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ABSTRACT
This paper overviews and discusses model re-
presentations and control structures in image under-
standing. Hierarchies are observed in the levels

of description used in image understanding along a
few dimensions: processing unit, detail, composition
and scene/view distinction. Emphasis is placed on

the importance of explicitly handling the hierarchies
both in representing knowledge and in using it. A
scheme of "knowledge block" representation which is

structured along the processing-unit hierarchy is

also presented.

L INTRODUCTION

Image Understanding System(lUS) constructs a
description of the scene being viewed from an array
of image sensory data: intensity, color, and some-
times range data. Image understanding is best char-
acterized by description, whereas pattern recognit-
ion by classification, and image processing by image
output. The level and scope of the goal description
depend on the task given to the IUS: whether it is
interpretation, object detection, change detection,
image matching, etc. It may appear that the discus-
sion in this paper will take usally the flavor of
scene

Observing that there are hierarchies of levels
of description along a few dimensions, this paper
overviews and discusses model representations and
control structures in image understanding. Emphasis
is placed on the importance of explicitly handling
the hierarchies both in representing knowledge
about scenes and in using it, especially processing-
unit hierarchy and scene/view domain distinction.

In the next section, the levels of description
are identified. Then section Il gives an overview
and discussion on object-model representations,
together with presentation of our knowledge block
representation scheme. Section 1V deals with the
problems of control structure, and finally the role
of low-level processing is discussed in section V.

[ LEVELS OF DESCRIPTION IN IMAGE UNDERSTANDING

Descriptions are not only the goal constructs,
but also the media through which various components
of an IUS communicate in the course of understand-
ing the image. There are a few orthogonal dimensions.

Hierarchy

the levels of units
identify five levels for
IUS, they are pixel

a) Processing-unit

This is a hierarchy in
used in processing. Let us
the moment. For a region-based

(an image point), patch(a group of contiguous
pixels having similar pixel properties), region(a
meaningful group of patches corresponding to a sur-
face of an object), subimage(a part of an image
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interpretation from a monocular intensity image.
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corresponding to an object or a set of objects),
and object(an object as a real entity). For a line-
based IUS, the level of patch can be replaced by
line segment, region by line, and subimage by a set
of lines corresponding to an object, Fig. 1
illustrates these levels for a region-based IUS.

Akin & Reddy(1976) observed that six levels are
used when human subjects understand the contents of
an image through verbal conversation: scene, cluster,
object, region, segment, and intensity. The number
of levels is not very significant. These levels as
well as those in Fig. 1 depend on the units on which
different levels of processing are performed and for
whose description different vocabularies are used.
Processing in the pixel-to-patch level is often
called as low-level processing. The region-to-sub-
image level is high level in the picture processing
domain. It clearly needs to deal with semantics
which stem from the highest, object level. The patch-
to-region level might be called as intermediate.

b)__ View Domain / Sceno Domain Distinction_

The point to be noted here is the clear dispar-
ity existing between view-domain and scene-domain
descriptions; in Fig. 1, the lower four levels are
in the view domain and the upper one in scene domain.
The need for this distinction was argued for first
and most effectively by Clowes(1971). He used the
term "picture domain" in place of "view domain".
But the latter is used in this paper to mean the
domain of observable facts by viewing the scene in
either intensity or range data. The importance of
this distinction is readily understood by thinking
that, for example, the actual meaning of "adjacen-
cy" in the view-domain description is fully under-
stood only after the relation is interpreted in the

scene-domain description. Note that the scene-domain
descriptions are not necessarily in a metrical 3-D
coordinate space; e.g., Waltz's labels of edge is a

symbolic system to represent the edge types in the 3-D

space, or even a gross subjective space will suffice.
c) Detail Hierarchy and Composition Hierarchy
The detail hierarchy is along preciseness of

It can exist in both the view and the
scene domains. Section 5.2 presents examples in the
view domain. An example in the scene domain is the
description of overall/detail shape of an object,
which is found in section 3.2b). The composition
(or part-of) hierarchy represents part/whole rela-
tionships in the scene domain.

description.

The processing-unit hierarchy actually contains

somewhat both aspects of the detail and composition
hierarchies in the sense that the low-level entities
are parts and details of an upper-level entity.

revealed hierarchy does not di-
the hierarchies which natural-
This fact makes image
is why the models

hierarchies

Unfortunately this
rectly correspond to
ly exist in the scene domain.
understanding difficult, and it
often need to represent the natural
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Fig. 1 Illustration of Levels of Description in

Processing-Unit Hierarchy
explicitly using processing-unit hierarchy in order
to bridge the gap between the view-domain and the
scene-domain descriptions.

