
of theor ies ' in f u l l because they would be long
and hard to understand; even e igh t operators and
a dozen laws is a l o t to swallow in one b i t e . A
mathematics book would scarce ly present the con­
cept of vec to r space wi thout some preparat ion on
semigroups, groups and f i e l d s . Indeed most of
the s t ruc tu re can be expla ined by saying tha t the
scalars form a f i e l d and the vectors a group. We
then have to impose some ex t ra cond i t ions (e . g .
commutat iv i ty of vec to r add i t i on) and enr ich the
s t r uc tu re w i t h an ex t ra operator , m u l t i p l i c a t i o n
o f vectors by sca la rs , which is d i s t r i b u t i v e , e t c .

S i m i l a r l y GPS becomes much easier to under­
stand i f we f i r s t descr ibe a s t a t e - a c t i o n system,
then say tha t action-sequences are j u s t s t r i n g s
of act ions whose e f f e c t is the composit ion of the
e f f e c t of the component a c t i o n s . We can indep­
endent ly enr i ch the idea o f s ta te w i t h a t t r i b u t e s

and va lues, saying tha t descr ip t ions are just-
arrays (f i n i t e func t ions) from a t t r i b u t e s to
va lues . Only then can we put i t a l l together
and in t roduce the no t ion of the d i f fe rences
reduced by an operator .

This then is i n t u i t i v e l y what we mean by
b u i l d i n g up a theory in a s t ruc tu red way: any
good textbook does i t a l l the t ime. Luck i l y
Lawvere's no t ion of the category of theor ies
suppl ies the mathematical co r re la te of t h i s
in fo rma l expos i t i on and enables us to apply known
mathematical methods (' c o l i m i t s ') to the task of
cons t ruc t ing theor ies by using other theor ies as
i ng red ien t s .

One may view a theory as a na tu ra l genera l ­
i s a t i o n of the no t ion of abs t rac t data type.
Such a type is character ised by the operat ions
which create i t s elements or apply to them. A
theory may cons is t of several such types w i th the
operat ions between them, thus avoid ing the d i f f i ­
c u l t y of a r b i t r a r i l y ass igning an operat ion from
A 's to B's to type A or to type B. Analogous to
a group of procedures which r e a l i s e a da ta - type ,
as in SIMULA, CLU or ALPHARD, would be a group of
procedures which r e a l i s e a theory . We learned
recen t l y t ha t Nakajima, Honda and Nakahara (1977)
had a lso been working on t h i s idea and had
designed a programming language to incorpora te i t .
Thei r use of theor ies in a programming language
is close to what we had in mind. We hope tha t
the mathematical methods we have f o r s t r u c t u r i n g
s p e c i f i c a t i o n s can be adapted to g ive semantics
f o r such a programming language (see our t e n t a t i v e
remarks about programs as theory morphisms l a t e r
on) .

Spec i f i ca t i ons requ i red f o r -program v e r i f i c a t i o n ,
t rans format ion and synthesis

Program v e r i f i c a t i o n has been a cont inu ing
concern since McCarthy's c l ass i c paper (1963)•
Recent ly there has been considerable i n t e r e s t in
synthes is ing programs from t h e i r s p e c i f i c a t i o n s
(Manna and Waldinger 1971, 1975), D i j k s t r a (1975),
Dar l ing ton (1975, 1976), one promising method
being to take a very naive program as the spec i f ­
i c a t i o n and t ransform i t i n t o an acceptably
e f f i c i e n t one (Dar l i ng ton and B u r s t a l l 1976,
B u r s t a l l and Dar l i ng ton 1977, Arsac 1977). A l l of
these techniques f o r ob ta in ing cor rec t programs
must s t a r t from a s p e c i f i c a t i o n . V e r i f i c a t i o n ,
whether by hand or by machine, makes heavy weather
even of n o n - t r i v i a l ' t e x t - book ' programs and s t i l l
seems i m p r a c t i c a l f o r the much longer programs
met w i t h in p r a c t i c e . This comparative lack of
success of v e r i f i c a t i o n techniques has obscured
the f a c t t ha t f o r la rge programs not only are we
unable to ca r ry through a correctness proof , but
usua l l y we cannot even spec i fy the problem which
the program is supposed to s o l v e . * S im i l a r
remarks apply to program synthes is .

* For an overview of s p e c i f i c a t i o n techniques,
w i t h many re ferences, see L iskov and Berzins
(1977).

I n v i t e d Papers-2 : B u r s t a l l
10i46

There are except ions. To speci fy a compi ler ,
and hence v e r i f y i t , you need to def ine the source
language and the ta rge t machine. Scott and
Strachey (1971 and subsequent papers) b a t t l e d
v a l i a n t l y to g ive us precise semantic d e f i n i t i o n s
of programming languages. Unfo r tuna te ly , f o r
la rge languages the s p e c i f i c a t i o n s are very hard to
understand (Robert Mi lne had one f o r A lgo l -68
which he dec l ined to pub l i sh on the grounds tha t
no-one would read i t) . We surmise that a good
par t of the t roub le may be the lack of s t ruc tu re
in such a formal d e f i n i t i o n , the s t ruc tu re tha t
the w r i t e r of an in fo rma l manual f o r a language
must be very c a r e f u l to make c l e a r . *

Thus we f e e l that a be t t e r g r i p on the way to
s t r uc tu re the theory in terms of which s p e c i f i c ­
a t ions are made is a p re requ i s i t e f o r r a i s i n g
v e r i f i c a t i o n and synthesis techniques above the toy
problem l e v e l .

Spec i fy ing AI problems

In AI research, as in other d i s c i p l i n e s deal ing
w i th complex programs, there is a tendency to
w r i t e the program but never get around to spec i ­
f y i n g the problem. Further any large program
must be composed of subprograms, and these cannot
be understood wi thout a c lear s p e c i f i c a t i o n of the
subproblems they are supposed to so lve. Thus
be t te r t oo l s f o r problem s p e c i f i c a t i o n are a
press ing need in A I .

Not on ly S l o u l d the theor ies used in spec i ­
f y i n g these problems and subproblems be we l l
s t r u c t u r e d , they should also be s u f f i c i e n t l y
a b s t r a c t . They should be concerned w i t h the
abs t rac t nature of the data and the operat ions to
be performed ra the r than the p a r t i c u l a r problem
domain or the s p e c i f i c machine representa t ion of
the da ta . For example Walts's (1975) work is
about the abs t rac t not ion of networks of re la t i ons ,
ra the r than j u s t about blocks and shadows or about
LISP S-expressions; i t s f u l l u t i l i t y can only be
exp lo i t ed i f t h i s is kept in mind (see Mackworth
1977). Our theory language must be able to
handle such abs t rac t i on and enable us to hide
unnecessary d e t a i l .

Representing knowledge w i t h i n an AI program

AI programs are commonly conceived to embody
knowledge, whether as program or as data . Proced­
u r a l embedding of knowledge may promote e f f i c i e n c y ,
and it may enable one to use e x i s t i n g program
s t r u c t u r i n g techniques to impose some order on the
embedded knowledge. However procedural embedding
has disadvantages o f i n f l e x i b i l i t y , and i t makes i t
d i f f i c u l t to incorpora te new knowledge, whether
inpu t or from induc t i ve l e a r n i n g . Much of the
d i squ ie t w i t h knowledge held as data seems to us to
stem from i t s lack of s t r u c t u r e , a large c o l l e c t i o n
of axioms or f a c t s unorganised, s lowing processing
down w i t h i r r e l e v a n t i n fo rma t i on .

