DEDUCTIVE MODELING OF HIMAN COGNITION

Goran Hagert

Department of Psychology
Uppsala University
Sweden

Daductive analysis (DA} is oresented as an
approach o the study and simulation of human
cognitive processes. DA is compoeed of a psycho-
logioal theocy and a wethodology that can shead
light on mental phenomenas. The cognitive theorv is
ambeddad in the problem space and the control
structure hypotheses. The methodology consists of
1logica) derivations of computer models from an
sbetract specification. The item-recognition task
and the three-term series task are anatyzed for
mirpose of illustration. Several aspects of human
cognition in these envirorments are discussed. It
is argued that DA brings new notions to the stuly
of hman cognition, for imatance, to design sets of
mdels al to distinguish betwesn empirically
equivalent mriels.

I INTRODOCTION

We will present and discuss a few new aspects
of studying cogmitive processing. They were called
Deductive Analysis (DA} in <5 and this type of
deductive modeling is further developed here. The
main aspect of DA is oognitive simulation, so it
balongs to one of the main streams in psychology.
Thus, our goal is to design programs that can
simulate human thinking, and one such program is &
cognitive model. The hypothesis that the architec-
ture of mind can be viewad an a symbol manipulating
system or an Information processing system (IPS)
<12> is related to our deductive wmodeling. There
are two othar hypotheses about mind as an IPS-
strocture, The problem space <11,12> and the
control structure hypotheses <10>, respectively.

Our deductive analysis gives a method for
Aesigning oomputer models, in particular, this
means that models of thought are derived, in logic,
from an abstract mdel specification., '™is
spacification is abstract in the sense that it only
oontains a precise definition of the model. No
information asbout representation and exscution is
explicit in the specification. Such issuves have to
be specified on the way toward the design and
inplementation of a model, {.e., during the
derivation.

II OONTTIVE THARY
The problam space hypothesis states that
problem solving, decision processes, as well a8
reasoning, are search processes through a problem
space. Fach state in the spece contains a set of

Sten-Ake Tarnlund

UPMAIL
Department of Computing Science
Uppsala University
Sweden

symbol structures which correspond to what the
problem solver knows about the problem at a parti-
cular time. A new state is generated by modifying
the symbol structures. The successive series of
knowledge states that the problem solver passes is
not a random series, but is generated by a strategy
that the problem solver is following.

This is the general idea of the problem space
hypothesis. The particular details of the con-
struction of a space and the search through it
depends on the task and on the person who solves
it. For instance, if the task is simple, as in the
item-recognition task <16> and the three-term se-
ries task <8>, the process of constructing a prob-
lem space is trivial. The task is easily assimi-
lated to the knowledge of the problem solver. A
person will probably also generate a strategy
quickly and execute it immediately and the time to
solution is short. In contrast, the Tower of Hanoi
puzzle and the Missionaries and Cannibals problem
are examples where a human problem solver may have
troubles in constructing a relevant problem space
and a strategy. The time to solution will, of
course, be longer compared to simple tasks.

We will be restricted to cognitive prooesses
in simple task environments. The general character-
ization of such processes is that the task is
easily assimilated. This means that the person is
able to represent and understand the task quickly.

Given a conceptual framework in which mental
events are viewed as search prooesses through
problem spaces and guided by strategies, it can be
asked how this strategy is organized and executed.
This is the problem about control structure.

We are currently developing DA in simple
environments, where we think of a strategy as
composed of a set of goals. The goals are achieved
by operations. Let us show a simple abstract
example of a strategy.

Assume that the goal-state GOAL can be reached
by a means-ends analysis using the operator:

GOAL <— SUBGOAL1 6 SUBGOAL2 (1)
which means that SUBGQAL and SUBOTAL2 have to be
attained to reach GOAL. To solve the two subgoals,
which are our new state we need some operators:

SUBGOALT <— P1 & P2 (2)

SUBGOAL2 <— P1 & P3 6 P4 (3)

SUBOOAL can be attained by activating the
operators called Pl and P2, whereras SUBOOAL2 can
be resolved by calling PIl, P3 and P4. Each operator
call may lead to an operator that transforms a state
to a new state or leaves a state without change.

