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symbol structures which correspond to what the 
problem solver knows about the problem at a p a r t i ­
cular time. A new state is generated by modifying 
the symbol structures. The successive series of 
knowledge states that the problem solver passes is 
not a random series, but is generated by a strategy 
that the problem solver is fol lowing. 

This is the general idea of the problem space 
hypothesis. The part icular detai ls of the con­
struct ion of a space and the search through it 
depends on the task and on the person who solves 
i t . For instance, if the task is simple, as in the 
item-recognition task <16> and the three-term se­
r ies task <8>, the process of constructing a prob­
lem space is t r i v i a l . The task is easi ly assimi­
lated to the knowledge of the problem solver. A 
person w i l l probably also generate a strategy 
quickly and execute it immediately and the time to 
solution is short. In contrast, the Tower of Hanoi 
puzzle and the Missionaries and Cannibals problem 
are examples where a human problem solver may have 
troubles in constructing a relevant problem space 
and a strategy. The time to solution w i l l , of 
course, be longer compared to simple tasks. 

We w i l l be restr icted to cognitive prooesses 
in simple task environments. The general character­
ization of such processes is that the task is 
easi ly assimilated. This means that the person is 
able to represent and understand the task quickly. 

Given a conceptual framework in which mental 
events are viewed as search prooesses through 
problem spaces and guided by strategies, it can be 
asked how th is strategy is organized and executed. 
This is the problem about control structure. 

We are current ly developing DA in simple 
environments, where we think of a strategy as 
composed of a set of goals. The goals are achieved 
by operations. Let us show a simple abstract 
example of a strategy. 

Assume that the goal-state GOAL can be reached 
by a means-ends analysis using the operator: 

GOAL <— SUBG0AL1 6 SUBG0AL2 (1) 

which means that SUBGQALl and SUBOTAL2 have to be 
attained to reach GOAL. To solve the two subgoals, 
which are our new state we need some operators: 

SUBG0AL1 <— P1 & P2 (2) 

SUBG0AL2 <— P1 & P3 6 P4 (3) 



SUBOOALl can be attained by act ivat ing the 
operators called PI and P2, whereras SUBO0AL2 can 
be resolved by ca l l ing P I , P3 and P4. Each operator 
ca l l may lead to an operator that transforms a state 
to a new state or leaves a state without change. 
The la t te r case means that a subgoal has been 
solved, and we wr i te : 

P2 (4) 

This example i l l us t ra tes the simplest form of the 
language that we w i l l use in developing DA. It is a 
subset of f i rs t -order logic, called Horn clauses 
<10>. As a consequence, it is possible to read the 
f i r s t expression above as: GOAL is true if SUBOOALl 
and SUBG0AL2 are t rue. In order to run Horn clauses 
we have to specify how the formulas are executed. 
There are many ways to execute a set of Horn 
clauses <9>. 

I l l ON THE METHODOLOGY 

We shal l discuss three aspects of our method. 
F i r s t , we take up the task analysis or the ident i ­
f ica t ion of possible goals and operators, secondly, 
the derivation and execution of strategies in d i f ­
ferent problem spaces, and th i rd l y , the empirical 
evaluation or the comparisons between simulations 
and empirical observations. 

A. Task analysis 

We think of a task analysis as an i den t i f i -
cation of goals that can be involved in a solution 
to a part icular task. It means also that the set of 
goals, or a subset of them, is specified in a model 
speci f icat ion. Each specif ication contains a set of 
possible simulation models that are abstractly but 
precisely defined. A model specif ication leaves 
several aspects unspecified. For example, the 
representational format that goals and procedures 
operate on is not defined. Therefore, no decision 
can be made about how to manipulate information. 

Design issues: 

1 Representational format: How is internal 
information represented? 

2 Operational assumptions: How is information 
manipulated? 

3 Operational mode: How is each operation 
transformed? How is a transformational time 
function defined for an operation? 

4 Operational order: How is the set of opera­
t ions organized? 

5 Operational ru le : How is the entire set of 
operations transformed? How is th is time 
function defined? 

F ig . 1 Five issues on the design of models. 