Again we are exhorted to consider our common-
sense knowledge of the wor ld as composed of a
la rge number of m ic ro - theor ies about p a r t i c u l a r

* Mosses (1977) makes a s t a r t in t h i s d i r e c t i o n .

aspects. But we are l e f t l a r g e l y in the dark as
to how to put these mic ro - theor ies together . This
quest ion o f ' p u t t i n g theor ies together ' i s c lose
to the hear t of our concern.

Thus al though we cannot yet speak from
experience, we very much hope tha t our theory -
b u i l d i n g techniques may eventua l l y g ive some
f resh i n s i g h t i n t o the appropr iate organ isa t ion
of knowledge in AI programs. A way of
present ing theor ies so tha t people can under­
stand them might help us to see how machines can
make use of them.

Theories

We s t a r t our expos i t i on of the language
Clear by look ing more c lose l y at the no t ion of
many-sorted a lgebra ic theory . Our theor ies w i l l
a lso make p rov i s i on f o r e r r o r s , l i k e d i v i s i o n by
zero, but we w i l l defer cons idera t ion of t h i s
u n t i l we have the basic ideas s t r a i g h t .

F i r s t we need the no t i on of a s igna tu re ,
tha t is a vocabulary of operators w i t h given
s o r t s .

A s ignature is a set of sor t names and a set
of operator symbols, each w i t h a g iven sequence
of 3or ts f o r i t s arguments and a sequence of so r t s
f o r i t s r e s u l t s (poss ib ly more than one r e s u l t) .
We w r i t e w : s 1 , . . . , s -> sj,.......,sn' to show that

w is an operator w i t h i npu t 30rts s1 . , . . ,sm and
output sor ts s 1 ' , . . . , s ' n . *
Example 1 Natura l numbers

so r ts n a t , bool
operat ions zero : -> nat

succ : nat -> nat
i s z e r o : nat -> bool
t rue : -> bool
f a l s e : -> bool
not : bool -> bool
or : boo l , bool -> bool

Example 2 Geometry (a fragment)

so r ts l i n e , p o i n t , bool
operat i ons . join : p o i n t , po in t -> l i n e

i n t e r s e c t i o n : l i n e , l i n e - > po in t
co l i nea r : p o i n t , p o i n t , p o i n t - > b o o l
t rue : -> bool
f a l s e : -> bool
not : bool -> bool

A theory p resen ta t ion is a signature together
w i th a set of equations using the operators of the
s ignature and respect ing t h e i r input and output
s o r t s . The equations have var iab les which are
i m p l i c i t l y u n i v e r s a l l y q u a n t i f i e d .

Example 1 (cont inued)

va r i ab les m,n: nat
equations iszero(zero) = true

iszero(succ(n)) = false
not(true) = false
not(false) = true

* for mul t i - resul t operators we could use a syn­
tax l i ke " . . . a . . . r . . . where <q,r> = quotient -
and -remainder(m,n)", but we w i l l not need them.

I n v i t e d Papers-2 : B u r s t a l l
1047

Example 2 (cont inued) The theory BoolO

va r i ab les p , q , r : p o i n t ; l ,m : l i n e
equations i n t e r s e c t i o n (j o i n (p . q) . j o i n (q , r)) = q

j o i n (p , q) = j o i n (q , p)
n o t (t r u e) = f a l s e e t c .

A theory is a s ignature together w i th a set
of equations closed under in ference by r e f l e x i v i t y ,
t r a n s i t i v i t y and symmetry of equa l i t y and by sub­
s t i t u t i o n . For example ' f a l s e = iszero(succ(succ
(z e r o))) ' is an equation in the theory def ined by
the p resenta t ion above.

Thus each theory p resenta t ion gives r i s e to a
theory but the same theory can be presented in
more than one way by choosing d i f f e r e n t sets of
'ax iom' equations to generate i t , (The no t ion of
Theory is more basic than Theory Presenta t ion in
the sense tha t one would l i k e to t a l k about the
theory of g roups , fo r example, i r respect ive of any
p a r t i c u l a r ax iomat isa t ion o f i t ,) *

The i n t e r p r e t a t i o n s of a theory are a lgebras,
where an algebra is a c o l l e c t i o n of se ts , one f o r
each s o r t , w i t h a f u n c t i o n over these sets ass ign­
ed to each operator of the theory . These func­
t i ons must obey the equations of the theory . In
p rac t i ce f o r theor ies con ta in ing bool we w i l l on ly
be i n t e r e s t e d i n ' c o n s i s t e n t ' i n t e r p r e t a t i o n s i n
which t rue ø f a l s e .

Theory -bu i ld ing operat ions

In the l a s t sec t ion we were j us t w r i t i n g down
theor ies e x p l i c i t l y one at a t ime. As soon as
they get to be i n t e r e s t i n g they become incompre­
hens ib le . We wind up w i t h a la rge set of
equations t h a t no-one can understand and which are
almost c e r t a i n l y wrong. So we must b u i l d our
theor ies up from small i n t e l l i g i b l e p ieces. For
t h i s we need

(i) the a b i l i t y t o w r i t e (sma l l !) e x p l i c i t
t h e o r i e s , as above, thus

theory sor ts . . .
opns . . .
eqns . . . endth

(i i) f ou r operat ions on t h e o r i e s , combine.enr ich.
induce and de r i ve , which enable us to b u i l d
up theory expressions denot ing complex
t h e o r i e s .

We w i l l exp la in these operat ions i n f o r m a l l y ,
us ing examples.
F i r s t we def ine two e x p l i c i t theor ies which w i l l
be use fu l

Techn ica l l y we should c a l l t h i s a ' theory w i t h
s igna tu re ' r a the r than j u s t a ' t heo ry ' because
the choice of a p a r t i c u l a r set of operators is
i r r e l e v a n t to the abs t rac t n o t i o n , j u s t as is the
choice of p a r t i c u l a r axioms (see Lawvere 1963 or
Manes 1976).

(S t r i c t l y we ought to i n s e r t ' v a r i a b l e p: boo l '
before ' e q n s ' . but we w i l l assume tha t undeclared
s ing le l e t t e r i d e n t i f i e r s are v a r i a b l e s ; t h e i r
type w i l l be obvious. We w i l l a lso a l low our­
selves to use t r a d i t i o n a l i n f i x e d symbols l i k e A.)

Combine

This operat ion i s d u l l but plays i t s par t i n
the l a rge r scheme of t h i ngs . We simply take two
theor ies and add them together . The sor ts of the
r e s u l t i n g theor ies are the union of the sor ts of
the given t h e o r i e s , the operators are the union of
t h e i r operators , and the equations are the union
of t h e i r equat ions. We use the + s ign f o r the
combine opera t ion .

For example BoolO + NatO could be w r i t t e n
e x p l i c i t l y a s — —

In general one may add new sor ts as w e l l ,
thus

I n v i t e d Papers-2 : B u r s t a l l
1048

We w i l l see l a t e r tha t combine does not
necessar i l y produce the d i s j o i n t union of two
theo r i es ; i t a l lows f o r shar ing of common sub-
t h e o r i e s .

Enr ich

Suppose t ha t we want to b u i l d up a usefu l
theory of the n a t u r a l numbers, including operators
f o r o rder ing and f o r e q u a l i t y . The operators <
and eq belong n e i t h e r to BoolO nor NatO, but they
can be added to t h e i r combination to ob ta in a new
theory

enrich by
aorta . . .