The latter case means that a subgoal has been
solved, and we write:

P2 (4)
This example illustrates the simplest form of the

language that we will use in developing DA. It is a
subset of first-order logic, called Horn clauses
<10>. As a consequence, it is possible to read the
first expression above as: GOAL is true if SUBOOAL
and SUBGOAL2 are true. In order to run Horn clauses

we have to specify how the formulas are executed.
There are many ways to execute a set of Homn
clauses <9>.

111ONTHE METHODOLOGY

We shall discuss three aspects of our method.
First, we take up the task analysis or the identi-
fication of possible goals and operators, secondly,
the derivation and execution of strategies in dif-
ferent problem spaces, and thirdly, the empirical
evaluation or the comparisons between simulations
and empirical observations.

A. Task analysis

We think of a task analysis as an identifi-
cation of goals that can be involved in a solution
to a particular task. It means also that the set of
goals, or a subset of them, is specified in a model
specification. Each specification contains a set of
possible simulation models that are abstractly but

precisely defined. A model specification leaves
several aspects unspecified. For example, the
representational format that goals and procedures

operate on is not defined. Therefore, no decision
can be made about how to manipulate information.
Design issues:

1 Representational format: How is internal
information represented?

2 Operational assumptions: How is information
manipulated?

3 Operational mode: How is each operation
transformed? How is a transformational time
function defined for an operation?

4 Operational order: How is the set of opera-
tions organized?

5 Operational rule: How is the entire set of
operations transformed? How is this time
function defined?

Fig. 1 Five issues on the design of models.

179

1 contains a list of issues not included
in a model specification. Hypotheses have to be
formulated on each of the five design issues to
implement a oanputer model. There may exist several
different hypotheses on each issue, for exanple, on
internal information formats. Consequently, this
step can be as important as the specification since
the hypotheses on the design issues indirectly
restrict the set of possible models. In short, the
specification and hypotheses contain a set of
possible simulation models, i.e., a set of pairs of
problem space and strategy.

Fig.

B. Derivation and simulation

The task analysis leads to a model specifica-
tion and a set of hypotheses about the design
issues. We write them in first order predicate
logic. These statements about mental processing in
the given task domain can usually not be run as
simulations, they do not constitute a computational
model. To reach a form that represents mental
phenomenas and is computable we may have to trans-
late the specification into a set of more basic
statements. In. DA it is carried out by logical
derivation, in particular, we use a natural deduc-
tive system of Gentzen type <4>. Such a system has
been wused for formal program development in <6>.
However, in this oontext we are not interested in
automatic deduction, although developments in that
area may influence DA.

An abstract specification consists of a
precise definition of a set of goals. A derivation

means that all the aspects, which are left un-
specified are successively defined by design
hypotheses. For instance, a specification does not

contain any specified representation, so we can
introduce an assumption on mental representation.
There are, of course, several such hypotheses,
leading to different derivation paths. When one
representation has been introduced we have defined
a problem space. The next steps in the derivation
involve the strategy that will be wused in that
space. Again, there may be several ways to define a
strategy, since the specification does not contain
any information about it.

At each derivation step we use a logical
inference rule, so a derived simulation model is a
logical consequence of the specification. This
property is rarely satisfied for simulation models.

The result of a derivation is a set of
statements that forjti a cognitive model. The model
includes both a problem space and a strategy to use
in that space. When the statements are Horn clauses
we can run them in a top-down manner by Prolog
<14,18>, in this way we get our simulations
automatically.

C. Empirical evaluations

The models are logical consequences of the
specification, but it remains to see if they are
empirically true. It may not be the case that they
constitute problem spaces and/or strategies that
people spontaneously use in the particular task

environment. A model may have properties not shared
by the human cognitive system, or properties that
may be learned. Thus, we have to evaluate them by
comparing the results from the simulations by
empirical observations.

The simulations contain two types of data:
reaction times and traces. In addition, we know
which representation each model is working on so,
in fact, we have three different types of data.
Mental representations are, however, impossible to
use, at least with the type of empirical methods
used today.