F ig . 1 contains a l i s t of issues not included 
in a model speci f icat ion. Hypotheses have to be 
formulated on each of the f ive design issues to 
implement a oanputer model. There may exist several 
d i f ferent hypotheses on each issue, for exanple, on 
internal information formats. Consequently, th is 
step can be as important as the specif icat ion since 
the hypotheses on the design issues ind i rec t ly 
res t r i c t the set of possible models. In short, the 
specif icat ion and hypotheses contain a set of 
possible simulation models, i . e . , a set of pairs of 
problem space and strategy. 

B. Derivation and simulation 

The task analysis leads to a model speci f ica­
t ion and a set of hypotheses about the design 
issues. We wri te them in f i r s t order predicate 
logic. These statements about mental processing in 
the given task domain can usually not be run as 
simulations, they do not constitute a computational 
model. To reach a form that represents mental 
phenomenas and is computable we may have to trans­
late the specif ication into a set of more basic 
statements. I n . DA it is carried out by log ica l 
derivat ion, in par t icu lar , we use a natural deduc­
t ive system of Gentzen type <4>. Such a system has 
been used for formal program development in <6>. 
However, in th is oontext we are not interested in 
automatic deduction, although developments in that 
area may influence DA. 

An abstract specif icat ion consists of a 
precise def in i t ion of a set of goals. A derivation 
means that a l l the aspects, which are l e f t un­
specified are successively defined by design 
hypotheses. For instance, a specif icat ion does not 
contain any specified representation, so we can 
introduce an assumption on mental representation. 
There are, of course, several such hypotheses, 
leading to d i f ferent derivation paths. When one 
representation has been introduced we have defined 
a problem space. The next steps in the derivation 
involve the strategy that w i l l be used in that 
space. Again, there may be several ways to define a 
strategy, since the specif icat ion does not contain 
any information about i t . 

At each derivation step we use a logical 
inference ru le, so a derived simulation model is a 
logical consequence of the speci f icat ion. This 
property is rarely sat is f ied for simulation models. 

The result of a derivation is a set of 
statements that forjti a cognitive model. The model 
includes both a problem space and a strategy to use 
in that space. When the statements are Horn clauses 
we can run them in a top-down manner by Prolog 
<14,18>, in th is way we get our simulations 
automatically. 

C. E m p i r i c a l evaluations 

The models are logical consequences of the 
speci f icat ion, but it remains to see if they are 
empirically t rue. It may not be the case that they 
constitute problem spaces and/or strategies that 
people spontaneously use in the part icular task 
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environment. A model may have properties not shared 
by the human cognitive system, or properties that 
may be learned. Thus, we have to evaluate them by 
comparing the results from the simulations by 
empirical observations. 

The simulations contain two types of data: 
reaction times and traces. In addit ion, we know 
which representation each model is working on so, 
in fac t , we have three d i f ferent types of data. 
Mental representations are, however, impossible to 
use, at least with the type of empirical methods 
used today. 

When evaluations have been made it is possible 
to compare the models that can reproduce the 
empirical observations with those that cannot. 
These comparisons resul t in an ident i f icat ion of 
the problem spaces and/or strategies that people do 
not use* It is also possible to compare the 
successful models with each other to see what 
problem spaces and/or strategies people do use. 
These models share properties in the form of design 
hypotheses that are empirically or functional ly 
equivalent. This comparison may also show types of 
data that could dist inguish them further. 

IV TWO EXAMPLES 

Two simple task environments w i l l be used for 
i l l u s t r a t i on . The f i r s t task is a very simple one 
and called the item-recognition task <16>. The 
other task is called the three-term series task 
<8>. 

A. The item-recognition task 

In th is task a person is instructed to 
memorize a l i s t of symbols, for example, le t te rs or 
d i g i t s . The memorized l i s t is called the posit ive 
set. The person is then presented with a probe 
symbol short ly af ter a ready s ignal . The task is to 
answer "yes" if the probe symbol is a member of the 
posit ive set, and "no" otherwise. The size of the 
posit ive set in terms of number of symbols is 
usually varied from 1 to 7. This task has been 
investigated a number of times <16>. 