* Technically, induce T, is the theory of the
i n i t i a l algebra of T7

and operations which we require. For example, if
we only need eq from Nat (and not < or zero or
succ) we may write

The theory Natequal

derive
sorts element, bool
opns equal, true, false

from Nat by
element is nat
bool is bool
equal is eq
true is; true
false is, false endde

This denotes a new theory with two sorts and
three operators. The equations governing the new
operator, equal, are not specified. Indeed we
have only given the signature of the new thonry.
but. the properties of equel are given impl ic i t ly
by the correspondence equal is eq. Notiee- thet
the equations for eq use the auxiliary operator <.
In general an operator of the derived theory may
correspond to a λ defined operator of the orig­
inal theory, thus "plus2 is λ n.succ(succ(n))".

For brevity we w i l l omit pairs of the form
'x iS x ' , such as 'true is t rue' . Also if we
already have a theory T we may write'signature T'
to denote i ts signature.

We use derive when we want to define a theory
in terms of some other theories with which we are
already familiar but which, taken together, are
too rich for our purpose. We are making a con­
struction from familiar mathematical objects, but
the details of the construction are discarded in
the more abstract result. An analogy would be
the construction of the natural numbers in terms
of the sets ø, [ø] ,{ø, [ø]},... . The operations
we need on the natural numbers are, say, zero,
successor and <, Other possible operations on
these sets, such as cartesian product of two sets,
are not meaningful for numbers. In programming
work it is well-known that the operations on an
abstract data type are defined in terms of those
on a more concrete type which represents i t ; but
at the abstract program level the more concrete
operationsshould not be available.

Procedures for theory-building

We have some primitive operations on theories.
The next step is to enable the user to define his
own operations using these. For this we intro­
duce procedures - no self-respecting language
could be without them.

We shall introduce the simplest mechanisms
which provide tolerably convenient f ac i l i t i es ,
namely

(i) Theory constants, enabling us to give a
name to a theory

(i i) Theory procedures, taking theories as
their parameters and producing a theory as
a result. Their bodies use the primitive
operations already defined and may cal l
other theory procedures (but we eschew
recursion])

I n v i t e d Papers-2 : B u r s t a l l
1049

(i i i) Local theory d e f i n i t i o n s , permi t ted i n the
bodies of theory procedures, t h u s : -
l e t T = . . . in

These f a c i l i t i e s would be very s i m i l a r what­
ever domain we were working i n . Let us in t roduce
them in the f a m i l i a r domain of numbers and t r u t h -
values as a warming up exerc ise . We w i l l assume
the p r i m i t i v e s * (m u l t i p l y) , / (d i v i d e) and i f . . .
t h e n . . . e l s e . . .

A constant dec l a ra t i on , .just ass igning a
f i x e d value to an i d e n t i f i e r p i , would be

constant pi - 22/7

A procedure dec la ra t ion f o r a procedure p ro ­
ducing a number as r e s u l t would be

procedure f (x : number, b: boolean) =
if b then pi * x e lse 0

A procedure dec la ra t i on w i t h an a u x i l i a r y
l o c a l va r iab le z would be

procedure g(y: number) =
l e t z = f (y * y, t rue) in s * z * z

Now if we evaluate g (2) , 7, takes the value
f (2 * ? , t r u e) , i . e . (22 /7) *2 *2 , and g(2) i s the
cube of t h i s va lue .

Now the same d e f i n i t i o n a l methods and syntax
w i l l apply to t heo r i es , us ing the t h e o r y - b u i l d i n g
operat ions instead of * , i f - t h e n - e l s e e t c . (we do
not need c o n d i t i o n a l expressions f o r t h e o r i e s) .
We w i l l need the type s p e c i f i c a t i o n f o r parameters,
as in x : number, since i t turns out that there is
no t ion of type f o r theory parameters.

There is one major d i f f e rence however between
numbers and theor ies as a domain. Two theor ies
may share some common subtheory. For example
the theory of na tu ra l numbers has Bool as a sub-
theory s ince it has predicates l i k e <, so does the
theory of character s t r i n g s which has predicates
l i k e isempty. We may want to enr ich the combin­
a t i o n of these two theor ies to a l low operators
l i k e

l e n g t h : s t r i n g -> nat

In t h i s new theory we want the t ru thva lues
produced by < to be the same as those produced by
isempty. We want one copy of Bool not two. Thus
Bool is a shared subtheory.

Where have we met t h i s s i t u a t i o n before? In
LISP or any other language w i th po in ters we have
shared subs t ruc tu res . Let us see how the d e f i n ­
i t i o n a l mechanisms we have in t roduced would behave
w i th shared l i s t s . We w i l l then be ready to
tack le t h e o r i e s . We need atoms "A, "B e t c . , the
l i s t cons t ruc to r cons, the se lec to rs car and cdr
and, c r u c i a l l y , the pred ica te eq which t es t s
whether two l i s t s are equal in the sense of
s t a r t i n g w i th the same l i s t c e l l , not j u s t having
the same shape. We w i l l not use LISP syntax, but
we in tend LISP semantics, passing parameters by
po in te r than than copying the l i s t s t r u c t u r e . Let
us look at examples (the intended values of the
expression are g iven on the r i g h t)

(i) eq(cons("A, "B) ,cons("A, "B)) f a l se

(i i) constant ab = cons("A,"B)
eq(ab,ab) . . . t rue

(i i i) constant ab = cons("A, " lB)
eq(cons(ab," c) , cons(ab," C)) f alse
eq(car (cons(ab, "c)) ,car (cons(ab, " c)))

t rue

(i v) procedure P (l ; l i s t) = e q (l , l)
P(cons("A,"B)) t rue

(v) procedure P (l : l i s t) -
l e t m - cons(l , "C) in e1(m,m)

P(cons(A,"B)) t rue

Thus every use of a constant , parameter or
l o c a l va r i ab le r e fe r s to the same l i s t , to w i t h i n
eq, but w r i t i n g down an e x p l i c i t expression twice
using cons r e f e r s to a d i f f e r e n t l i s t (i) . Two
d i f f e r e n t l i s t s can share a common s u b l i s t (i i i) .

Now our theory-making operat ions, e x p l i c i t l y
w r i t i n g a theory and en r i ch ing one, behave ju3 t
l i k e cons. But by using theory constants or
va r i ab les we can arrange f o r the theor ies we
create to conta in shared sub- theor ies- One of
our main techn ica l problems was to make t h i s
remark p rec i se , since f o r theor ies we do not have
the addre3s/value storage model as we do f o r data
s t r u c t u r e s . In f a c t the category theory ideas of
"diagram" and i t s " c o l i m i t " g ive a ra ther general
no t i on of shared subs t ruc tu re . We hope tha t the
reader 's i n t u i t i o n using the LISP analogy w i l l
g ive him a reasonably good g r i p on the intended
semantics. Those who wish to know the prec ise
method f o r determin ing the denotat ion of our
s p e c i f i c a t i o n s must await the mathematical
semantics in the paper which we are p repar ing .

The s p e c i f i c a t i o n language Clear

We w i l l c a l l our proposed s p e c i f i c a t i o n
language "C lea r " . A s p e c i f i c a t i o n in Clear con­
s i s t s of a sequence of constant and procedure
dec lara t ions fo l lowed by an expression. The
expression denotes a theory, not e x p l i c i t l y but
us ing the t h e o r y - b u i l d i n g operat ions and the
declared constants and procedures.

