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ABSTRACT
Distributed planning requires both
architectures for structuring multiple planners
and techniques for planning, communication, and

cooperation. We describe a family of systems for
distributed control of multiple aircraft, in which
each aircraft plans its own flight path and avoids
collisions with other aircraft. AUTOPILOT, the
kernel planner used by each aircraft, comprises
several processing "experts" that share a common
world model. These experts sense the world, plan
and evaluate flight paths, communicate with other
aircraft, and control plan execution. We discuss
four architectures for the distribution of
airspace management and planning responsibility
among the several aircraft occupying the airspace
at any point in time. The architectures differ in
the extent of cooperation and communication among
aircraft.

1. INTRODUCTION
refers

Distributed planning to the process by

which  multiple processors cooperate to achieve a
set of common objectives. Development of
distributed planning systems requires two major
activities: the specification of architectures
for structuring the cooperating processors, and
the discovery and implementation of planning
techniques to be used by each processor. We have

undertaken both activities in an effort
methods for distributed control
through an air traffic control sector. This task
domain has permitted us to investigate three
important questions concerning cooperation:

to develop
of aircraft moving

and
for

(1) What are the computational costs
benefits of different architectures
distributing planning functions?

How should distributed
with incomplete and errorful
Distributed planners typically possess

(2) planners cope
information?

different
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knowledge bases, and no individual has a complete
and accurate world model. Such differences
increase the complexity of coordinating planning
efforts.

(3) What are the pragmatics of cooperation?
Distributed planning should be superior to
centralized planning only if methods can be
devised for exploiting the resources of the
multiple processors. These methods must confront
the tradeoffs between local planning and requests
for cooperation, and between inferring intentions
and requesting information from others.

To investigate these questions, we have
implemented a planner called AUTOPILOT. AUTOPILOT
simulates the sensing, route planning, and
communications activities of a single aircraft
flying through a high-traffic air sector. It

controls an aircraft by cooperating with virtual
clones of itself, each of which is assigned to and
controls a different aircraft. In this paper, we
describe the planning techniques embodied in four
specific versions of AUTOPILOT that differ in the
amount of communication and cooperation among the

multiple planners.

2. THE ATC TASK DOMAIN

The task environment for AUTOPILOT is
provided by a real-time air traffic control (ATC)
simulation. Figure 1 illustrates a portion of
airspace wused by the simulation. The airspace

includes airways
entry/exit fixes

(indicated by commas) that link
(0-9) at the airspace boundaries,

two airports ("V and "#"), and a navigation aid
("*") through which aircraft can be vectored.
During each run of the simulation, twenty-six
aircraft arrive in the airspace at random times.
Every aircraft enters the airspace at a particular
entry fix or originates its flight at one of the
airports. Aircraft must be issued commands to
depart, land, change course, and/or change
altitude in order to successfully navigate them to
their destinations. The simulation provides two
types of information: the airspace display and the

flight plans for active and approaching aircraft.

The airspace display (shown on the Ileft side of
Figure 1) portrays the locations of all aircraft
in the airspace, their identifiers, and their
altitudes in thousands of feet (e.g., A5, X6).
Every fifteen seconds the display is wupdated and
the aircraft move one mile (to an adjacent "." or
",") in the direction of their current bearing.



The flight plan for each aircraft (shown on the
right side of Figure 1) displays, reading left to
right, its status (active or approaching), its
identifier, its current location (or origin, for
pending aircraft), its destination, its altitude
(in thousands of feet), and its bearing. For
example, aircraft R, will enter the airspace in
one tine-step of the simulation at infix location
2, heading northwest at an altitude of 6000 feet.
Its destination is exit fix 0. A potential route
for R would take R northwest to "*" and then north

to 0.

Successful control of aircraft requires
issuing commands to navigate planes to their
desired destinations and maintaining at least
three miles of horizontal separation or 1000 feet
of vertical separation between any two aircraft.

A violation of any of these constraints produces
an error, as does allowing an aircraft to exhaust

3. IBS DISTRIBUTION OF PUNNING EFFORT

In our simulation, planning responsibility is

distributed among the aircraft. Each aircraft is
controlled by an automated planner called
AUTOPILOT. We refer to this allocation of
function as an object-centered architecture for

Whenever a new aircraft
a new AUTOPILOT clone is
planning and cooperation
its origin

distributed planning.
appears in the airspace,
created and pertorms all
for that aircraft as it navigates from
to destination.