When evaluations have been made it is possible
to compare the models that can reproduce the
empirical observations with those that cannot.
These comparisons result in an identification of
the problem spaces and/or strategies that people do
not use* It is also possible to compare the
successful models with each other to see what
problem spaces and/or strategies people do use.
These models share properties in the form of design
hypotheses that are empirically or functionally
equivalent. This comparison may also show types of
data that could distinguish them further.

vV TWO BEXAVPLES

Two simple task environments will be used for
illustration. The first task is a very simple one
and called the item-recognition task <16>. The
other task is called the three-term series task
<8>.

A. The item-recognition task

In this task a person is instructed to
memorize a list of symbols, for example, letters or
digits. The memorized list is called the positive
set. The person is then presented with a probe
symbol shortly after a ready signal. The task is to
answer "yes" if the probe symbol is a member of the
positive set, and "no" otherwise. The size of the
positive set in terms of number of symbols is
usually varied from 1 to 7. This task has been
investigated a number of times <16>.

Even if the task is simple, a person who is
trying to solve the task needs to do something
mentally. There are at least four intermediate
states before an answer is given. Following our
terminology there are four subgoals to attain
before an answer can be reached <16>.

1. The encoding goal is a process where the
external probe is perceived by the person and
transformed to an internal symbol in memory. Hence,
there must be an operation called "ENCODE from an
external probe to an internal representation of
that probe.

2. To solve the task the person must in some way
compare the probe with the symbols in the positive
set. Thus, there must exist an operation from the
probe and the set to a note that signals a match or
a mismatch. This operation is called COMPARE

ISO

3. The note from the second subgoal has to be
examined. EXAMINE is an operation from the note to
an internal answer.

4. The person has to translate the internal

answer into an external action. This is the DBOCDE
operation.

In prepositional logic we can write a simple
specification

SOLVE <~ BNOOCE & OOVPARE & EXAMINE & DBOODE (5)

which we read as: to attain SOLVE (the goalstate)
resolve ENOODE and OOMPARE and EXAMINE and DECODE.
This is an insufficient specification for our
purpose so we reformulate it. The goal-state can be
attained if the probe is enooded and if the
positive set is empty the answer is "no"; otherwise
compare the probe with elements in the set, and
examine the note. Finally transform the answer into
action. In predicate logic we write

Vp' Ys Ea' (SOLVE(p\s) = a' <-- (6)
Ep En Ea (ENCODE(QP) = p 6

(s = nil & a = "no" & DBOODE@) = a') v
(CEMPARE(p,s) - n & EXAMINE (n) = a &

DBCODE@) = a')))

This is an abstract model specification
because it leaves several aspects unspecified. For
instance, what is COMPARE? How is the information
(the positive set) represented, etc.,. The aspects
that are not specified can be found in the design

issues. We have included five issues in Fig. 1. It
may be possible to extend the list further, but for
our present purpose it is sufficient.

Different hypotheses can be formulated on each
of the design issues. Let us start with a repre-
sentation of the positive set. At least two formats
can be suggested, simple-list and d-list, respec-
tively <1,17>. The positive set is represented as a

simple-list if and only if the set is empty or
constructed of a proposition element(e) and a
simple-list <5>. Formally,

Vset (simple-list(set) <— set = nil v (7)

Ee Eset'(set = e.sef &
element(e) 6 simple-list(set')))

So far, we have formulated two hypotheses.
Four issues remain. For instance, the second issue
concerns how information is manipulated. Given a
simple-list format of the positive set membership
can be defined either by an operation from the
beginning of the list or from the end, correspond-
ing to the notions of stack and queue, respective-
ly. For a stack an element e is a member of a list
set if and only if there exists another element x
and a list y where element e is equal to element x
or is a member of list y.

& (8)
imple-list(y) &
-XxVveey)))

YeVset(e e set <—= EXEy(se X.y

t =
element(x) & s
(e

The third issue is operational mode. This
issue is particulary relevant for the COMPARE goal.
At least two different modes are possible. It can

be
two

operate in either an exhaustive mode, or it can
self-terminating. Thus, we can postulate
hypotheses about COMPARE <5>.