Clear can be viewed as a language f o r com­
municat ing a prec ise s p e c i f i c a t i o n of a problem
to people, such as programmers- It could also be
implemented on a machine so tha t ' e v a l u a t i o n ' of a
Clear s p e c i f i c a t i o n y ie lded an e x p l i c i t represent ­
a t i o n of the theory i t denotes- A more use fu l
implementation however would be to l i n k Clear to
an equat innal theorem prover which would t r y to
prove tha t a g iven equat ion held in t h i s theory
wi thout producing the theory e x p l i c i t l y . Or i t
could be incorpora ted in a system which t r i e d to
show tha t a g iven program implemented some oper­
a t ions o f t h i s theory . This ra ises i n t e r e s t i n g ,
but s t i l l unanswered ques t ions , about the r e l a t i o n
between s p e c i f i c a t i o n s t r uc tu re and program s t r u c ­
ture .

We w i l l exp la in Clear by example. Let us
s t a r t by b u i l d i n g up the theory Nat of na tu ra l
numbers us ing the constant f a c i l i t y and the l e t
f a c i l i t y , thus repeat ing in succ inct form the
more fragmentary development of Nat above. We
s t a r t w i t h Bool , the theory o f t r u t h va lues .

Inviedt Paners-2 : R u r s t a l l
1050

The constant Nat now denotes the theory of
na tu ra l numbers. I t i s b u i l t up by f i r s t making
a l oca l d e f i n i t i o n of the simple theory NatO w i th
j u s t zero and suec. We then combine t h i s w i th
Boo], en r i ch ing the combination wi th extra pred­
i ca tes < and eq. f i n a l l y induce appl ied to the
whole expression ensures tha t the theory contains
general equations l i k e eq(m,m) - t rue-
Procedures in Clear

We o f ten bu i l d one theory on top of another.
Suppose f o r example tha t we have some p a r t i a l l y
ordered s e t , then we can form s t r i ngs from i t s
elements and def ine the predicate 'o rdered ' f o r
s t r i n g s - This is j u s t what we would have to do
if we wanted to spec i fy some s o r t i n g task. A
theory of ordered s t r i n g s can be developed f o r
any p a r t i a l l y ordered set (poset) of elements and
the l a t t e r can be regarded as a theory parameter
(compare Form parameters in ALPHARI)). We can
w r i t e a procedure using the theory -bu i ld ing oper­
a t ions to const ruct the theory of ordered s t r i n g s
from t h i s parameter. Now we can apply t h i s p ro ­
cedure to any theory which has a ' l ess than or
equal ' operator s a t i s f y i n g the r e f l e x i v i t y ,
t r a n s i t i v i t y and antisymmetry laws, f o r example
the theory Nat- Thus the procedure can only
accept as parameter a c e r t a i n so r t of theory; we
had b e t t e r c a l l i t a 'meta-sort ' to avoid con­
fus ion w i t h the sor ts w i t h i n theo r ies . This meta-
sor t is i t s e l f a theory , in t h i s case the theory o f
p a r t i a l order ings-

A degenerate example would be a theory p r o ­
cedure which can take any set as parameter and
does not need any operators , f o r example the p ro ­
cedure which, given a set of elements, produces
the theory of 3 t r ing3 of those elements. The

As an example we can apply t h i s procedure to Nat
to get s t r i ngs of na tu ra l numbers, but we need
to associate the sor ts and operators of the meta-
sor t (T r i v) o f the formal parameter w i t h those of
the actual parameter (Nat) , that is we need a sor t
to sor t f unc t i on and an operator to operator
func t ion j us t as in de r i ve . We wr i t e these in
brackets a f t e r the actual parameter, thus

St r ings (Nat [element is n a t])

We may omit pa i rs of the form 'x is. x ' -

The actua l parameter theory must inc lude a l l
the equations of the meta-sort theory as rewr i t ten
under t h i s operator to operator f u n c t i o n . We
must prove t h i s f o r every procedure app l i ca t i on -
Unl ike convent ional type checking i t i s not in
general decideable.

Now to do ordered s t r i n g s we need the theory
of p a r t i a l order f o r use as a meta-sor t .

const Poset =

Use of a theory as a meta-sort is ra the r
d i s t i n c t from i t s use in de f i n ing some data
s t ruc tu re such as natura l numbers- It enables
us to s ta te the presupposi t ions f o r some task
which we wish to spec i f y , and we are i n t e r e s t e d
in any i n t e r p r e t a t i o n of the theory ra the r than
some p a r t i c u l a r canonical one.

Shared subtheor ies

We observed already that jus t as two l i s t s
may share substructure so may two theo r i es ; t h i s

I n v i t e d Papers-2: B u r s t a l l
1051

nieta-sort here is the t r i v i a l theory w i t h one s o r t
and no operators .

const T r i v = theory sor ts element endth

The theory procedure to make s t r i ngs is then
(proc being short f o r procedure)

in accomplished by having the same va r i ab le appear
in both the expressions denot ing these t heo r i es .
The d e t a i l s , which f o l l o w , are a l i t t l e techn ica l
and may be skipped if des i red .

Suppose tha t we have a theory var iab le T
ei ther a formal parameter or bound by a l e t , "
Then the theory "en r i ch T by. . .enden" contains
t h i s theory T as a subthe~ory, and so do " T + . . . "
and "Induce T " . The theory ' ' de r i ve aigrigture T1
from T? by, .Tendde" contains T as a subtheory
i f T l n j on ta i ns i t . Should T2. also contain T_ as
a subtheory then the " . . . " had be t te r map its
operators i d e n t i c a l l y (i f they both contain Bool ,
" t r u e is f a l s e " would not be welcome). Now it we
combine two theor ies T1_ and T2 which both have T
as a subtheory then T T + T2 "only contains T once".
The same ru les hold IT T Ts not a va r iab le but is
in t roduced by "cons t T = ...". A l l t h i s enables us
to have Bool , say, as"a subtheory of several
theor ies wi thout p r o l i f e r a t i n g many copies of i t .
Sometimes we do need a f resh copy of a theory T_,
so we l e t ' 'copy T" denote one, to save w r i t i n g it
out again e x p l i c i t l y .

When we apply a procedure P to an argument _T
the resu l t always inc ludes T just as if we had -
w r i t t e n P (T) + T instead of P (T) . For example
S t r i n g (Nat) is a theory whic has not only s t r i ng
operators but also the operators l i k e succ
def ined in Nat, Of course when we are w r i t i n g
the d e f i n i t i o n of the procedure S t r i n g these
l a t t e r operators are not a v a i l a b l e ; the impor t ­
ance of such ' i n s u l a t i o n ' mechanisms has been
po in ted out by Wulf and o thers .

Errors and condi t i ona l s

Before going on to look at examples of
s p e c i f i c a t i o n s w r i t t e n in Clear we w i l l i n c o r ­
porate two USEFU fea tu res : er rors and c o n d i t i o n ­
a l s .

Some app l i ca t i ons of ar operator to i t s
arguments w i l l , not g ive a meaningful r e s u l t , f o r
example d i v i d i n g by zero or popping an empty
s tack . Thus we need to consider e r r o r s , a top ic
which is o f ten glo33ed over in a l g e b r a i c a l l y
o r ien ted work, but whose proper treatment is
e s s e n t i a l f o r a r e a l i s t i c s p e c i f i c a t i o n language.
I t i s important too tha t the d i f f e r e n t l eve l s o f
abs t rac t i on provided by our language should not
become confused as soon as an e r ro r is encoun­
te red ; we do' not want a stack underflow to p r o ­
duce an e r r o r message 'a r ray subscr ip t out of
bounds' . Gtoguen (1977) studies t h i s top ic in
depth, d e f i n i n g e r ro r algebras and e r ro r t heo r ies .
We w i l l conf ine ourselves to an informal, glance
a t e r ro r t h e o r i e s .