All AUTOPILOT clones are behaviorally
identical and can be viewed as virtual copies of a
generic ATC planner. The structure of AUTOPILOT
resembles that of an independent actor (1), or
object, as in SMALLTALK |2), DIRECTOR |3], or ROSS
(4). In the current implementation, we simulate
multiple planners by a single planning system that

: assumes different perspectives for each aircraft.
its fuel supply. The planner spawns offspring for different
. aircraft that contain the data base and world
AIRSPACE DISPLAY FLIGHT PLANS model specific to each. The computational
0 ] S Xj ,-*9 6 SN expertise resides in the generic planner and can
;| t X6 Ap .->2 5 SE be applied to any of the various data bases.
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T AUTOPILOT contains a design kernel common to
T - all architectural variants we have investigated.
e Figure 2 illustrates this kernel.
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T Several processing modules  function  as
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Model, and each expert posts its results in the
World Model as new knowledge or changes to
existing knowledge. The World Model contains such
information as aircraft locations, their flight
plans or assumed flight plans, and its own
destination and tentative plans.

The Sensor receives simulated radar returns

airspace displays every fifteen
knowledge
list of

in the form of
seconds. By comparing new displays to
in the World Model, the Sensor compiles a
location updates to be posted.

When AUTOPILOT is assigned to a new aircraft,

the Plan Generator produces a set of tentative
flight plans to navigate the aircraft from its
origin to its destination. The Evaluator tests
these tentative plans against the real or inferred
flight plans of other aircraft and posts
predicted conflicts in the World Model. The Plan
Generator uses this information to either
attach a minor patch to an existing plan or to
replan completely.

The Communicator exchanges information and
requests with other aircraft. When planning is
thwarted by environmental uncertainty, the
Communicator may request locations or intentions

from others. If the Plan Generator has failed to

produce a conflict-free route, the Communicator
may request other aircraft to patch or replan
their routes.

Finally, the Controller implements the
aircraft's flight plan. It monitors the location
of the aircraft and issues commands to alter
course or altitude at the appropriate locations in

the airspace.

5. INCREMENTAL PUNNING

AUTOPILOT represents a plan in the World
Model as a schema with several slots to be filled
during the planning process. For example, the

completed plan for aircraft R in Figure 1 is

(PLANOO8

AIRCRAFT R

COMMANDS (a4 :0 ab)

CONSTRAINTS ((12 13) (12 13) (4 1))
ROUTE ((12 13 6 285) (11 12 6 300) ...)
CONFLICTS 2

CONFLICTSUM ((X (6 7))) (X (4 16)))
LENGTH 13

VALUE 106

PARENT NIL

OFFSPRING NIL).

The slots in the plan schema contain
information about the commands required to execute
the plan, the x-y coordinates at which the
commands must be executed, estimates of the
overall utility of the plan, annotations of the
plan's current predicted conflicts, and a four-
dimensional map of the executed plan (i.e., a
specification of the location of the aircraft at
each point in time). Some slots in the plan
schema are filled during plan generation, some

during evaluation, and other during plan patching.

The following these processes

in more detail.

paragraphs discuss

5.1. Plan Generation

AUTOPILOT produces route plans incrementally

by planning approximately. The Plan Generator
first produces with minimal effort a few standard
routes from infix to the desired destination by
indexing a library of plan templates. Each
template is list of commands, indexed by
infix/outfix, that is guaranteed to take an
aircraft to its destination from its entry fix.
These plans are then evaluated to determine the
nature and location of expected conflicts.
Finally, the best plans are refined wusing a
variety of techniques to produce local patches
that avoid the ~conflicts. This incremental
approach to planning has four advantages. First,
it emphasizes the general adherence to designated
airways and conventional routing strategies.
Second, plan failures are simple to diagnose and
describe; therefore, it is possible to patch
accurately. Third, the incremental planning
strategy reflects the approach used by real air
traffic controllers and by expert humans
performing in the ATC simulation. Fourth, this
strategy is well suited to the distributed

planning environment, since predicted conflicts
identify sets of aircraft that must cooperate to
solve their common problem.