I11. MODEL REPRESENTATION

There are many kinds of knowledge for an IUS.
The task world of an IUS is defined first of all by
what objects(or class of objects) are concerned and
how they behave and interact to form a scene. There-
fore let us confine ourselves to the object-model
representations. Corresponding to the levels of
description it can take several forms.

3.1 View-Domain Models

This is an approach in which properties and
relations in the view-domain descriptions are stored
as the model of an object. It is interesting to
observe that most of the region-based scene-inter-
pretation programs have taken this approach. The
region analysis of image was first used by Brice &
Fennema(1970).

a) Graph Matching at Region Level

The first group of the region-based view-model
approach includes Barrow & Popplestone(1971)
and Preparata € Ray (1972). They store
properties of and the relations between regions in
the form of a graph; the nodes correspond to the
regions in the image which correspond to surfaces
of an object or part of an object, while arcs cor-
respond to relations between regions. Interpretat-
ion consists of graph matching or subgraph matching?
i.e., finding the "best" assignments of part or
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object names to nodes of the graph obtained from
the image, so that specifications stored in the
model graph are maximally satisfied.

It is apparent that the approach can not cope
with occlusions or rotations of objects that change
the graph structure drastically. But a more serious
limitation is that it is assumed that the (almost)
perfect, meaningful partitioning of the image into
regions(i.e., region-level descriptions of the
image) is obtained independently, which is now
known to be very difficult.

b) Semantic Grouping of Patches into Region

Yakimovsky & Feldman(1973) and Tenenbaum &
Barrow(1976) are the next group. They tried to
overcome that limitation. The image is first par-
titioned into many small patches of uniform color.
To this patch-level description of the image, a
merging operation is repeatedly applied, with which
the operation of giving an interpretation to the
patch is combined. That is, besides intensity and
color data, semantic constraints are introduced in
deciding a possible merge, by means of a set of
probabilities(Yakimovsky, et.al.,1973) or a con-
straint table(Tenenbaum, et.al.,1976) about
combinations of object-name labels and region-level
properties and relations such as adjacent, above,
etc. Some uniform, domain-independent procedures
are used to find a "best" segmentation; in the
former, it is (sub) optimization of combinational
probability that regions have correct labels, and
in the latter, it is the use of filtering procedure
together with a relaxation method which repeatedly
eliminates and suppresses inconsistent labels from
a set of possible labels for each patch.

It was an advance that they succeeded in intro-
ducing some semantics into image segmentation. But
because all the patches and regions are uniformly
treated and knowledge is scattered in the constraint
representation of one level(patch level), the
program does not know what objects it is dealing
with at each moment. Therefore, neither explicit
processing of the shape of object nor object-depend-
ent processing on part of image is easy. The reason,
in the context of Fig. 1, is that the uniform
procedure does not construct a subimage-level or
eveniregion-level description to control where and
what to look at.

The limitations mentioned above are not
inherent to region-based interpretation schemes.
They stem mainly from failures in handling the
processing-unit hierarchy explicitly and in con-
structing each level of descriptions in the inter-
pretation process. If this is solved properly,
then regions can be powerful description primitives
for natural scenes, as lines are for polyhedral scenes.

3.2 Three-Dimensional Shape Model

a) Computer Graphics Metaphor

The most straightforward object model stores
3-D shape data as in computer graphics. In the
pioneering work of Roberts(1965) , the object model
was very straightforward; it was a set of 3-D
coordinates of the vertices of polyhedra.
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The input image is processed and transformed
into a line drawing. The matching process consists
of the following processes; 1) junctions in the
line drawing are selected that may constitute a
simple polyhedron (wedge or parallelepiped), 2) the
proposed polyhedron in the 3-D model is generalized-
transformed (rotated, translated, scaled, and
projected) to match the selected junctions, and
3) the matched piece is then removed and the
remainder is considered. Here no view-domain model
is employed. Everything is considered in the 3-D
space. The interaction of objects is treated as
addition and subtraction of volumes in the 3-D
space. The upward flow from view to scene is based
on simple heuristics relating a view to the object
model; e.g., a set of junctions that form three
parallelograms are possibly from a parallelepiped.
Falk(1971) is in the same spirit; in order to deal
with imperfect line drawings, an aggregate of local
cues such as Y, L or ARRON junctions are used to
hypothesize a plausible object model.