The idea is to extend each sor t by a set of
e r ro r elements of tha t s o r t , and to have e r r o r
operators which produce these elements. Thus
the theory of stacks might have an e r ro r operator

underf low: -> stack

and the theory of arrays might have an e r r o r
operator

no tde f ined fo r : index -> value

meaning tha t there is no value f o r t h i s index in

the a r ray . The term 'no tde f ined fo r (7) ' would
serve as an in fo rmat ive e r ro r r e s u l t .

To say when an e r ro r occurs or to equate two
d i f f e r e n t e r ro r expressions we need to use e r r o r
equat ions, thus

pop(empty) = underflow
pop(underflow) = underf low

We c a l l the non-error elements of a 3or t "OK
elements", the non-error operators "OK opera tors"
and the non-error equations "OK equat ions" . Now
we can w r i t e a presenta t ion of a theory w i t h a set
of erroropns in add i t i on to the previous (OK)opns,
and a set of erroreqns in add i t i on to the previous
(OK)eqns. An i n t e r p r e t a t i o n of such a theory is
an ' e r r o r a l g e b r a ' , t ha t is an algebra some of
whose elements are designated e r ro r elements. This
designat ion must obey the f o l l ow ing r u l e s : -

(0 Error operators always produce an e r ro r
element.

(?) OK operators produce an e r ro r element if any
of t h e i r arguments is an e r ro r element.

Now f o r an e r ro r algebra to s a t i s f y the theory
an OK equation or an e r ro r equation does not have
to hold f o r a l l values of the v a r i a b l e s . Only the
f o l l o w i n g must be the case

(1) An OK equation must ho ld if both sides e v a l ­
uate to an OK element.

(2) An e r r o r equation must hold i f e i t h e r side
evaluates to an e r r o r element.

For example

theory so r t s nat
opns zero: -> nat

succ: nat -> nat
pred: nat -> nat

erroropns neg: -> nat
eqns pred(3ucc(n)) = n
erroreqns pred(zero) = neg

succ(neg) = neg
pred(neg) = neg endth

Further examples, s tack , array and symbol
t a b l e , are given l a t e r .

I t o f ten happens that two expressions are
equal only under a ce r t a i n cond i t i on , thus

f (x) - g(x) if p(x)
Now we can permit such a cond i t i ona l equation

by regarding i t as an abbrev ia t ion f o r

i f (p (x) , f (x) , g (x)) = g(x)

where ' i f ' i s the usual cond i t iona l operator
def ined f o r each type by the equations

i f (t r u e , y , z) = y i f (f a l s e , y , z) = z

Condi t ional axioms have been studied using a
d i f f e r e n t approach by Thatcher, Wagner and Wright
(1977).

Notice tha t the fac t that our OK equations
au tomat ica l l y do not apply to e r ro r values o f ten
saves us from adding a cond i t i on such as
" . . . I f s # under f low" .

Notat ion

We should mention some small f u r t h e r po in ts

I n v i t e d Paners-2: B u r s t a l l
1052

about n o t a t i o n . If we are naming sor ts in a con­
t e x t where several theor ies are present , the same
sor t name, s, may appear in two d i f f e r e n t theor ies ,
T1 and T2, making a reference to s ambiguous. We
then simply r e f e r to "s of TV" or "s of T2.". A
s i m i l a r n o t a t i o n " f o f TT"" w i l l d i sambiguate
opera tors .

Often a theory has a p a r t i c u l a r sor t which
i s so to speak i t s ra ison d ' e t r e , f o r example so r t
nat in theory Nat (even though Nat also has so r t
b o o l) . To enable us to d i s t i ngu i sh such a so r t
we def ine the p r i n c i p a l sor t of a theory to be
the f i r s t sor t mentioned i n i t s d e f i n i t i o n , thus
i n ' t heo ry s o r t s s , t . . . endth' s i s the p r i n c i p a l
sor t and s i m i l a r l y in ' en r i ch T by sor ts s , t . . .
enden' . Now a h e l p f u l convention is to a l low the
theory name, in lower case, to denote i t s p r i n c ­
i p a l s o r t . Also when we spec i fy the cor res ­
pondence between sor ts in a der ive operat ion we
may omit a p a i r ' s is t' if s and t are the
p r i n c i p a l 3or ts o f t h e i r respect ive t heo r i es ;
s i m i l a r l y f o r the [. . . no ta t i on used f o r actua l
parameters of procedures, thus 'S t r i ngs (Nat) ' is
acceptable f o r 'S t r i ngs (Nat [e lement is nat]) ' .

Examples of s p e c i f i c a t i o n

We w i l l g ive two i l l u s t r a t i o n s to show how
Clear can be used to b u i l d up theor ies from
pieces in a systematic way:-

(i) a theory to spec i fy a symbol tab le such
as one might need in an Algol compiler (an
example given by Guttag et al_ 1976)

(i i) a theory to speci fy a problem so lv ing
system f o r a two dimensional blocks wor ld .

These a re , of course, ra ther sma l l , simple
examples, but we hope tha t they are .just complex
enough to g ive the reader some idea of the modular
s t ruc tu re that we wish to see in s p e c i f i c a t i o n s .
We hope the reader can grasp t h i s s t ruc tu re w i t h ­
out por ing over every equat ion. The whole Clear
desc r ip t i on denotes a theory which does not i t s e l f
have t h i s s t r u c t u r e , sc tha t the implementer would
be at l i b e r t y to organise h i s program in some
other way..,3 (Just as we might describe the number
19683 as 3 , but you are f ree to store i t in the
machine in any way you l i k e , 3uch as b ina ry .)
Indeed by using der ive we ' throw away' many of the
operators in t roduced in our Clear desc r ip t i on of
the theory , so tha t they do not appear in the
f i n a l theory and need have no corresponding p r o ­
cedures in the program which implements i t . For
example we describe a symbol tab le in terms of a
stack of a r rays , because stack and array are
f a m i l i a r concepts, but our s p e c i f i c a t i o n does not
demand t ha t i t be implemented in t h i s way.

Here is our p lan of campaign showing the
main procedures or constants we w i l l def ine and
which other ones will use them.

Stack

Since we can put any k ind of element on a
stack we take as a parameter theory a t r i v i a l
theory , one w i th a s ing le sor t and no operators.
This describes the ' va lues ' which go on the stack.
The operators , such as push and pop, are w e l l -
known. Not ice tha t no ' s i d e - e f f e c t s ' are allowed.
We e x p l i c i t l y produce a new stack from push and
pop.

We def ine arrays w i t h any kind of element as
i nd i ces , not j u s t i n t e g e r s . However the ind ices
must have an equa l i t y r e l a t i o n defined over them
in order f o r us to ' l ook up' ind ices in the ar ray ,
so we have a parameter theory of meta-sort Id., a
theory of i d e n t i f i e r s w i th one sor t besides bool
and an equivalence operator == over that s o r t .
We w r i t e the a r ray access func t ion as a [i] ins tead
o f , say, g e t (a , i) .

i n v i t e d Papers-2i
1053

Burs ta l l

A compiler needs to mainta in a symbol tab le
r e l a t i n g each i d e n t i f i e r to a value such as a
machine address or an address p lus a type . In
an A l g o l - l i k e language w i t h blocks each block
introduces new i d e n t i f i e r s which may or may not
have occurred before. It associates new values
w i t h them, and these overr ide any previous values
u n t i l the end of the block is encountered and the
tab le rever ts to i t s p r i o r s t a t e . Thus we need
a theory w i t h so r t s : symbol, va lue , t a b l e ; i t
has operators : n i l s t - an empty t a b l e , extend -
used to mark en t ry to a new block, put - to add a
symbol value p a i r , g e t (w r i t t e n - , . [. . .]) - to
r e t r i e v e a va lue , cont rac t - used when the end of
the block is reached. Guttag e,t al_ (1976) have
already given an equat ional s p e c i f i c a t i o n of a
symbol tab le as an abst rac t data s t r u c t u r e . In
cont ras t to t h e i r d i r e c t s p e c i f i c a t i o n we w i l l
b u i l d up ours from the f a m i l i a r concepts of stack
and a r ray , then use der ive to ex t rac t j us t those
operat ions which are requ i red f o r a symbol t a b l e .