Detection

5.2. Plan Evaluation and Conflict

The Evaluator detects conflicts in candidate
plans using a fast-time lookahead. Once candidate
initial plans are generated, the Evaluator
computes a four-dimensional route map of the
locations to be occupied by the aircraft under
each plan. Converting plan commands into route
maps is costly; however this <cost is offset by
caching the results in the ROUTE slot of the plan
schema. Hence, each plan undergoes this expansion
only once. The route map is then compared to
similar maps of the projected or known plans of
other aircraft in the airspace. Maps are compared
using an intersection search that requires
maintenance of a 36-square mile window around each
aircraft. Detected conflicts trigger annotations
of a plan's problems and utility that are stored
in the CONFLICTS, CONFLICTSUM, and VALUE slots of
the plan schema.

5.3. Plan Refinement

The Plan Generator refines initial plans
whenever the Evaluator detects conflicts in every
initial plan. The patches fall into three
classes. Timing patches alter the time at which a
plan's commands are executed without changing the
commands themselves (e.g., by deferring or
promoting an altitude change command). Delaying

patches insert new commands in a plan to delay an
aircraft's arrival at a particular point (e.g.,
looping). Course alteration patches insert a
detour to avoid the conflict location. This

requires deleting several commands from the flight
plan and replacing them with new ones.



These patch types are representative of more
general replanning capabilities. For example,
interpolating a loop is a kind of prerequisite
insertion [7], and course corrections amount to
substitution of subgoals [8).

Each patch is represented as a schema with
slots encoding the computations required to
evaluate patch effectiveness and modify a plan.

The
that

presents an abstraction of a patch
left-loop into a plan:

following
inserts a

(PLAN-PATCH LOOP-LEFT

TYPE delaying

DIRECTION left

PREREQUISITE <conflict point must not be too
close to an airspace boundary else

the loop will take aircraft out of
airspace>
INITIATEPOINT <use the earliest point that

satisfies prerequisites and is

prior to conflict>
DELETECOMMAND  niil
ADDCOMMAND <turn left 360 degrees>
COST low
EFFECTIVENESS high)
To instantiate a patch schema for use with a

particular plan, the Plan Generator attempts to
satisfy the PREREQUISITES of the patch in the
context of the plan. If successful, the Generator
applies the heuristics in the INITIATEPOINT slot
to select a point at which to insert a remedial
command. The specific commands are then copied
from the ADDCOMMAND slot into the plan itself. In
some cases (e.g., when deferring an altitude
change), commands initially in the route must also
be excised. The specifications for such deletions

reside in the slot DELETECOMMAND. Finally, the
ROUTE slot is updated to reflect the new flight
path entailed by the patched plan.

The patching process is best viewed as a

involving the Plan Generator and Evaluator

The Generator iteratively expands
for the aircraft in the World Model
using possibly flawed initial plans as the parent
nodes. Offspring are generated through the
application of one or more patches to the initial
plans. Patches are applied to copies of the
parent plan rather than the original plan itself.
Hence, the modified offspring are distinct data
structures. Whenever a new plan is posted in the
World Model, the Evaluator criticizes the plan and
posts the results of its critique.

search
as co-routines.
a plan tree

plans for expansion
according to which

its  VALUE

The Generator selects
(i.e., patch application)
current plan has the highest value in
slot. This value reflects the number of conflicts
remaining to be resolved and the length of the
flight path. Once a plan has been selected for
patching, the Plan Generator applies only patches
that generate better offspring (i.e., have higher
VALUEs) than their parents. This heuristic
results in depth-first/best-first searches since
offspring plans are always better than their
parents. Planning terminates whenever one
offspring plan has no conflicts or when the plan
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space is exhausted--that is, when no plan for the
aircraft has a set of patches that remove all
conflicts. In this case, the Evaluator selects

the plan with the highest VALUE for execution.

In the current implementations, searches
typically converge quickly on a solution. Rate of
convergence is governed by the density of
solutions in the problem space (an inverse
function of the number of active aircraft), the
branching factor of the plan tree, and the depth

of the plan tree. Both the breadth and the depth
of the tree are limited. The branching factor is
limited by the number of patch types known and by
the fact that particular patches do not satisfy
all prerequisites for application in a given
situation. The depth of the tree is limited by
the number of conflicts found in initial routes.