The fourth issue concerns operational order.
The four subgoals are computed by four operators
and in this simple example, the order is given.
However, itshould be pointed out that this may not
be the case in another environment. This issue also
includes timing assumptions which we will return to
below.

The fifth issue concerns the global control of
a program that, for example, can be in a serial or
parallel! ordering. It also includes timing as-
sumptions. We assume an operational rule cor-
responding to a serial top-down execution as e.g.,
in Prolog.

In
about representation, two
about operational mode, one about operational
order, and one about the operational rule. The
first six are particulary relevant for the deriva-
tions and the remaining ones for the simulations.

summary, we have formulated two hypotheses
about manipulation two

We focus on psychological notions and can thus
for reasons of space leave out formal derivations
<6>, but we shall outline the general structure.
For each goal in the specification we derive a set
of operations by using our design hypotheses. We
assume a representation e.g., the simple-list
format, and also a modifier, for instance, the
stack hypothesis, Then we assume the mode of the

Specification (7)

Deduction
Model~1

SOLVE(p',nil,a) <— BXODE(p',p) & DEONDE (NO,a)
SOLVE(pf,s,a') <— BNODDE{p',p) & COMPARE (p,3,n) &
EXAMINE (n,a) & DEOXE{a,a')

«— el v n=0

o mtp,s,l)
<~ COMPAFE (p,s,0)
<= OOMPARE, (p,s,11)

ENCDOE {p' ,)
(OMPARE (p,nil.n)
OOMPARE (p,p.8,1)
COMPARE (p,e.5,0)
OOMPARE {p,e.8,n)
FXAMINE (1, YES)
EXAMINE (0, ND)
DECODE (YES, say (YES))
DECODE (ND, say (ND))

Fig. 3. Model-1 in Horn clauses.

The six models are programs that can solve the
item-recognition task. Timing assumptions on design
issues 3 and 5 make it possible to collect reaction
time data and trace data in the simulations, in
which we assume a simple additative function i.e.,
time is added linearly both within an operation and

between operations. The particular estimates used
in the simulations, the reasons for each timing
assumption, as well as a discussion of the em-

operation, for example, a self-terminating mode. pirical evaluations can be found in <5>,
The resulting set is Model-1. By substituting one
hypothesis by another, we can derive a second set We want to point out that DA makes it possible
Mortel-2. In this way we can derive six simulation to be precise in the empirical evaluation. Data
models differing in at least one cognitive aspect, that distinguish the models can be understood in
but satisfying the model specification. terms of the design hypotheses. Furthermore, it s
possible to identify types of data that could
In Fig. 2 we summarize the derivations in a distinguish empirically equivalent models. In Fig.
deduction tree. 4 we illustrate these points.
specification Type of data: Models:
Representation simple-list d-1ist 1, 2,3, 4, 5, &
Time data ~
Matifier stack stack 1, 3,5 2,4, 6
7\ 7\ } N\ Trace data \ /
Mode ex tar ex ter ex ter 1,3 S 2, 4 6
] |) \ | Representation / \ | /7 \ \
Model 1 2 3 4 5 6 1 3 5 2 4 (]
Fig. 2. The deduction tree summarizing the Fig. 4. Empirical discrimination between models by
general schema of the derivations (ex = exhaustive, reaction time data, trace data, and representation.

ter = self-terminating).

As can be seen in Fig. 2, two of the six
models correspond to two different strategies
within the same problem space, whereas the other

four are strategies in another space. Fig. 3 shows
Model-1 that uses a simple-list representation and
searches the positive set exhaustively by a stack
modifier.

We have arrived at six computable models from
a specification by task analysis and deduction.

181

sake of complete
impossible to

Representation is included for
discrimination. This type of data is
collect in empirical research.

B. The three-term aeries task

In our second example of DA we will analyze
the three-term series task introduced by Piaget
<13>. The subject is given two premises that
describe the relations between three objects. For
instance, "Adam is shorter than Bob" and "Bob is