More recent extremes of this line of pursuit,
perhaps with increased manipulation power, are the
geometric modeling by Baumgart(1974) and a program
that uses Braid's scheme(Braid, 1974) for computer
vision (Popplestone, Brown, Ambler & Crawford, 1975).
The system by Baumgart produces polyhedral approxi-
mations to 3-D shape from multiple views of an ob-
ject. The system by Popplestone, et. al constructs
3-D body models by using the technique of project-
ing light stripes to know the surface shape. These
might be described as the inverse of computer
graphics problem.

b) Generalized-Cylinder Representation

A generalized cylinder is formed by moving a
two-dimensional cross section along an axis. The
cross section need not remain constant and the axis
need not be straight; an ordinary cylinder is a
circle moved along a line through its center. If
the circle shrinks linearly, then it is a cone.
An object is represented by decomposing it into
parts each of which is a generalized cylinder.
Agin & Binford(1973) and Nevatia ¢ Binford(1973)
used range data by means of a laser range finder
to obtain the generalized-cylinder representation
of objects such as a doll and a horse, and then
matched the obtained description against the models.

Marr & Nishihara(1976) showed a hierarchical
representation of 3-D shapes using cones. A human
figure is first approximated by a cone. It is then
detailed by joining component cones(HEAD and LIMBs)
to the principal cone(TORSO). Each further compo-
nent(e.g. ARM) canbe redetailed inturn, and so on.
This scheme can answer overall questions about the
object like the gross shape, the direction in which
it points, etc. and also one can go into as appro-
priate detail as wanted. Note that the hierarchies
represented here are the detail and composition
hierarchies intrinsic to the object.

As for the recognition problem from a monocular
image, Marr & Nishihara(1976) write that work has been
done to obtain the projected axes of the component
cones from the image of a shape and also that the
task can be done nearly independently of other high-
er-level tasks. From experiences with line find-
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ing in simple polyhedral scenes and with skeleton-
ization in 2-D figures, however, it is felt that it
is very difficult to obtain the axes reliably and
to construct the description which the model of
that object expects,without some feedback of hypoth-
esis-and-test (except the case of obiects basically
composed of sticks). More remains to be done in this
respect, but it is true that the representation of
overall/detail hierarchy will provide a sequence of
cues that can be used in hypothesizing plausible
shape models for understanding the input image, if
it is explicitly related to the processing-unit
hierarchy. In fact, it is shown that the contour,
an overall description of the processing unit, may
be closely related to the generalized-cylinder
representation(Marr,1976).

3.3  Relating Scene Constraints to View Constraints

In several cases, image-forming models are suc-
cessfully formulated and provide methods of working in
the view domain to obtain the scene-domain description.

a) Line-Drawing Interpretation

Waltz's program(Waltz,1972) for line-drawing
interpretation can be counted as a most typical
success. Though seemingly similar, it has a very
different spirit from Guzman(1968)which decomposes
a line drawing into bodies. Guzman classified junc-
tions of lines in the image, and considered them to
give heuristically some local evidence concerning
the possible association of regions in forming
bodies. For example, an ARRON junction provides
evidence for some association between the two
regions on either side of the central line. Guzman's
program worked fairly well, but its limitation
came from sticking to the view domain.

To the contrary, following Huffman(1971) and
Clowes(1971), Waltz(1972) classified edges accord-
ing to their scene-domain, physical meaning:
concave, convex, crack, shadow, etc. Possible
junctions are enumerated from the possible views of
physically possible vertices that arbitrary tri-
hedral solids will generate. Then they are indexed
to give a catalog of legal line combinations for
each type of junctions. Having the catalog pre-
pared, the interpretation of a line drawing reduces
to searching for a set of line labels that provide
a legal configuration ateach junction in the image.
The procedure systematically eliminates incompat-
ible labels from a line when the junctions at both
ends of the line is considered together. Astonish-
ingly enough, it was found that this iteration
scheme, called "filtering", rapidly converges to a
unique interpretation or to a small number of
interpretations for most cases.

This success achieved by shifting from Guzman
to Waltz is that Waltz begins with the deep struc-
ture (scene-domain meaning) and relates it to the
constraints computable in the view domain. A simi-
lar approach for line drawings of curved objects is
taken by Turner (1974) , although with more complexity.

b) Shape from Shading

This addresses how the intensity of the observed
image can be used toreconstruct the 3-D nature of
the corresponding surface of the object.
Horn(1977) gives an elegant formulation by use of
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the gradient space approach(Huffman,1971;
Mackworth,1974). If z=f(x,y) defines the surface
of the object, the local surface orientation can
be expressed using p= and g= 9-5 The gradient
space is the space defined by (p,q): For a par-
ticular choice of viewer-object geometry, light-
source, and a kind of object surface, it can be
calculated how the intensity data(l) depends on

p and q; i.e., (p,q)->1(p,q) . For example, in the
simplest case where a light source is at the viewer
and the object surface reflectivity is proportional
to cosine of the incident angle of light, then

Iip.q)= 1/ Lrpieq?