Even if the task is simple, a person who is 
t ry ing to solve the task needs to do something 
mentally. There are at least four intermediate 
states before an answer is given. Following our 
terminology there are four subgoals to a t ta in 
before an answer can be reached <16>. 

1. The encoding goal is a process where the 
external probe is perceived by the person and 
transformed to an internal symbol in memory. Hence, 
there must be an operation called "ENCODE from an 
external probe to an internal representation of 
that probe. 

2. To solve the task the person must in some way 
compare the probe with the symbols in the posit ive 
set . Thus, there must exist an operation from the 
probe and the set to a note that signals a match or 
a mismatch. This operation is called COMPARE. 

3. The note from the second subgoal has to be 
examined. EXAMINE is an operation from the note to 
an internal answer. 

4. The person has to translate the internal 
answer into an external act ion. This is the DBOODE 
operation. 

In prepositional logic we can wr i te a simple 
specif icat ion 

SOLVE <~ ENCODE & COMPARE & EXAMINE & DBOODE (5) 

which we read as: to a t ta in SOLVE (the goalstate) 
resolve ENCODE and COMPARE and EXAMINE and DECODE. 
This is an insuf f ic ient specif icat ion for our 
purpose so we reformulate i t . The goal-state can be 
attained if the probe is enooded and if the 
posit ive set is empty the answer is "no"; otherwise 
compare the probe with elements in the set, and 
examine the note. F inal ly transform the answer into 
act ion. In predicate logic we wr i te 

Vp' Ys Ea' (SOLVE(p\s) = a' <-- (6) 
Ep En Ea (ENCODE(p') = p 6 

(s = n i l & a = "no" & DBOODE(a) = a1) v 
(CEMPARE(p,s) - n & EXAMINE (n) = a & 

DBCODE(a) = a ' ) ) ) 

This is an abstract model specif icat ion 
because it leaves several aspects unspecified. For 
instance, what is COMPARE? How is the information 
(the posit ive set) represented, e t c . , . The aspects 
that are not specified can be found in the design 
issues. We have included f ive issues in F ig . 1. It 
may be possible to extend the l i s t fur ther, but for 
our present purpose it is su f f i c ien t . 

Di f ferent hypotheses can be formulated on each 
of the design issues. Let us s tar t with a repre-
sentation of the posit ive set. At least two formats 
can be suggested, s imple- l is t and d - l i s t , respec-
t i ve l y <1,17>. The posit ive set is represented as a 
s imple- l is t if and only if the set is empty or 
constructed of a proposition element(e) and a 
s imple- l is t <5>. Formally, 

Vset (s imple- l is t (set) <—> set = n i l v (7) 
Ee Eset'(set = e .se f & 

element(e) 6 s imp le- l i s t (se t ' ) ) ) 

So fa r , we have formulated two hypotheses. 
Four issues remain. For instance, the second issue 
concerns how information is manipulated. Given a 
s imple- l is t format of the posit ive set membership 
can be defined either by an operation from the 
beginning of the l i s t or from the end, correspond­
ing to the notions of stack and queue, respective­
l y . For a stack an element e is a member of a l i s t 
set if and only if there exists another element x 
and a l i s t y where element e is equal to element x 
or is a member of l i s t y. 

YeVset(e e set <—> EXEy(set = x.y & (8) 
element(x) & s imple- l is t (y) & 

(e - x v e e y))) 

The th i rd issue is operational mode. This 
issue is part iculary relevant for the COMPARE goal. 
At least two d i f ferent modes are possible. It can 
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operate in e i t h e r an exhaust ive mode, or i t can be 
s e l f - t e r m i n a t i n g . Thus, we can pos tu la te two 
hypotheses about COMPARE <5>. 

The f o u r t h issue concerns opera t iona l o rder . 
The four subgoals are computed by four operators 
and in t h i s s imple example, the order is g i ven . 
However, i t should be po in ted out t h a t t h i s may not 
be the case in another environment. This issue a lso 
includes t im ing assumptions which we w i l l re tu rn to 
below. 

The f i f t h issue concerns the g lobal c o n t r o l o f 
a program t h a t , f o r example, can be in a s e r i a l or 
p a r a l l e l ! o r d e r i n g . I t a lso includes t im ing as­
sumptions. We assume an operat ional r u l e co r ­
responding to a s e r i a l top-down execut ion as e . g . , 
i n P ro log . 

