
SYMBOLIC EVALUATION OF LISP FUNCTIONS WITH SIDE EFFECTS FOR VERIFICATION

Dennis de Champeaux

B e d r i j f s i n f o r m a t i c a , Faculty o f

ABSTRACT
In t h i s paper we present a symbolic evaluator

of LISP func t i ons . I t can handle d a t a - a l t e r i n g
funct ions of the RPLACA type, i . e . funct ions that
change one datas t ruc ture by rep lac ing par ts of i t
by other s t ruc tu res that w i l l themselves not be
changed f u r t h e r , at leas t not permanently. The
s ta te desc r ip t i on language uses f i r s t - o r d e r
predicate ca l cu lus . I t i s argued tha t symbolic
eva luat ion in terms of t h i s language, although
t h e o r e t i c a l l y adequate, i s not f eas ib l e in genera l ,
since i t may requ i re extremely complicated
spec i f i ca t i ons fo r r e a l - l i f e funct ions w i th side
e f f e c t s . Examples are given of the spec i f i ca t i ons
needed to v e r i f y several versions of SUBSTAD, a
non-copying SUBST.
Keywords; LISP, symbolic eva lua t i on , v e r i f i c a t i o n
o f d a t a - a l t e r i n g func t i ons , predicate ca l cu lus ,
frame problem.

1, Introduction
In 1978 we published SUBSTAD, a non-copying

vers ion of SUBST [1] . Comparison of these two
func t ions in the context of a u n i f i c a t i o n a lgor i thm
showed some very favorable r e s u l t s . Two years l a t e r
we found out tha t the resu l t s were biased by a bug
in our machine implementation of SUBST.

This experience increased our i n t e r e s t in
v e r i f i c a t i o n , i n p a r t i c u l a r o f func t ions w i th side
e f f e c t s , such as SUBSTAD. These funct ions pose a
chal lenge to v e r i f i e r s . One simple RPLACA can have
consequences f o r every datas t ruc ture around.

Very few p r a c t i c a l , ready-to-use techniques
are ava i lab le at present. The theo re t i c ians of
program v e r i f i c a t i o n (f o r an overview, see [5]) are
developing languages (Dynamic Logic e .g .) that
abst ract away from rea l a p p l i c a t i o n , concern
t o y - l i k e programming languages and tend to be
considered as i n t e r e s t i n g objects by themselves.

More promising seem concrete e f f o r t s l i k e that
of Topor [8] , who v e r i f i e d the correctness of the
Schorr-Waite marking a lgo r i thm, an a lgor i thm
somewhat s im i l a r to SUBSTAD. His proof by hand is
reasonable to f o l l o w , but we are in te res ted in
ac tua l l y automating the v e r i f i c a t i o n process as
much as poss ib le .

Jos de Bruin

Economics, Un ivers i t y of Amsterdam

We developed a program that can keep t rack of
the many d e t a i l s involved when checking a l l
possible branches of computation t r e e s . We have
chosen the method of symbolic eva luat ion [3 , 6] ,
because i t guarantees that every branch is v i s i t e d
and tha t a l l precondi t ions to operat ions are
considered.

Symbolic eva luat ion requi res the add i t i on of
i npu t /ou tpu t s p e c i f i c a t i o n s to the program code and
of i n v a r i a n t s to each loop in tha t code. The code
is evaluated w i th symbolic input values tha t
conform to the input s p e c i f i c a t i o n , producing a
symbolic output value f o r each branch through the
code. The symbolic evaluator should embody the
semantics of the operators used in the code, in our
case (a t l eas t) the subset of LISP p r i m i t i v e s used
in SUBSTAD. For each of those operators i t should
be able to t ransform the desc r ip t ion of the s ta te
in which t h i s operator is ca l l ed i n t o a desc r ip t ion
o f the s ta te i t c reates .

I t has to be v e r i f i e d tha t a l l o f the output
values produced are in accordance w i th the output
c o n d i t i o n . Th is , as we l l as checking ent ry and loop
cond i t i ons , can be done "manually" or by a theorem
prover. Although we have been experimenting wi th
COGITO, our theorem prover (f o r r e s u l t s see [2]) ,
our conoern here is the automatic updating
concerning funot ions w i th side e f f e c t s , l i k e
RPLACA. For d e t a i l s on the ac tua l proofs (by hand)
see [2] .