This means that the points with a given intensity
have such orientations determined by a circle in
the gradient space. Other constraints in the
gradient space can be used in conjunction with this
constraint to determine the orientation uniquely for
each point. For example, the three surfaces of a
trihedral vertex correspond to three points in the
gradient space and the lines connecting these points
must be perpendicular to the three lines joining at
the corresponding junction in the image.

A practical example of combining picture pro-
cessing with simple camera geometry is found in Yoda,
Motoike & Ejiri(1975). It provides an insensitive-
to-noise algorithm that obtains the normalized top
view of a box-like object on a table from its oblique
image. The histogram of edge-segment directions,
when modified in accordance with camera angle, gives
reliably the orientation of the box on the table.

All the representations and procedures mention-
ed above can be thought of as compiled knowledge
that relates scene-domain constraints to view-
domain constraints(Winston, 1973).

To sum up the three preceding subsections:

1) Scene-domain knowledge is crucial.

2) The processing-unit hierarchy should be explicit-
ly represented and handled. Mingling them results
in the misuse of the descriptive vocabulary for
shape and relations.

3) 3-D shape models embody generative nature to
manage various cases, but in general they are weak
in hypothesizing appropriate candidates for object
models in recognition. Hierarchical overall/
detail representations may be helpful, if properly
related to the processing units.

5) Compiling the knowledge of relating scene con-
straints to view constraints is a powerful tech-
nique, but it works in the controlled world whose
constraints have been "compiled" into the method.

3.4 Multiple-View Model

Minsky(1975) proposed the theory of frame
systems as a unified theory of knowledge represen-
tation. As Minsky describes them, when applied
to vision most straightforwardly, frame systems are
collections of related frames linked together;
different frames describe the stereotyped view (not
necessarily of a single object, but of a scene with
multiple objects like a room) from different view-
points, and the transformation from one frame to
another represents the effect of moving from place
to place. Though very attractive as a psychological
model, it seems that this multiple-view frame

as they are, have gone too far in neglect-
ing direct, metrical processing of 3-D information.
Anyway it is not clear yet how well such represen-
tations work for real images, since no implementa-
tion exists yet.

systems,

The frame theory itself presents a foundation
of representational schemes. Among others, it
advocates that matching against a stored set of
expected prototypes and instantiating them are the
central recognition process. Each prototype should
contain a chunk of data and procedures which are
used in applying it. These ideas can be developed
in both the view domain and the scene domain.

3.5 Structuring Multiple-Level Descriptions

The importance of explicitly handling the hier-
archy of image descriptions has been stressed. One
thing we can do about the object model representation
is to store knowledge applicable for each level of
descriptions together with information about how it
is related to the upper- and lower-level descriptions
Sakai, Kanade & Ohta(1976) used symbolic "knowledge
block" representations for outdoor-scene interpreta-
tion. Here we extend it a little to represent
processing-unit hierarchy explicitly in it. Our
system is region-based and, an image is first parti-
tioned into a collection of patches by the recursive
thresholding technique(Ohlander,1975); see 5.1.
Thus we can assume that the image has been completely
described in that level; all the properties of and
relations between patches are known or computable.

As an example, the representation of a typical
building would appear as in Fig. 2. Each block
having a name starting with * is called a knowledge
block(KB). A KB can stand for not only a process-
ing unit concerning an object, but also material
(e.g., *CONCRETE), property(e.g., *RECTANGULAR),
or relation(e.g., *INHERIT-PROP). It is like a
conceptual object in the KRL(Bobrow & Winograd, 1976) .

*BUILDING in the object level specifies its gross
shape by *RECBLOCK. The parameters are its size,
location and orientation. Properties and relations
valid in this level can be included. The object
model is related to a few of the qualitatively dif-
ferent views depending on the value of parameters.
The connecting parameter values are given when work-
ing downward, and inferred when working upward. Note
that, especially in outdoor scenes, the size, locat-
ion and orientation are relative matters. They need
not be very precise for most cases as long as no
contradictions occur. Note also that the distant
objects such as sky, or objects with fuzzy shape such
as trees can be thought of as flat patterns perpen-
dicular to the viewer. It might be said in this
sense that the scene domain is a subjective
2 1/2-D space.