In summary, we have formulated two hypotheses 
about rep resen ta t i on , two about manipulat ion two 
about ope ra t i ona l mode, one about opera t iona l 
o rder , and one about the opera t iona l r u l e . The 
f i r s t s i x are p a r t i c u l a r y re levant fo r the d e r i v a ­
t i ons and the remaining ones for the s imu la t ions . 

We focus on psycho log ica l not ions and can thus 
for reasons of space leave out formal de r i va t ions 
<6>, but we s h a l l o u t l i n e the general s t r u c t u r e . 
For each goal in the s p e c i f i c a t i o n we der ive a set 
of opera t ions by using our design hypotheses. We 
assume a representa t ion e . g . , the s i m p l e - l i s t 
format , and a lso a m o d i f i e r , fo r instance, the 
stack hypothes is , Then we assume the mode of the 
opera t i on , f o r example, a s e l f - t e r m i n a t i n g mode. 
The r e s u l t i n g se t is Model -1 . By s u b s t i t u t i n g one 
hypothesis by another, we can der ive a second set 
Mortel-2. In t h i s way we can der ive s i x s imu la t ion 
models d i f f e r i n g in a t l eas t one cogn i t i ve aspect, 
but s a t i s f y i n g the model s p e c i f i c a t i o n . 

In F i g . 2 we summarize the de r i va t ions in a 
deduct ion t r e e . 

F i g . 3 . Model-1 in Horn c lauses. 

The s i x models are programs t h a t can so lve the 
i tem- recogn i t ion task . Timing assumptions on design 
issues 3 and 5 make i t poss ib le to c o l l e c t reac t i on 
t ime data and t race data in the s imu la t i ons , in 
which we assume a s imple a d d i t a t i v e f unc t i on i . e . , 
t ime is added l i n e a r l y both w i t h i n an opera t ion and 
between opera t ions . The p a r t i c u l a r est imates used 
in the s imu la t i ons , the reasons f o r each t im ing 
assumption, as w e l l as a d iscuss ion of the em­
p i r i c a l eva luat ions can be found in <5>. 

We want to po in t ou t t h a t DA makes it poss ib le 
to be p rec ise in the emp i r i ca l e v a l u a t i o n . Data 
t h a t d i s t i n g u i s h the models can be understood in 
terms o f the design hypotheses. Furthermore, i t i s 
poss ib le t o i d e n t i f y types o f data t h a t cou ld 
d i s t i n g u i s h e m p i r i c a l l y equ iva len t models. I n F i g . 
4 we i l l u s t r a t e these p o i n t s . 

F i g . 2. The deduct ion t r ee summarizing the 
general schema of the de r i va t i ons (ex = exhaust ive, 
te r = s e l f - t e r m i n a t i n g ) . 

As can be seen in F i g . 2, two of the s i x 
models correspond to two d i f f e r e n t s t ra teg ies 
w i t h i n the same problem space, whereas the other 
four are s t r a t e g i e s in another space. F i g . 3 shows 
Model-1 t h a t uses a s i m p l e - l i s t representat ion and 
searches the p o s i t i v e set exhaust ive ly by a stack 
m o d i f i e r . 

We have a r r i v e d at s i x computable models from 
a s p e c i f i c a t i o n by task ana lys is and deduct ion. 

F i g . 4 . E m p i r i c a l d i s c r i m i n a t i o n between models by 
reac t ion t ime da ta , t race da ta , and rep resen ta t i on . 
Representat ion is inc luded f o r sake of complete 
d i s c r i m i n a t i o n . Th is type o f data i s impossible to 
c o l l e c t i n emp i r i ca l research. 

B. The th ree- te rm aer ies task 

In our second example of DA we w i l l analyze 
the th ree- te rm se r i es task in t roduced by Piaget 
<13>. The sub jec t is g iven two premises t h a t 
descr ibe the r e l a t i o n s between th ree o b j e c t s . For 
ins tance, "Adam is shor te r than Bob" and "Bob is 
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