2. The state Description Language
In order to f a c i l i t a t e deduct ion, the s ta te

desc r ip t i on language uses f i r s t - o r d e r predicate
ca l cu lus . We s t a r t o f f w i th a countable domain of
c e l l s C and a countable domain of atoms A, where C
and A are d i s j u n c t . Let D be t h e i r union:
D = C U A. We w i l l have the p a r t i a l f unc t ions :
— car and cdr , w i th domain C and range D; and
— addr, w i th domain D and range N, the na tu ra l

numbers.
We w i l l have the p a r t i a l p red ica te :
— atom wi th domain D, and which, where def ined,

coincides wi th the cha rac te r i s t i c predicate of
A.

The expression pa r to f (d ,e) s i g n i f i e s t ha t the data
object e contains a c e l l or atom i d e n t i c a l to the
root of d. Loopfree def ines the proper ty that a
data ob ject does not conta in a cyc l e .

A s ta te desc r ip t i on is a conjunct ion of fac ts
r e f e r r i n g to a f i n i t e number of data ob jec t s ,
always conta in ing the data objects n i l and t ,
corresponding w i th NIL and T, members of A, f o r
which ho lds : a t o m (n i l) , atom(t) and ~ (t * n i l) .

A s ta te desc r ip t i on may re fe r to ' v i r t u a l *
data ob jec ts , which ex is ted dur ing e a r l i e r s t a t e s .
Two data ob jec ts are compat ible, if they can
c o - e x i s t :

When two data objects are non-compatible at leas t
one has to be v i r t u a l . The RPLACX operat ions are
responsible f o r making data objects v i r t u a l .

The a l i s t contains the current bindings of the
atoms. A data object is v i r t u a l w i th respect to an
a l i s t i f i t i s non-compatible w i th an r^ from tha t

a l i s t . An atom may occur more than once as a f i r s t
element of a p a i r , fo r Instance as a oonsequence of
recu rs ion . LISP funct ions r e t r i e v e and update
le f tmost occurrences. Side e f f ec t s may propagate to
the r i g h t in the a l i s t . Extensions and
con t rac t i ons , as a consequence of en ter ing a higher
or lower stack l e v e l , a lso occur at the l e f t .

DEFINITION: A s ^ f t oonf l f iUr iUof l i s a P a i r

(AL,FL) w i th AL an a l i s t and PL (the f a c t l i s t) a
s ta te d e s c r i p t i o n . Atomic i ty o f n i l , t and a l l
atoms a^ on the a l i s t is i m p l i c i t l y assumed.

T. lu f i SYrtQllc. EYllUftWr
When given LISP-code and a s t a t e con f i gu ra t i on

the symbolic evaluator generates a t ree of s ta te
con f i gu ra t i ons , corresponding t o a l l possib le
computation paths through the oode. The symbolic
evaluator works l i k e a r e a l LISP eva luator . I t has

520

a code po in te r , corresponding to a program counter ,
to tha t par t of the code which has to be executed,
i t contains modules which correspond to b u i l t - i n
LISP funot ions and it knows what to do w i th user
def ined func t i ons .

A non-numerical atomic form is evaluated by
r e t r i e v i n g the most recent (i . e . le f tmos t) b ind ing
from the current a l i s t .

For b u i l t - i n func t ions , the rec ipe cons is ts of
checking whether precond i t ions , parametrized fo r
the current arguments, are f u l f i l l e d and, i f the
check succeeds, updating the s ta te c o n f i g u r a t i o n .
An exception is made f o r COND. The COND-module
generates one or more b i f u r c a t i o n s of the current
s ta te c o n f i g u r a t i o n . The correctness of a
b i f u r c a t i o n (s a t i s f i a b i l i t y o f a t e s t expression
and i t s negation) is not proven by means of the
deduction machinery but by cons t ruc t ing or having
ava i lab le two models tha t possess opposite t r u t h
values w i th respect to the t es t expression but are
both cons is tent w i th the current s ta te
c o n f i g u r a t i o n . To construct these models one could
ask the user to provide several examples, which are
processed concurrent ly wi th the symbolic input
s p e c i f i c a t i o n f o r the code (not implemented).
Test ing by running examples and formal v e r i f i c a t i o n
should not be seen as mutual ly exc lus ive , but
should go hand in hand.