The view-domain units represent the hierarchy;
how the subimage corresponding to a particular view
is composed of regions, and how the region is
composed of patches. The subimage KB contains a
procedure to infer the scene-domain parameters.
During the interpretation process, each KB for sub-
image or region-level unit generates its instance
by linking region or patch instances as its part
descriptions. The pool of those instances together
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with initial patch-level
the data base for

Fig.l can be

course of

tially completed.

be linked

hand; this makes

Generally speaking,
ASK, SELECT,
are represented either

types of rules:

or as a procedural
1976).

for example,
holes, many-lines,
*CONCRETE,
boundary may well

image description.
regarded as those
interpretation their
Usually the number of patches to
to aregion instance
the actual interpretation difficult.

descriptions constitutes
The boxes in
instances. In the
links might be par-

is not known before-
each KB contains three

and CHECK. These rules
by a list of fuzzy predicates,

attachment(Bobrow & Winograd,
The ASK rules are used to choose entities
as candidates for the component of the

instantiation;

a patch with the properties of many-
inneriting-properties-of
and adjacent-to ¢SKYREGION with
become a component patch of

linear
*WALL.

The ASK rules function as bottom-up triggers of

proposing an

instance of the KB.

The SELECT rules are used in trying to extend
the instantiation as far as possible under the KB's
*RECBLK type 3-D shape

parameter size(a,b,c), location, orier
tation
procedure to generate a block in the
space,given the parameters
*BUILDING type processing unit(object)
shape (*RECBLK parameters)
relation (in-front-of *SKY)
view (*BLDVIEW1 parameter-range)
(*BLDVIEW2 parameter-range)
*BLDVIEW1  type processing unit(subimage)
view-of (¢BUILDING parameters)
procedure to infer parameters
part (*BLDFACE(1) *BLDFACE(2) )
CHECK check the relation between
the parts
SELECT if one of the part is in
stantiated, search for the
other
ASK region(*BLDFACE)
+BLDFACE type processing unit(region)
part (*WALL *WINDOW(N))
CHECK check the shape, regularity
of #WINDOWS ,etc
SELECT try to identify holes in
#WALL as sWINDOWS
ASK region(*WALL)
*WALL type processing unit(region)
part (patch(N))
CHECK check color, shape, etc.
SELECT try to expand the region keep-
ing the properties,to a
shape(*RECTANGULAR parameter)
ASK patch(x); ( (many-holes x)
(many-lines x)(*INHERIT-PROP
¢CONCRETE x)(linear (boundary
x *SKYREGION)) )
*WINDOW type processing unit(region sub-
ordinate)
CHECK check shape, color, etc.
Fig. 2 Part of Knowledge Block Representation of

BUILDING
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own control; for example, ¢BLDFACE tries to identi-

fy the holes in the region of *WALL as ¢WINDOWS,
and checks if they all satisfy some relations
expected of walls and windows. The SELECT rules

correspond to a goal-directed analysis on a part of
image, taking advantage of the facts known under
object-dependent control.

The CHECK rules verify and evaluate the rating
of how much the present state of the instantiation
satisfies the KB. This rating is used by a control
structure in selecting proposals made by the KBs.
The possible control structures for these represen-
tations will be discussed in 4.2.

1V, CONTROL STRUCTURE

Control structures are the strategy of using
the knowledge to efficiently construct the goal
descriptions. For one thing, it is strongly
dependent on the representations employed. Waltz's
program for line-drawing interpretation required no
sophisticated control structure. However, this

exceptional simplicity was obtained not only because
of the careful choice of description schemes but
also because of the assumption of (almost) perfect

line drawings as input. When one deals with real
intensity images, one has to cope with more uncer-
tainty. It should be noted here again that this

does not justify a straightforward use of probabil-

istic or optimization techniques which mix up every-
thing in one level. Let us first have a brief look
at the spectrum of the control structures embodied in

vision programs which treat actual image data. Then
the control structure for the knowledge block
representations will be discussed.
4.1 From Pass-Oriented to Heterachi cal Control
Structure
The pass-oriented structure, or linear (bottom

up) sequencing of transformations, is the most
straightforward control structure; it builds up
higher-level descriptions step by step. The typical
sequence is: 1) noise removal, 2) edge-segment find-
ing, 3) grouping of edge segments, 4) line drawing,
and 5) interpretation. The lowest level is usually
a universal technique. The higher the level is, the
more the process is domain-dependent. Though it is
simple and modular, such a control structure is not
always reliable. Errors in the earlier stages
seriously damage the later stages, and it is very
difficult or even impossible to make the earlier
stages error-free without using knowledge of the
later stages. It is noted, however, that recently
several people including Marr(1975) raise a re-
consideration of this point; Marr claims that it is
necessary to clarify how much can be done in each
stage independently, before going to rich and
complex interactions between stages.