Now l e t us spec i fy a very crude model of a
set of blocks on a tab le top together w i th some
commands f o r moving them. We w i l l s t i c k to two

dimensions and assume square blocks a l l of the
same s i ze . We can do t h i s in terms of a one-
dimensional ar ray indexed by places on the t a b l e ,
each element of the array is a stack of b locks.
We enr ich t h i s array of stacks theory w i th some
ex t ra operat ions: create an empty array of stacks,
put a block on the stack at a given p lace , move a
block from the stack at a place onto the stack at
another p lace. We now use der ive to get r i d of
the unwanted operat ions on stacks and a r rays , j us t
r e t a i n i n g these operat ions on an array of s tacks,
which we rename a tab le top . We do however need
an equa l i t y f o r tab le tops , because l a t e r we want
to do problem so lv ing and see whether we have the
requ i red goal t ab l e top . For t h i s we use a theory
procedure Stackeq (Value: Id) of stacks w i th
equa l i t y (==: stack,stacic -> boo l) . I t s d e f i n ­
i t i o n from Stack (Value: T r i v) by enrichment is
l e f t as an easy exerc ise . S i m i l a r l y f o r
Arrayeg (index: I d , Value: I d) .

proc Tabletop (Block: I d , Place: Id.) =
l e t Stackofblocka - Stackeq (Block) in
l e t ArravofstacTcs" = Arraveq (Place,Stackofb locksX"
l e t T = enr ich Array of stacks by

opns empty: -> a r rayo fs t
p u t : p lace,b lock,ar rayofs t ->ar rayofs t
move: p lace,p lace,ar rayofs t ->arrayofs t

erroropns e r r o r : -> a r rayo fs t
eqns empty[p] = n i l s t ack

pu t (p ,b ,a) = pu t (p ,push (b ,a fp]) , a)
move(p ,p ' ,pu t (p ,b ,a)) - p u t (p ' b . a)

erroregns move (p,p,a)=serror if isemptv(a[p])
enden in

der ive s ignature enr ich Block + Place by
so r ts tab le top

opns empty: -> tab le top
put : p lace ,b lock , tab le top -> tab le top
move : p lace ,p lace , tab le top -> tab le top
=- : tab le top , tab le top --> bool

erroropas euror : -> tab le top
from T by. tab le top is , a r rayo fs t endde

The problem so lver w i l l seek a s t r i n g of
act ions to t ransform one tab le top to another.. To
provide these act ions we def ine some commands,
j u s t expressions of the form "makemove(place1,
place2)" us ing an operator "makemove" w i t h no
equations (l i k e succ f o r numbers). Now we can
def ine a dynamic Blocks World, in which you can
execute commands to change the t ab le top ,

proc Commands (P lace: T r i v) =
theory sor ts command

opns makemove: p lace,p lace -> command
endth

proc Blocksworld (Block: I d , Place: Id) =
enr ich combine (Tabletop (Block), Place,

Commmands Place by
opns execute: commands, tabletop -> Tabletop
eqns execute(makemove(p,p1),t) = move(p,p1,t)

enden

Sta te -ac t i on system and Problem Solver

Quite separate ly from the Blocks World, but
la ter to be combined w i th i t , we def ine a Problem
Solver theory f o r some a r b i t r a r y system w i th
s tates and ac t i ons . F i r s t we def ine the s t a t e -

I n v l t e d Papers-2: B u r s t a l l
1054

a c t i o n system alone w i t h j us t these two s o r t s ,
then we have a procedure I t e r a t e to enr ich any
s t a t e - a c t i o n system to give the" e f f ec t of a whole
s t r i n g of ac t i ons . A problem solver is then
def ined f o r such a system, w i t h an operat ion
solve which must a t t a i n any reachable set of goal
s ta tes - Note tha t we do not say how solve is to
be programmed, j u s t spec i fy i t s desired r e s u l t .

Blocks World Problem Solver

We now put t h i s a l l together by de r i v i ng the
requ i red operat ions f o r a s ta te -ac t i on system
from the Blocks World, and apply ing the theory
producing procedure Problem-Solver to i t . The
r e s u l t i n g theory spec i f i es the no t ion of so lv ing
a problem f o r our Blocks World, that is f i n d i n g a
sequence of su i t ab le moves to get from one s ta te
to a spec i f i ed set of s t a tes . (In p rac t i ce we
would have to add ex t ra operators to describe the
s t a r t and goal s t a tes .) We choose to represent
blocks and places by na tu ra l numbers, but we
leave as a parameter the set of na tu ra l numbers
determining j u s t which places are invo lved .

examples.
(i) The language pays f o r the ex t ra s t ruc tu re and

localness by being ra ther cumbersome. Is
t h i s i n e v i t a b l e ? We t r i e d to moderate the
longwindedness by 3ome conventions, but
feared to sp r ink le too much 3Ugar l e s t the
reader lose s igh t of the basic mechanisms.

(i i) Should we d i s t i ngu i sh two kinds of e n r i c h ­
ment (a) adding new sor ts and operators and
equations about them, but wi thout cons t ra in ­
ing e x i s t i n g operators f u r t h e r , (b) imposing
f u r t h e r equations on the e x i s t i n g operators?

(i i i) Could we improve on the rather clumsy way
shar ing i s i nd ica ted i n derive?

(i v) The induce operat ion is ra ther d i f f e r e n t from
the o thers , a l i t t l e myster ious. We stuck
it in whenever we were t a l k i n g about a p a r t ­
i c u l a r data s t r u c t u r e . Could i t be inser ted
more sys temat ica l l y? Perhaps we should
d i s t i n g u i s h between theor ies used as meta-
s o r t s , which genera l ly do not need induce,
and other t heo r i es , which genera l ly do.
Does induce al low us to make a l l the induc­
t i v e inferences we need?

(v) Is our t r a n s f e r of the LISP sharing paradigm
to theor ies the best approach? Can we make
good our c la im to understand i t s semantics?

Programs and theory morphisms

In t h i s sec t ion we discuss in a ten ta t i ve way
how programs, as opposed to spec i f i ca t i ons , might
f i t i n t o our a lgebra ic framework. For t h i s we
w i l l need to def ine a 'morphism' between theor ies ,
which represents one theory in another. (The
theor ies and t h e i r morphisms form a category,
Lawvere 1963). The idea is that a program is
e s s e n t i a l l y a means of represent ing one theory
(the s p e c i f i c a t i o n) in another theory (the
machine), that is a morphism from one to the
other .