Modules are implemented f o r the f o l l ow ing
subset of standard LISP func t ions : ATOM, CAR, CDR,
COND, CONS, EQ, EQUAL, GO, NOT, NULL, PROG, PROGN,
QUOTE, RETURN, RPLACA, RPLACD and SETQ. The
funct ions COND, GO, PROG, PROGN, QUOTE and SETQ are
of type FSUBR, i . e . evaluat ion of t h e i r arguments
is to t h e i r own d i s c r e t i o n . The other funct ions
have automatic - l e f t to r i g h t - argument
evaluat ion before module-speci f ic ac t ions are
taken.

An essen t ia l requirement f o r the modules is
that the compatab i l i t y property of s ta te
con f igura t ions is preserved. Our only worry is
RPLACA, RPLACD and SETQ beoause only those
funct ions a f f e c t the a l i s t . We w i l l describe some
of the modules.

ATOM
Let the argument of ATOM evaluate to x. A new
symbolic value w i l l be generated, say g 1 , which
w i l l be returned as the va lue, whi le the fac t l i s t
w i l l be expanded w i t h :
{ g1=t & atom(x) } + { g1=ni l & ~atom(x) }.

The implemented vers ion deals immediately w i th
the a tomic i t y of x . I t re tu rns t or n i l when
a tomic i t y or non a tomic i t y of x can eas i l y be
derived from the given fac t l i s t , otherwise the
user is asked to Ind ica te whether t , n i l o r both
p o s s i b i l i t i e s are to be pursued. In t h i s l a s t case,
i t generates a b i f u r c a t i o n o f the cur rent
computation branch wi th t in one and n i l in the
other branch, adding e i t he r atom(x) or ~atom(x) to

the respect ive f a c t l i s t .
CAR (and analogously CDR)

Let the argument of CAR evaluate to x. In contrast
w i th ATOM there is a precondi t ion check fo r CAR:
~atom(x) should be der ivable from the current f ac t
l i s t . I f t ha t de r i va t ion succeeds a new symbolic
va lue, say g2, is generated and returned and
g2«car(x) i s added to the fao t l i s t .

COND
This func t ion leads to b i f u r c a t i o n (s) of the
current computation branch, as described fo r the
implemented vers ion of ATOM.

CONS
Let the arguments of CONS evaluate to x and y. A
new symbolic va lue, say g3> is generated and w i l l
be re tu rned, whi le the f ac t l i s t w i l l be extended
w i t h : ~atom(g3), car(g3)=x and edr (g3) *y .

GO
We assume only backward jumps. The loop i nva r i an t
associated w i th the l abe l to which GO r e f e r s ,
provided by the user and parametrized f o r the
cur rent bindings by the eva lua tor , should be
der ivable from the current f ac t l i s t . A non-looping
check, based on a we l l founded r e l a t i o n should a lso
be performed. Because jumps are always backwards,
we do not have to consider the current computation
branch any f u r t h e r .

RPLACA (and analogously RPLACD)
Let the arguments of RPLACA evaluate to x and y.
The precond i t ion fo r RPLACA is ~atom(x). A new
symbolic va lue, say g6, is generated and re tu rned ,
whi le the fac t l i s t i s extended w i t h : eqa(x ,g6) ,
car (g6)*y and cd r (g6)=cdr (x) .
Any non-atomic b inding z1 on the a l i s t , i d e n t i c a l
to x or •above* x, w i l l be a f fec ted i n d i r e c t l y by
the RPLACA operat ion and has to be replaced by a
new binding z2 fo r which minimal ly holds:
eqa(z1,z2) . In genera l : when a RPLACX operat ion
causes x1 to be replaced by x2 then each b inding on
the a l i s t , y 1 , w i l l be replaced by a f resh b ind ing ,
y2 , whi le the f a c t l i s t w i l l grow w i t h :
eqaupto(y1,y2,x1,x2) , which says: y2 is i d e n t i c a l
w i t h y1 unless there is a subst ructure of y1 that
is i d e n t i c a l w i th x 1 . The predicate eqaupto is
def ined as:

321

These lemmas oan be used to curb updating
a c t i v i t i e s . For proofs of these and other lemma's
and theorems, see [2] .