A hierarchical top-down gross-to-detail control,
directed by a model, is an efficient way to detect
a particular pattern in an image (Harlow,1973;
Ballard & Sklansky,1974). The recognition process
takes the form of a decision ladder or graph, whose
subsequent lower nodes correspond to decisions to
be made concerning more detail in a smaller area.

A feedback analysis procedure was described in
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Nagao(1972), and exemplified in the face recognition
programs(Sakai, Nagao & Kanade,1972; Kanade,1974).
The program consists of many routines, each of which
corresponds to a component of the face such as nose,
eyes and mouth, and is programmed to detect the
component in a given small area. The program works
basically in a hierarchical top-down manner, in the
sense that the ordinary order of calling routines
into action is predetermined on the global-to-local
basis. But its feature is that when something goes
wrong (failure or inconsistent detection) within a
routine, then the control goes back to former ones
and retries them to correct or refine the parameters
that might have caused the error.

A more complex control structure is mixture of
bottom-up and top-down (and further middle-out)
(Turner,1974; Popplestone, Brown, Ambler & Crawford,
1975). The ultimate style would be heterarchy, in
which a number of modules work together like a com-
munity of experts with no strict central executive
control(Winston,1973). However, it is very difficult
to include the low-level processing in such a style
of cooperation. Though not heterarchy, the Shirai's
program(1973) to obtain line drawings of polyhedra
has embodied the most rich interactions between
high-level and low-level routines.
the strategy of constructing a line drawing step by
step. At each time the most probable line is hypo-
thesized and verified by making use of previous
results. Recognition starts from 1) contour lines
with a black background and goes into 2) other
boundary lines between two bodies and 3) internal
lines of bodies.

4.2 Control Structure
Representations

A control structure of the system that employs
the knowledge block representations will be
discussed; it is again based on the control structure
employed in Sakai, Kanade & Ohta(1976).

for Knowledge Block

a) Each KB Proposes Its Existence in Its Own Way
It appears that the most crucial point is to

know where in the image one should apply which

object model. It is very natural to start with a

part of the image where strong features exist; the
result will help in understanding other parts. But
who knows what strong features are important? Each

object has its own cues at its own level of descrip-
tion, strong or weak. For example, in a city-outdoor
scene, a light bluish patch in the upper part of the
image suggests sky rather strongly. On the other
hand, a brown patch suggests a wall of the brick
building only very weakly. The evidence becomes
stronger, if it has a linear boundary with the sky.
It becomes much stronger if the patch together with
neighboring patches forms a rectangular region with a
regular substructure. What cues are used, what
relations can support the evidence, and up to what
level they are to be grouped? All these depend on
each object. Therefore rather than using a central-
ized hypothesizer, a distributed hypothesis-making
is desirable.

structure is de-

As was mentioned in 3.5, the
instances of processing-unit KBs
the initial patch-level descriptions of image

The concept of the control
picted in Fig.3.
pool of plausible
and

fnvited Papers-3:
1079

It is based upon

constitute the data base that represents the present
state of image descriptions. Each knowledge block
looks at the data base. If it finds the cues (by
ASK rules), it begins its own processing and con-

tinues as far as it can (by SELECT rules). If it

checks that enough evidence has been found (by CHECK
rules) , it proposes to add its instance (partial image
description at that level) to the data base. Thus
the KBs work inparallel and communicate through the
common data base. The blackboard model of control
structure (Erman& Lesser,1975) used in speech under-
standing provides a good metaphor at this point.

Primitive functions for accessing the data
base are prepared. The existential fetch;

EX-FETCH[ x,

is such a function. It selects from x, a list of
entities, one that satisfies the specified conditions
more than t, and returns a pair of the entity and
its evaluation value. For example,

EX-FETCH[ ALLP, 0.7,
(LAMDA (s) (F-AND (below s *RGN) (dark s))) ).

The evaluation is the value of fuzzy AND of the two
fuzzy predicates. ALLP is the reserved variable for
all patches. *RGN is the unit itself that the KB
using this EX-FETCH represents.

t,Specification of evaluation>]

b) Proposal Selection Is Necessary

It is apparent that if each KB is allowed to
add its proposal to the common data base freely, the
data base will soon explode. Some rating should be
attached to the proposal. The simplest proposal-
selection mechanism selects an instance description
with the highest rating at a time, and adds it to
the common data base. The addition has two effects:
1) It may change the rating of instances of other
KBs. Each KB has a list of KBs which refer to it.
Thus what KBs have to recompute is known. The effect
of recomputation may further propagate, repeatedly.
2) It may trigger the next-level KBs to propose
the existence of their instances.