6. DISTRIBUTED PUNNING ARCHITECTURES

We are currently exploring techniques for
distributed planning in four versions of the
object-centered architecture. The first two
variants exemplify cooperation without
negotiation. In the first wversion, the wuse of
common planning rules and local inference obviates

the need for communication of plan intentions. In

the second, aircraft communicate their plans but
not replanning requests. The third and fourth
variants employ cooperative planning using

different control regimes. The following sections
describe these four variants and the modifications
in the kernel planner they entail.

Communication

6.1 Object-Centered Autonomous --No

In this most restricted form of cooperation,

aircraft plan autonomously without communication.
Thus, in this version we excise the Communicator
from the AUTOPILOT kernel. In lieu of obtaining
flight plans from other aircraft, the Sensor
infers their plans from altitudes, bearings! and
nearest exit fixes or airports along their current
flight paths.

Due to the uncertainty associated with such

the Sensor must continually monitor
the World Model to detect
changes in aircraft locations and violated
assumptions about their flight plans. Updating
the hypothesised flight plans triggers new
conflict detection checks by the Evaluator. If
new conflicts are predicted, the Planner attempts
to patch the current plan to avoid the new
conflict(s). If unsuccessful, the Planner
dynamically replans a new route. Effective
cooperation is achieved through the use of global
"rules of the road" and precedence rules, like
those used by operators of small visually-
controlled aircraft, boats, and automobiles.

extrapolation,
the radar returns and

6.2. Object-Centered Autonomous--
Limited Communication
In this version an aircraft can request plans
from other aircraft. Intentions can therefore be

posted with certainty and route maps accurately



modeled rather than merely estimated. This
version of AUTOPILOT therefore requires the
Communicator, communications channels, and

protocols. Proscribing negotiation among aircraft
places the burden of maintaining aircraft
separation on the aircraft attempting to formulate
a plan. As each new plane enters the airspace, it
must develop a conflict-free plan with respect to
the fixed flight plans of other aircraft already
in the airspace.

The Sensor first posts other aircraft
locations and the Communicator collects and posts
the flight plans for these aircraft. Initial plan
generation by the Planner may be interleaved with
the functions of the Sensor and Communicator. The
Evaluator simulates the outcome of plan execution
with respect to other aircraft locations and
plans. If necessary, the Planner attempts to
patch the plan to eliminate conflicts detected by
the Evaluator. When either a conflict-free plan
or the best available plan is posted as final, the
Controller monitors execution of the plan.

The utility of these autonomous versions of

the object-centered architecture depends on
several attributes of the problem space and task
domain. First, autonomous planning, with or
without plan communication, should succeed only
when the problem space is dense in solutions--that
is, so long as it is ©possible to produce a

conflict-free plan regardless of the number and
routes of other aircraft in the airspace. Second,
autonomous planning is preferred over cooperative
planning when the cost (in time or resources) of
local inferencing and planning is less than the
cost of communications, negotiation, and
coordination.

AUTOPILOT'S
costs and

Introducing negotiation into
planning behaviors entails both
benefits. Inter-aircraft cooperation is desirable
because the conflicting aircraft may have
different options for resolving the conflict. One
aircraft may discover a simple patch for its plan
while it may be impossible for another aircraft to
remove the conflict in its plan.

However, complications arise from the need to
synchronize local replanning activities. For
example, assume A has a route that conflicts at p1
with B and at p2 with C. Suppose that A can patch

its plan to remove its conflict with C but must
rely on B to replan to remove their mutual
conflict. B cannot assume that A's plan will
remain fixed since A is patching its plan to
accommodate C. In general, different conflicts
(subproblems) may not be independent, and local

planning cannot guarantee a globally satisfactory

plan. Thus, cooperation through negotiation and
communication requires effective coordination
regimes. The following two architectural variants
embody different techniques for coordination. In
each case, requests for cooperation are initiated
by an aircraft that fails to find a conflict-free
plan for itself.
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6.3. Object-Centered Hierarchically Cooperative

In this version, the aircraft currently
planning (A) orchestrates the attempts to
eliminate conflicts from its plan. Figure 3
illustrates the coordination regime. A's
Evaluator first selects its best plan. The
Communicator then passes a message to another
aircraft (say B) that conflicts with A's plan. The

message contains
patch its plan
execute its plan.
a successful patch,

A's plan and requests that B
under the assumption that A will
If B's return message contains
A makes the same request of
the next aircraft (say C) with a predicted
conflict. A passes both its plan and B's
tentative patch. If C cannot patch under the
given constraints, then A's Evaluator will abandon
this plan, select its next best plan, and the
Communicator will begin the negotiation process
again.