THEOREM 1 Let y1 and z1 be o ld b indings which are
respec t i ve ly replaced by y2 and z2 due to an
RPLACX-operation tha t caused x1 to be changed i n t o
x2, thus w i th eqa(x1,x2) , then compat ib le(y1,z1) ,
eqaupto(y1,y2,x1,x2) and eqaupto(z1,z2,x1 fx2)
impl ies compat ib le(y2 yz2) .

SETQ
Let the second argument evaluate to x. The
precond i t ion f o r SETQ is tha t the non-evaluated
f i r s t argument is atomic, say A. The b ind ing of the
le f tmost occurrence of A on the a l l s t w i l l be
replaced by x. If A does not occur on the a l i s t -
i . e . when A is a g loba l va r iab le - then (A.x) w i l l
be added at the r ighthand side of the a l l s t .
Preservat ion of a l i s t - c o m p a t a b i l i t y is ensured when
the eva luat ion of the second argument y i e l d s a
value compatible w i th the current b ind ings .

The modules not described t r i g g e r obvious
updat ings. (For the equal pred icate needed by the
EQUAL module, see [2] .)

3 . 1 , U s e r F u n c t i o n s
Most LISP funct ions to be v e r i f i e d w i l l

conta in func t ions other than the above mentioned
p r i m i t i v e ones. These are provided e i t h e r by the
user or are b u i l t - i n . They can be handled by the
evaluator if they are accompanied by an input and
an output c o n d i t i o n .

The symbolic eva luator f i r s t asks fo r (and
t r i e s to ass i s t w i th) a check tha t the input
cond i t i on is f u l f i l l e d and then looks whether the
user wishes t h i s func t i on to be v e r i f i e d . I f so,
she w i l l have to provide i t s body. Recursive user
func t ions w i l l be opened at most once, f o r obvious
reasons. A wel l - founded r e l a t i o n , user prov ided,
should be used when v e r i f y i n g tha t arguments of a
recurs ive c a l l score s t r i c t l y less w i t h respect t o
tha t wel l - founded r e l a t i o n than the arguments at
the top l eve l c a l l . This was not implemented.

An output cond i t ion should describe the
r e s u l t i n g s ta te in terms of the values used in the
input cond i t ion to enable the symbolic evaluetor to
update the s ta te con f igu ra t ion in which the
func t ion was c a l l e d . This updat ing is
s t ra ig th fo rward when the func t ion does not have
s ide e f f e c t s and j u s t re turns a va lue, but b u i l t - i n
and user func t ions of RPLACX-type need even more
complicated a l i s t updating schemes than the one
given above f o r RPLACX.

Suppose we execute (NCONC LIS S1), where the
bindings of LIS and S1 are respec t i ve l y l i s and s 1 .
The r ightmost l e a f of S I , which must be NIL, w i l l
be replaced by a po in te r to i t s second argument S 1 .
Any datast ruoture conta in ing a po in te r to l i s or to
a c e l l l y i n g on i t s 'sp ine ' (i . e . the cdr chain

s t a r t i n g at l i s) w i l l be changed as a consequence
of t h i s NCONC opera t ion .

We w i l l describe an a l i s t update scheme fo r a
c lass of side e f f ec t generat ing f unc t i ons ,
i nc lud ing NCONC, EFFACE and our SUBSTAD support
funct ions SUBSTAD1 and SUBSTAD2. It app l ies to
those funct ions which cause replacement of a c e l l ,
say x 1 , by a c e l l , say x2 , (thus we have
eqa(x1 ,x2)) .

Every b ind ing , z 1 , on the a l i s t is replaced by
a f resh b ind ing , z2, and the fac t l i s t is expanded
w i t h : t r a n s f (z 1 , z 2 , x 1 , x 2) . The predicate t r a n s f and
i t s support ing predicate t r 1 and t r 2 works by
double recu rs ion . F i r s t , i t is checked whether z1
is i d e n t i c a l w i th x1 or - using t r 1 - w i th a c e l l
reachable from x l . I f the t r1-case appl ies the
predioate t r 2 is invoked to r e l a t e z1 and z2.
Second, when z1 is not i d e n t i c a l w i th x1 or a
subce l l o f x1 then t r ans f is ca l l ed recu rs i ve l y to
t e s t whether subcel ls of z1 are a f fec ted by the
x1-x2 replacement.