When a subimage instance is generated, the
corresponding object description is inferred as a
component of the scene description. Now, following
the model downward, the view of the object can be

verified in the view description so far developed.
The links left incomplete in the various levels of
instances, which may correspond to details of the

Data Base Control

pool of
instances of KB KB

¥
patch descriptions

pProposal

low=leve]l picture -
processing functions

t

pixel-level image

reference
links

Fig. 3 Concept of Control Structure for

Knowledge Block Representations

KanaHe



object, are completed, and the incorrect links
which may have existed near the boundary are cut.
Instances that substantially overlap in the image
with the verified one can be eliminated.

Therefore, usually those objects which reveal
their existence strongly, or which are not occluded
by others, are processed first. If the image
involves only weak occlusion and each object in it

shows up clearly, all this will suffice. This is
actually what happens in Shirai(1975) for multiple-
object recognition in the desk scene which includes

a telephone, lamp, and bookstand.

Much more sophisticated optimization mechanism
would be possible and sometimes desirable(Barrow
& Tenenbaum,1976). However, the most important
thing is to build up descriptions by basically data-
driven analysis, so that the goal-directed, object-
dependent analysis can be applied to an appropriate
part of the image.

c) An Example of Occlusion Inference
When an object is recognized and verified,

its

boundaries are checked. Let us take a simple example.

The boundaries may be divided into three parts:

1) The boundary which shows the object's own shape
or properties: For example, part of a linear
boundary for a building,or zig-zag boundary for a
tree. It suggests the occluding boundary.

2) Contrarily, the boundary which shows the
properties of the neighboring objects: It
suggests the occluded boundary

3) Not clear.

The first and second evidences give some information

about relative positions between parts of objects.

In-front-of and behind-of pointers are added to the

object-level description in order to give a partial

ordering in depth.

In order to exploit this finding, the infor-
mation is passed and added to the description of
the corresponding patches; i.e., what part of
their boundary is occluding or occluded. A region
instance, which has been suspended because part of
the necessary area is not yet detected, can use this
information as an excuse for that defect, and may
raise its rating. The goal-directed process in the
SELECT rules can expand the region across the occluded

boundary as if the expected conditions were satisfied.

A simple method to transfer this effect to the next
higher level description is to generate special
"forgery” patches(see Fig.l) that have the desired
properties, and link them to the region instance.

d) Competing Instances

Although the instances kept in the common data
base are the most plausible ones, they are not
always correct in all details. The instance made
in a later stage by the goal-directed procedure of
the SELECT rules may want to have a link to an
entity to which another instance already has a link
These are competing instances.

The problem of conflicting hypotheses is dis-
cussed in multi knowledge-source systems(Erman &
Lesser, 1975; Barrow & Tenenbaum, 1976). The multi-
context control is necessary. However, in image we can
further take advantage of the local independence of
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parts of the image; i.e., the fact that the influence
of a decision at some local point often does not
extend too far. Unless the overlapping area is large,
the competing instances can be treated as if both
are correct at the same time. Minor inconsistency of
the context is not so serious. The number of contexts
to be treated separatedly becomes smaller.

In the verification process, after one object
is found, the part of the image in competition can
be interpreted through negotiations among the
competing units which have links to that part.
This time the problem has become classificat-
ion or comparison between them. Usually it is
easier and the results are more reliable.

V. ROE OF LOW-LEVEL PICTURE PROCESSING

One of the classical and somtimes misleading
views about low-level processing is that it is
information reduction process. This view leads to
attempts to transform the input image directly into
very compact, minimally sufficient form such as a
line drawing. Rather the low-level process should
be viewed as information structuring process of raw
image data, so that as much information as possible
may become accessable from other knowledge sources.
This alternative view leads us toregard the pixel-
level image data plus various low-level picture-
processing functions as the structured data set
that can answer questions from upper levels. This
data set is the most basic part of the data base
used in the image understanding process(see Fig.3).

5.1  Adequate Descriptive Vocabulary

In order that the structured data set works,
adequate descriptive vocabulary is necessary to
describe the image in terms of low-level entities.
One basic attitude is to describe the cases which
have been conventionally detected as a single
YES/NO event(such as "an edge exists"), and to have
the next higher-level unit interpret the resultant
description on a bit more global basis. Another
point is to recognize that a large amount of com-
putation is necessary to obtain adequate descript-
ions of the image with which to start the bottom-up,
data-driven analysis; stinginess in description or
computation is not to be pursued.

The primal sketch(Marr, 1975) is arich symbolic
description computed from the image, so that it can
be the input of the next level. A typical feature
description about edge at a point would be like;

( EXTENDEDEDGE (POSITION (100 125))
(CONTRAST  12)
(ORIENTATION 63.5)
(FUZZINESS 3) ).
Creating a primal sketch requires application of
local filters of various type, size and direction
for each image point.