We can o f ten represent operators of one
theory by operators of another, to be precise by
der ived operators of the other theory. By a
der ived operator of a theory we mean one which
can be expressed in terms of the p r i m i t i v e oper­
a t o r s . In a theory w i t h p r i m i t i v e s ' no t ' and
'and ' the operator

is a der ived operator (' o r ') . In general we
may b u i l d any term in the p r i m i t i v e operators
us ing su i t ab le v a r i a b l e s , using the f a m i l i a r
no ta t i on to bind these va r i ab l es . These oper­
a to rs inc lude m i l i a r y ones, that is constant
terms. An operator may be represented by more
than one der ived operator of the other theory .
Since our theor ies may involve several so r ts we
must a lso represent each sor t of the f i r s t theory
by a sor t of the second.

Now the operators of the f i r s t theory obey
c e r t a i n equat ions, so n a t u r a l l y the same equations
must be t rue of the corresponding der ived oper­
a tors of the second theory .

We c a l l such a connection between two

I n v i t e d Papers-2: B u r s t a l l
1055

theor ies a theory morphism. Here is the d e f i n ­
i t i o n . *

A theory morphism from a theory T to a theory
T' is

(i) A function f from the sorts of T to the sorts
of T. "We write s is s' to mean f(s) = s1.

(i i) A function g from the operators of T to non­
empty sets of derived operators of T', such
that any equation of T gives rise to an
equation of T' when each operator of T is
replaced by any operator in g - The input
and output sorts of an operator in g must
be the f-images of those of - We write

is to mean g -

By the obvious extension,the* theory morphiam
maps each derived operator of T to a set of
derived operators of T'; this holds in particular
for nullary operators i .e. constant terms.

Consider for example Id., "the theory of ident­
i f ie rs with an equivalence operator, and Nat the

Representing sets by s t r i ngs and stacks by
ar ray- index pa i r s are other well-known examples.

As a matter of f ac t such theory morphisms p lay
an essen t i a l ro le in our mathematical semantics
f o r Clear . But here we are concerned w i t h t h e i r
connection w i th programs. I t seems tha t i f we
r e s t r i c t ourselves to an app l i ca t i ve language
(w i thout assignment) our theory morphisms are the
mathematical co r re l a te of a SIMULA c lass , CLU
c l u s t e r or ALPHARD form, w i t h the theory T p lay ing
the (general ised) r o l e of the newly def ined data
type and the theory T' being the e x i s t i n g data
type used to represent i t . The der ived operators
in the morphism from T to T' are the procedures in
the c lass , c l u s t e r or form dec la ra t i on .

We do need one genera l i sa t i on however since
in the programming case the procedures may we l l be
recu rs i ve . For tuna te ly Wr ight , Thatcher, Wagner
and Goguen (1976) have def ined a no t ion of ra t i ona l
theor ies and t h e i r morphisms** a l low ing recurs ively

* Our theory morphisms are d i f f e r e n t from Lawvere's
which represent an operator by a s ing le der ived
operator .

** We would also need r a t i o n a l theor ies to make
Clear deal p roper ly w i t h i n f i n i t e data, such as
i n f i n i t e t r e e s , def ined i n d u c t i v e l y .

der ived operat ions (not j u s t but recurs ion t o o) ;
t h i s seems to model the r e a l programming s i t u a t i o n
(always provided tha t we regard an imperat ive p ro ­
gram as a no ta t i ona l va r i an t of an a p p l i c a t i v e
one !) .

Now we see that a s p e c i f i c a t i o n is j u s t a
theory, a machine (o r more a b s t r a c t l y the p r im­
i t i v e operators and sor ts of a programming l ang ­
uage) is another theory, and a program to r e a l i s e
the s p e c i f i c a t i o n is j u s t a (r a t i o n a l) morphism
from the s p e c i f i c a t i o n theory to the machine
theory .

Of course we should not describe t h i s mor­
phism in an unst ructured way, indeed there should
be a programming language analogous to the spec i f ­
i c a t i o n language Clear, but descr ib ing morphisms
not t h e o r i e s . * * This would be the co r re la te of
SIMULA e t c . or more c lose ly of the i o t a language
of Naka.jima et al, and of Parnas' (197?) method
of programming w i t h modules. We have worked on
such a language but decided to f i r s t get s t r a i g h t
the ra the r easier case of a s p e c i f i c a t i o n l ang ­
uage .

How would the s t ruc tu re of such a program
r e l a t e to the s t r uc tu re of the s p e c i f i c a t i o n which
it implements? The degree of closeness would be
up to the implementer, but it would be natura l to
use the var ious theor ies def ined f o r s p e c i f i c a t i o n
purposes to def ine the task of subparts of the
program. In general one would expect the spec i f ­
i c a t i o n would be simpler than the program, and to
speci fy par ts of the program one would need to
e laborate the theor ies used in the s p e c i f i c a t i o n
w i th new sor ts and operators . For example one
might decide to use the GPS method to solve the
blocks world problem, and one would have to enr ich
the s t a t e -ac t i on theory w i t h new sor ts l i k e
' d i f f e r e n c e ' and operators l i k e ' reduces ' .

A speculat ive conc lus ion: the main i n t e l ­
l e c t u a l task of programming is e labora t ing the
theor ies which describe a l l the concepts used in
the actua l program. W r i t i n g the code (d e f i n i n g
the morphisms) is a much more humdrum business.

Ah w e l l ! This is a l l d e l i g h t f u l l y vague
and a great deal of work needs to be done. But
i t does promise to be i n t e r e s t i n g .

Conclusions

The main po in t o f t h i s paper i s tha t i t i s
poss ib le to spec i fy complex tasks provided tha t
we do not t r y to wr i te the s p e c i f i c a t i o n s in an
unst ructured way. Our p a r t i c u l a r language p ro ­
posal i s only important in b r i ng ing i n t o fbcus the
problem of dev is ing s t ruc tu red descr ip t ions of
s p e c i f i c a t i o n s and suggesting the k i nd of oper­
a t ions which should be used to b u i l d them up. The
basic ideas developed f o r data abs t rac t i on in
programming languages should guide us in t h i s
task , and we f i r m l y be l ieve tha t the mathematical
ideas about the category of theor ies can help us
to grasp the ra the r deep concepts invo lved-

** We have a base f o r such development in the
equat ional languages we have already implemented
OBJ (Goguen and Tardo 1977) and NPL (B u r s t a l l
1977).

I n v i t e d Papers-2 : B u r s t a l l
1056

Acknowledgements

We owe a deep debt to the pioneers McCarthy,
Landin, E i lenberg , MacLane and Lawvere, also to
James Thatcher, Er ic Wagner and Jesse Wright at
IBM and to John Dar l ington at Edinburgh (now
London) f o r long and educative c o l l a b o r a t i o n .
Many other col leagues have been very he lp fu l
espec ia l l y Pa t r i ck Cousot (Grenoble), John
Reynolds (Syracuse/Edinburgh), Gordon P l o t k i n ,
David MacQueen and Jera ld Schwarz (Edinburgh) and
Joseph Tardo (Los Angeles). J.A.G. wishes to
thank Saunders MacLane for i n i t i a t i n g him i n t o
category theory , and Wi l l iam Lawvere f o r help on
the way. R.M.B. wishes to thank members of IFTP
Working Group 2.3 f o r much education and encourage­
ment, a lso Professor V e i l l o n f o r a v i s i t to USMG
Grenoble where he s ta r ted on this work, and to
Professor A v i z i e n i s f o r help in v i s i t i n g Los
Angeles. Alan Bundy and Michael Woodger k i nd l y
read and made h e l p f u l comments on a d r a f t .

We are g r a t e f u l to the Nat ional Science
Foundation and the Science Research Council f o r
support ing t h i s work, i nc lud ing an SRC V i s i t i n g
Fel lowship at Edinburgh f o r J.A.G.