522

THEOREM 2 Let y1 and z1 be o ld bindings
which are respec t i ve ly replaced by y2 and z2
due to an s i de -e f f ec t operat ion causing x1 to
be changed i n t o x2, thus w i th eqa(x1,x2) , then
eoapa t ib le (y1 ,z1) , t rans f (y1 ,y2 ,x1 ,x2) and
t r ans f (z1 , *2 , x1 , x2) impl ies compat ib le(y2,z2) .

The l i m i t a t i o n s of t h i s updating
scheme can be seen from the func t i on
NC0NC2, def ined as:
(NC0NC2(LAMBDA(LIS1 LIS2 S1)

(NCONC LISKNCONC LIS2 S1))))
A b inding r e f e r r i n g to the * sp ine ' of the input
b inding of LIS2 cannot be recognized and there fore
w i l l not be updated, although i t i s not up- to-date
anymore.

We conclude tha t the user must be given the
opt ion to spec i fy a s p e c i f i c , i d i osync ra t i c a l i s t
update mechanism fo r any funot ion having side
e f f e c t s . This w i l l considerably increase the
v e r i f i c a t i o n burden, since i t w i l l have to be shown
that the c o m p a t i b i l i t y requirement fo r the updated
a l i s t i s f u l f i l l e d .

4. Evaluting SVBSTAP
To g ive an impression of the f e a s i b i l i t y of

the method of symbolic eva luat ion as introduced
above, we w i l l discuss our e f f o r t to v e r i f y
SUBSTAD. This func t ion is ca l l ed w i th three
arguments: S1, LAT and S3. It replaces al
occurrences of LAT in S3 by S1 . The value of LAT
should be a non-numeric Atom. This is checked by
SUBSTAD, which also handles the case tha t S3 is
atomic. Otherwise i t c a l l s a support func t ion w i th
one argument, S3.

The support func t ion publ ished in [1] uses
po in ter reversa l to avoid the use of a s tack, as is
done in garbage c o l l e c t o r s . Before d iscussing t h i s
f u n c t i o n , we w i l l make some remarks on the
v e r i f i c a t i o n of two simpler vers ions , to show how
the method works and to i l l u s t r a t e how a s l i g h t
mod i f i ca t ion in a program can lead to subs tan t i a l
d i f fe rences i n i t s v e r i f i c a t i o n .

The precondi t ions are :
- the b inding of S3, say vs3, is not atomic;
- the b inding of LAT, say l a t , is atomic; and
- l a t is not a l e a f of the b inding of S1 , say v s 1 .

This l a s t precondi t ion is meant to prevent the
i n t r oduc t i on o f cyc les .

To s imp l i f y the proofs , we w i l l assume tha t
vs1 does not share substructure w i th vs3.
Consequently, lemma 4 w i l l apply and there fore
updating of the S1 binding w i l l never happen. (When
vs1 does share s t ruc tu re we can s t i l l Invoke
lemma 2, since l a t is not a l ea f of vs1.)

Since we assume the precondi t ions to h o l d , the
fao t l i s t w i l l (i m p l i c i t e l y) con ta in : a tom(la t) &
~atom(vs3) * ~ p a r t o f (l a t , v s 1) .
The input a l l s t i s : ((S1.vs1) (LAT. la t) (S3 .vs3)) .
Assume the output a l l s t to be: ((S1.vs1) (LAT. la t)
(S3.nvs3)) .
The output asser t ion to be v e r i f i e d w i l l be:
rep lacedd(vs1, la t ,vs3,nvs3)»
w i t h replaoedd (replacement w i th p o t e n t i a l
des t ruc t ion of vs3) def ined as:

There are 9 d i f f e r e n t paths through the code. We
w i l l work our way along one of the paths.