A simple working region-oriented technique is
recursive thresholding technique by use of multiple
histograms in order to partition the image into
patches. This was first used by Tomita, Yachida &
Tsuji(1973) in segmenting a textured scene. Ohlander
(1975) used it in segmenting natural color scenes.

Kanade
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The method is very simple. First, calculate
histograms of each of available local features of
the image point. The features are such as inten-
sity, component of color (red, green, hue, etc.),
gradient, or occurrence of a local pattern. Then
select a feature whose histogram has two (or more)
separated peaks; it means that not all the image
points have similar feature values, but that they
form two (or more) groups. Finally threshold the

image at the values which separate the peaks, and

partition the image into several connected parts.
The sequence of these operations are applied recur-
sively to each of the resultant parts, until each

one has monopeak histograms for all the features,
which shows that it is almost a homogeneous
patch.

The output product of this region-oriented low-
processing is not again simply the segmented
It consists of a list of patches, a list
and a list of vertices, each of which
attributes and links to represent
This does not necessarily mean
that all the values have been computed beforehand;
it is too inefficient. Facilities such as Memo
functions(Michie,1968) are valuable.

level
picture.
of boundaries,
includes their
their relations.

5.2 Detail Hierarchy
The product of the low-level processing can show
the detail hierarchies at that level along a few

dimensions. It has to be structured so that higher-
level components can exploit them to work from
overall to detail or from strong to weak features.

1) Spacial dimension— A pyramidal image-data

structure is often used by dividing the image into
nxn neighborhood and mapping (typically averaging)
each neighborhood into one pixel of the next level
image. Descriptions constructed corresponding to
this hierarchy can give the detail hierarchy along
the spacial dimension (Nagin, Hanson & Riseman,1977) .
2) Feature dimension— When the picture segmentation
is done sequentially using the most distinguishing

feature at a time, as in the recursive thresholding
method, the total result gives a tree structure

of segmentation. It is along the feature dimension.
3) Reliability dimension— For a particular

feature detection, a linear hierarchy is obtain-
ed along reliability, or complementarily, along

fuzziness of the detection.

5.3 Associative Retrieval

Once adequate symbolic
vacabulary is defined to describe
the low-level picture processing, it becomes
desirable for higher-level functions to retrieve
information from the data set in a unified, logical
way, perhaps by associative retrieval (Yakimovsky
& Cunningham;1976). For instance,

Area®Patch s number of pixels

Boundary (x)region = (a set of lines)
In fact, the lack of such an ability of smooth
interface between low-level and high-level functions
has been an obstacle to developing a vision system

representational
the result of

which is largely based on symbolic models.
One can think of information retrieval with
some inference and/or data manipulation capability,

in addition to the simple associative retrieval and

the FETCH-type functions mentioned in 4.2a); for
example, "Find a set of patches such that the region
they form has such and such relations withPATCH3".
It suggests research on data set manipulation
language for image understanding. The relational
data model could supply a basis.

5.4 Controllability

This property is related to the top-down aspect
of control. The top-down analysis requests a low-
level picture processing program to verify or detect

specific conditions. This means that the functions
need to be programmed with controllability so that
they can do as exactly much as the given guidance
requests. A typical example is found in Shirai's
Line Finder(Shirai,1973). The circular search
procedure is for searching for lines starting at a
given point when the direction of the line is not
known. This problem is decomposed into successive
applications of the line-segment detection in pos-
sible directions. The detection procedure is
supposed to search (confirm or deny) a line segment
with a given direction in a given search area.

This example suggests that a low-level vision
program, for instance an edge detector, need not
be "general" to deal with a broad class of edges.
Interestingly enough, the opposite effort has been
made as an image processing technique; i.e.,
attempts to devise an edge detector that always
works for "any" type of edges. Low-level programs
become more useful when they are parametralized
to enable them to be specialized according to the
given specification; for exmple, direction, type,
and size of the window for edge detection.

VI.  SUMMARY

The problems of model representations and con-
structures of IUS have been discussed, mainly
from the viewpoint of interpretation-oriented tasks.
It is very important to handle explicitly the hier-
archy in the levels of image descriptions, especial-
ly to reflect the natural hierarchies into the
processing-unit hierarchy.

trol

After a few types of representations were re-
viewed with discussion, the knowledge block represen-
tations were described that store knowledge for
each level of description together with how it is
related to the upper- and lower-levels.

The core part of an IUS is basically a symbolic
process. The low-level picture processing must have
a smooth interface with the symbolic process.
Considerations were given about adequate descriptive
vocabulary, detail hierarchy, associative retrieval,

and controllability in the low-level processing.
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