6.4. Object-Centered Asynchronously Cooperative

The same type of cooperation may be achieved
through asynchronous, parallel replanning efforts.
In this case, the planner requiring assistance

does not dictate a particular, favored plan.
Rather, the planning aircraft (A) broadcasts its
set of potential plans to all aircraft in the
conflict set (B, C, etc.), but sends no
constraints concerning what assumptions they must
adopt regarding A's or the others' patches. Each
aircraft simultaneously attempts to patch its own
plan to remove conflicts predicted between it and
A. Solutions are communicated to A as tentative
plan revisions.

When B returns a plan to A that removes a
common conflict, B also sends the assumptions
under which it generated the solution--that is,
the plan for A that B assumed in its revision. A
must maintain a record of all proposed partial
solutions and halt the replanning process when (a)
it has received a complete set of conflict
elimination patches for one of its potential
routes, and (b) the proposed patched plans of the
other aircraft do not conflict with each other.

Such cooperation accelerates the planning
process by exploiting the parallel processing
capabilities of multiple aircraft. When  numerous
pairwise conflicts must be resolved, the
sequential solution method entailed by
hierarchical control may require too much time to
converge on a solution. However, in the
asynchronous cooperation regime, speed is achieved
at the cost of additional bookkeeping and
evaluation at A.

7. SYSTEM PERFORMANCE
We have implemented the limited-communication
autonomous variant and the hierarchically

cooperative variant of AUTOPILOT in INTERLISP on a
DEC-2060 at Rand-Al. They communicate over the
ARPANET with the ATC simulation, a C program
residing on a PDP-11/70. These variants differ
only in the architecture in which AUTOPILOT s
embedded, but not in the planning or sensing



capabilities of each aircraft. Table 1 presents
performance data for these two architectures.
Both perform with low error rates on simulation
runs in low* to medium-density airspaces (i.e.,
50-60 minute runs). In high-density airspaces
(i.e., 30-40 minute runs), the hierarchically
cooperative variant outperforms the autonomous
system. This reflects the additional planning
options that can be considered in cooperative
architectures and that are required when air
traffic is heavy.
Table 1
Hean Nuambar of Unresolved Conflicts
par Simulation Run
Version Simulation Duration (Min)
e 40 50 60
Autonosous 15.2 10.5 5.0 4,2
Cooparative 12.5 8.0 4.7 4.0
AUTOPILOT
iy
= aaw AN
EENSON
abln Chrrent
ol loatierm

8. CONCLUSIONS

We have illustrated several methods for
distributing planning responsibility among
multiple processors working toward a common set of

objectives. In future work we will implement and
evaluate the performance of other architectures
and other variants on the object-centered

architecture. In so doing, we will emphasize the
development of more sophisticated bargaining
methods and communications protocols. We also
hope to determine how dense, in solutions a problem
space must be to utilize each of our developed
architectures successfully.

In order to demonstrate our candidate
architectures, we have introduced several
simplifications to our distributed planning
environment. These include (1) simulation of
multiple planners by a single planning program,

(2) error-free communications,
planning and revising heuristics,

(3) limited route
and \(4) complete

cooperation with no competition among different

aircraft. Our future work will remove these

simplifications from our task environment. In
EVALUATOR

CONTAOLLEN
Sealut gl

EVALUATOR
by Sun plan

Fig. 3 — Corral structure bar Whe abject-cantered coopirative arohiciure
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particular, we plan to achieve true distribution
by demonstrating multi-processor control of real
autonomous vehicles.

Our current work also addresses goals
extending beyond a repertoire of domain-specific

planning and patching techniques. In particular,
the object-oriented programming techniques we have
developed suggest a general framework for

functionally distributed, communicating planners.
At the same time, we currently know more about how
to model <cooperation than about what cooperation

should be modeled. We still lack a theory of
cooperation that would provide answers to
questions such as: When should 1 request a plan
from another? How much effort should 1 expend

planning before requesting another to replan?
Under what conditions should objects plan for
others in addition to themselves? Such questions
are at the heart of effective cooperation in many
distributed planning domains.
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