I n i t i a l l y the fac t l i s t con ta ins :
a tom(la t) & ",atom(vs3) 4 - p a r t o f (l a t , v s 1) .
Assuming that (ATOM(CAR S3)) y i e lds T we get in
a d d i t i o n :
xarcar(vs3) & atom(xa).
Assuming tha t (EQ LAT(CAR S3)) y ie lds T we g e t :
l a t e x a .
RPLACA generates a new va lue, say nv1 , adding:
eqa(nv1,vs3) & car(nv1)«vs1 6 cdr (nv1)scdr (vs3) .
The a l l s t update scheme f o r RPLACA generates a new
b ind ing fo r S3, say i v s3 , so the a l l s t becomes:
((S l . v s D (LAT. la t) (S3 . i v s3)) ,
whi le the f ac t l i s t grows w i t h :
eqaupto(vs3, ivs3.vs3,nv1) .
Assuming tha t (ATOM(CDR S3)) y i e lds NIL we ge t :
xdscdr(ivs3) * ~atom(xd).
The next ac t ion concerns the recurs ive c a l l on the
CDR. I t s parametrized and s i m p l i f i e d input
c o n d i t i o n :
"atom(xd) & a tom(la t) & " p a r t o f (l a t , v s D ,
is t r i v i a l l y s a t i s f i e d . The func t ion w i l l not be
opened, but instead the faot l i s t grows w i t h :

523

rep laoedd(vs1, la t ,xd ,nxd) &
t r a n s f (i v s 3 , j v s 3 , x d , n x d) ,
whi le the a l l s t changes i n t o : ((S1.vs1) (LAT. la t)
(S 3 . j v s 3)) .
The output asser t ion to be proven f o r t h i s
p a r t i c u l a r path i s :
replacedd(vs 1 , la t , vs3•Jvs3) •

We w i l l not g ive p roo fs . The general s t ra tegy
in t h i s and fo l l ow ing oases is a combination of
subproblem r e c o g n i t i o n , case reasoning, expansion
of recurs ive d e f i n i t i o n s and app l i ca t i on of oar /cdr
i n d u c t i o n .

4.2. SUBSTAP2
The treatment of SUBSTAD1 as given above was

s l i g h t l y i n c o r r e c t , although t h i s d id not a f f e c t
the r e s u l t . Upon en t ry of SUBSTAD1 the a l i s t is in
f a o t :
((S3.vs3) (S1.vs1) (LAT. la t) (S3 .vs3)) ,
where the f i r s t occurrence of S3 cones from
SUBSTAD1 and the second one from SUB3TAD. The
output asser t ion of SUBSTAD1 d id r e fe r to the
second occurrence of vs3- This more sub t le
treatment o f the a l i s t i s essen t ia l f o r the h a l f
recurs ive h a l f i t e r a t i v e support func t ion SUBSTAD2.
(SUBSTAD2(LAMBDA(S3)(PROG(HH)
AGAIN

(COND((ATOM(SBTQ HH(CAR S3)))
(CONDUEQ LAT HHHRPLACA S3 S1))))

(T(SUBSTAD2 HH)))
(COND((ATOM(SETQ HH(CDR S3)))

(COND((EQ LAT HH)(RPLACD S3 S I))))
(T(SBTO S3 HH)

(GO AGAIN)))
)))

Because of the assignment of the l o c a l S3 to
i t s CDR Just before the loop , we no longer have a
handle on the da tas t ruc tu re as a whole, to which we
must be able to r e fe r in order to spec i fy the loop
i nva r i an t and to enable a cor rec t update of the
c a l l i n g environment a f t e r e x i t i n g SUBSTAD2. The
problem is solved by r e f e r i n g to the g loba l S3, the
argument w i th which SUBSTAD2 is c a l l e d . (I n general
a pre-prooessor should take care tha t a l l arguments
given to user def ined func t ions are e x p l l c l t e l y
assigned on the a l i s t .)

Ve r i f y i ng SUBSTAD2 requi res deducing the loop
inva r ian t when oon t ro l reaches the l abe l AGAIN upon
enter ing the f u n c t i o n , deducing the output
asser t ion fo r s i x paths through the oode and
deducing the loop i n v a r i a n t f o r three paths.