Our very s incere thanks to Eleanor Kerse f o r
her met icu lous, speedy and cheerful t yp ing .

Personal thanks go to Sei.ja B u r s t a l l ,
Char lo t te Linde and Chogyam Trungpa Rinpocho.

References

Arsac, J. (1977) Program transformat ions as a
programming t o o l . Research Report, I n s t i t u t de
Programmation, Un ivers i t y de Par is V I .

Aubin, R. (1976) Mechanising s t r u c t u r a l induct ion.
Ph.D. t h e s i s . Depts. o f A r t i f i c i a l I n te l l i gence
and Computer Science, Un ive rs i t y of Edinburgh.

Boyer, R.S. and Moore, J S. (1975) Proving
theorems about LISP func t i ons . JACM, 22, 1,
129-144.

B u r s t a l l , R.M. and Dar l ing ton, J. (1977) A t rans ­
format ion system f o r developing recurs ive
programs. JACM, 14, 1, 44-67.

B u r s t a l l , R.M. (1977) Program proof , program
t rans fo rmat ion , program synthesis f o r recurs ive
programs. Lecture notes at Summer School,
E r i ce , S i c i l y , 1976. To appear in In format ion
the Journal o f the I t a l i a n Associat ion f o r
Computer Science.

Dahl, 0 - J . , Myhrhaug, B. and Nygaard, K. (1970)
The SIMULA 67 Common Base Language. Pub l i c ­
a t i o n S22. Norwegian Computing Centre, Oslo.

Dar l i ng ton , J . (1975) App l i ca t i on of program
t ransformat ion to program synthes is . Proc.
of I n t e r n a t i o n a l Symposium on Proving and
Improving Programs, Arc-et-Senans, France, pp.
133-144.

Dar l i ng ton , J. (1976) The use and implementation
o f very h igh l e v e l s p e c i f i c a t i o n s . I n v i t e d
paper at IFIP WG 2.3 Conference on Software
S p e c i f i c a t i o n s . S t . P ierre-de-Chart reuse,
France.

Dar l ing ton , J. and B u r s t a l l , R.M. (1976) A system
which automat ica l ly improves programs. Acta
In fo rmat i ca , 6, 41-60.

D i j k s t r a , E.W. (1975) Guarded commands, non-
determinacy and formal de r i va t ion of programs.
CACM, 18, 8, 453-457.

Goguen, J.A. (1976) Correctness and equivalence
of data types. Proc. of 1975 Conference on
Algebraic Systems, Udine, I t a l y , pp. 352-358.
Spr inger-Ver lag.

Goguen, J .A. (1917) Abst ract e r ro rs f o r abst ract
data types. To appear in Proc. of IFIP Working
Conference on the Formal Descr ip t ion of
Programming Concepts, New Brunswick, N.J.

Goguen, J.A. and Tardo, J. (1977) OBJ-0 Pre l im­
ina ry Users Manual, Semantics and Theory of
Computation Report, UCLA, Los Angeles.

Goguen, J .A . , Thatcher, J.W. and Wagner, E.G.
(1977) An i n i t i a l approach to the s p e c i f i c ­
a t i o n , correctness and implementation of
abst rac t data types. To appear in Current
trends in programming methodology, Vo l . 3.
Data S t ruc tu r i ng (ed. R.T. Yeh) Prent ice H a l l .

Gut tag, J.V. (1975) The spec i f i ca t i on and
app l i ca t i on to programming of abstract data
types. Computer Systems Research Technical
Report CSRG-59, Un ive rs i t y of Toronto.

Guttag, J .V . , Horowitz, E. and Musser, D.R. (1976)
Abstract data types and software v a l i d a t i o n .
Report ISl /RR-76-48, In format ion Sciences
I n s t i t u t e , Marina del Rey, C a l i f o r n i a .

Kowalski , R. (1974) Predicate log ic as a program­
ming language. Proc. of IFIP Congress '74,
pp 569-574, North Hol land.

Lawvere, F.W. (1963) Funct ional semantics of
a lgebraic t heo r i es . Proc. of Nat ional Academy
of Science. 50, pp. 869-872.

L iskov, B.H. (1975) A note on CLU. MAC-TR, MIT,
Cambri dge, Mass•

L iskov, B.H. and Berz ins , V. (1977) An appraisal
of program s p e c i f i c a t i o n s . Computation
Structures Group Memo 141-1, MIT, Cambridge,
Mass.

Mackworth, A.K. (1977) Consistency in networks
o f r e l a t i o n s . A r t i f i c i a l I n t e l l i g e n c e , 8 , 1_ ,
99-118.

Manes, E.G. (1976) Algebraic theor ies . Springer
Ver lag .

Manna, Z. and Waldinger, R. (1971) Toward au to­
matic program synthes is . CACM, 14, 3. 151-165.

Manna, Z. and Waldinger, R. (1975) Knowledge and
reasoning in program synthesis. A r t i f i c i a l
I n t e l l i g e n c e , 6, 2, 175-208.

McCarthy, J. (1963) A basis fo r a mathematical
theory of computation. Computer Programming
and Formal Systems (eds. P. B ra f f o r t and
D. Hirschberg) North Hol land.

Minsky, M. (1975) A framework f o r represent ing
knowledge. The Psychology of Computer V is ion
(ed. P. Winston) McGraw-Hil l : New York.

I n v i t e d Papers-2: B u r s t a l l
1057

Mosses, P. (1975) Making denotat iona l semantics
less concrete . To appear in Proc. of the Bad
Honnef Workshop on Semantics of Programming
Languages.

Nakajima, R., Honda, M. and Nakahara, H. (1977)
Programming and v e r i f i c a t i o n schemes in the i o t a
system. To appear in Proc. of IFIP Working
Conference on the Formal Descr ip t ion of Program­
­ i n g Concepts, New Brunswick, N.J.

Parnas, D.L. (1972) A technique f o r module spec i f ­
i c a t i o n w i th examples. CACM, 15, 5, 330-336.

Sco t t , D. and Strachey, C. (1971) Towards a math­
emat ica l semantics f o r computer languages.
Technical Monograph PRG 6, Computing Laboratory,
Oxford U n i v e r s i t y .

Thatcher, J.W., Wagner, E.G. and Wright , J .B .
(1977) Spec i f i ca t i on of abst ract data types
using cond i t i ona l axioms. Report IBM Laborat­
o r i e s , Yorktown Heights, N.Y.

Wal tz, D. (1975) Understanding l i n e drawings of
scenes w i t h shadows. The Psychology of Computer
V i s i on (ed. P. Winston) MoCraw H i l l : New York.

Wr ight , J . B . , Thatcher, J.W., Wagner, E.G. and
Goguen, J.A. (1976) Rat iona l a lgebraic theor ies
and f i x e d po in t so l u t i ons . Proc. of IEEE 17th
Symposium on Foundations of Computer Science,
Houston, pp. 147-158.

Wulf, W.A., London, R.L. and Shaw, M. (1976)
Abs t rac t ion and v e r i f i c a t i o n in ALPIIARD.
ISl /RR-76-46, In format ion Sciences I n s t i t u t e ,
Marina del Rey, C a l i f o r n i a . Also as a Carnegie-
MelIon Computer Science Report.

Z i l l e s , S. (1974) Algebraic s p e c i f i c a t i o n of data
types. Computation St ructures Group Memo 119,
MIT, Cambridge, Mass.

I n v i t e d Papers-2 : B u r s t a l l
1058