The input a l i s t is as given above. The output
a l i s t , a f t e r e x i t i n g from SUBSTAD2 w i l l be:
US1.vs1) (LAT. la t) (S3.nvs3)) .
The input and output asser t ion are the same as fo r
SUBSTAD1. We have to provide a loop i nva r i an t w i th
the l abe l AGAIN. This loop asser t ion w i l l r e f e r to
the current bindings of the va r i ab l es , so we a lso
have to spec i fy an a l i s t at the l a b e l :

((HH.vhh) (S3.1s3) (S l . v s l) (LAT. la t) (S3.gs3))
The value l s3 is the l o c a l value of S3, and gs3 is
the g loba l value of S3. The loop asser t ion w i l l be:
a tom(la t) & ~atom(ls3) & ~atom(vs3) &
~ p a r t o f (l a t , v s 1) &
s p i n e (v s 1 , l a t , v s 3 , g s 3 , l s 3) .

We w i l l not g ive the d e f i n i t i o n s of spine and
other support p red ica tes . Giving a general
desc r ip t i on o f the s i t u a t i o n a t the l abe l i s ra ther
compl icated, since i t is not enough to say tha t
every t ree hanging o f f the spine above the l o c a l S3
has been checked and replaced if necessary.
S t ruc tu re shar ing may have led to changes in the
par t o f the t ree tha t i s s t i l l to be i n v e s t i g a t e d .
It may even have caused the replacement of the
r i g h t most lea f of vs3 by a po in te r to v s 1 , so S3
may eventua l ly po in t to a c e l l f o r which there is
no corresponding c e l l in the o r i g i n a l vs3.

We w i l l j u s t g ive one d e f i n i t i o n as an
example, fo r the others we again re fe r to [2] . The
predicate s i d e f c t is used to describe that xp and
xq , which are par ts of the not yet v i s i t e d subtrees
x3 and xl of the o r i g i n a l (xo) and cur rent (xn)
i nca rna t i on , are the same unless s t r uc tu re shar ing
has led to side e f f e c t s .
(xo) (xn) (x3) (xso) (xsn) (xp) (xq)

{ s ide fc t (xo ,xn ,x3 ,xso ,xsn ,xp ,xq) <-->
[eqa(xp,xq) &

{xsosx3 —>
[{a tom(car (xp)) —> car (xp)scar (xq) } &

{~atom(car(xp)) —>
s i d e f c t (x o , x n , x 3 , x o , x n , c a r (x p) , c a r (x q)) } &

{atom(cdr(xp)) —> cdr (xp)scdr (xq) } &
{~atom(cdr(xp)) —>
s i d e f c t (x o , x n , x 3 , x o , x n , c d r (x p) , c d r (x q)) }] } &

{~(xso=x3) —>
[(ca r (xso)sxp —> car(xsn)sxq) &

(~(car(xso)rxp) —>
[{ t r 1 (xp , ca r (xso) , ca r (xsn)) —>

t r 2 (xp , xq ,oa r (xso) , ca r (xsn)) } &
(~ t r1 (xp ,ca r (xao) ,ca r (xsn)) —>
s i d e f c t (x o , x n , x 3 , c d r (x s o) , c d r (x s n) , x p , x q) }]

Symbolic eva luat ion of SUBSTAD2 generates f ac t
l i s t s tha t are much longer than those generated f o r
SUBSTAD1, since the a l i s t in t h i s case conta ins
three arguments (HH, l oca l S3 and g loba l S3) tha t
have to be updated a f t e r an RPLACX or a recurs ive
c a l l to SUBSTAD2. Th is , and the greater amount of
predicates needed to speci fy the loop i n v a r i a n t ,
made v e r i f i c a t i o n of t h i s func t ion j u s t barely
f e a s i b l e . The great d i f fe rence in v e r i f i c a t i o n
e f f o r t caused by a s l i g h t change in the code,
challenges the c la im tha t once a program is
v e r i f i e d , mod i f i ca t ions w i l l requ i re very l i t t l e
add i t i ona l e f f o r t .

4.3. SUBSTADP
The d i s p a r i t y between amount of oode and

amount of ad hoc d e f i n i t i o n s is even worse fo r
SUBSTADP:

524

In t h i s ve rs ion , the use of a stack is avoided
by revers ing po in te r s , i . e . when the car or cdr
part o f a c e l l is non-atomic, t h i s par t is saved,
whi le the car or cdr is replaced by a po in ter back
to the parent c e l l immediately above i t . Marking is
used to i nd i ca te whether the car or the cdr par t of
the c e l l contains the reversed po in te r . The t ree is
searched in a depth f i r s t manner.

The code contains three l a b e l s , so in add i t i on
to the input and output asser t ion we have to set up
three loop i n v a r i a n t s . Descr ibing the s i t u a t i o n at
the var ious loops is extremely complicated because
of the much greater number of (temporary)
replacements.

We def ined the predicates tha t are necessary
to describe the s i t u a t i o n at one l a b e l , L2,
assuming tha t vs1 is atomic. Even w i th t h i s d ras t i c
s i m p l i f i c a t i o n , we needed a stagger ing amount of
d e f i n i t i o n s : eleven pred ica tes , several of them
w i th seven arguments and t o t a l l i n g near ly 200 l i n e s
of t e x t (see [2]) . To get an impression of what is
Invo lved, glance at the d e f i n i t i o n s of two
pred ica tes , Ib2at3 and i t s support Ib2a t5 . They
describe the subtrees hanging o f f the spine above
the inver ted po in ter cha in .

523

When nwsex, we can descr ibe it w i t h replaoedd,
keeping in mind whether i t s car (markb) or i t s cdr
("markb) contains the back p o i n t e r .

If nw l i e s somewhere e lse on the Inver ted
po in te r chain and the non-reversed po in te r po in ts
to an atomic s t r u c t u r e , descr ib ing t h i s par t is
s t r a i g t h f o r w a r d . However, i f i t i s non-atomic, we
have to recurs i ve ly Invoke Ib2a t3 , because
s t ruc tu re shar ing between tha t par t of nw and the
reversed po in ter chain is again poss ib le .

To describe the par t o r i g i n a l l y pointed to by
the now reversed po in te r , we have to use
e x i s t e n t i a l q u a n t i f i c a t i o n . We do not have a d i r e c t
po in ter to i t , but we know were to s t a r t (a t EX)
and we know i t s unique i d e n t i f i c a t i o n :
e q a (i c e l , c a r (o l)) . This i d e n t i f i c a t i o n i s par t o f
Ib2a t5 .

Possible s t ruc tu re shar ing s i m i l a r l y
complicates the desc r ip t i on of subtrees on the
inver ted po in ter cha in , under 13 or to the r i g h t of
the inver ted po in te r cha in .

5. Discussion

Although we were able to w r i t e a symbolic
evaluator tha t can handle the func t ions we were
i n te res ted in (and no doubt a host of o t h e r s) , i t
was not possib le to g ive a completely general
update a lgor i thm to handle a l l RPLACX-type
f unc t i ons . We def ined one f o r a common c l ass , in
which one datas t rueture is changed by rep lac ing
c e r t a i n subparts by other dataat ructures tha t w i l l
not themselves be mutated before the func t i on is
ex i ted (a t leas t not permanently). To make the
v e r i f i e r a general one, i t should a l low the user to
spec i fy her own update procedures in other cases.
Since c o m p a t i b i l i t y w i l l have to be proven by the
user in those cases, t h i s places a ra ther heavy
burden on her .

The a lgor i thm given is extremely o a r e f u l ,
rep lac ing a l l b indings on the a l i a t a f t e r every
c a l l to an RPLACX-type f u n c t i o n . This has i t s
p r i c e . Updated bindings need p o t e n t i a l l y
complicated proofs to show t h e i r i nva r iance , even
though i t may be very obvious (t o us) tha t in fac t
they could not have been changed at a l l . Of course
one could keep the number of updated bindings down
by incorpora t ing the lemma's given above and other
s p e c i f i c knowledge i n t o the eva lua tor , but t h i s
would amount to pushing the problem around.

The attempt to give correctness proofs f o r
several versions of SUBSTAD revealed tha t the
method of symbolic eva lua t ion - al though
t h e o r e t i c a l l y adequate - f lounders in some cases on
a p r a c t i c a l problem: formal desc r ip t i on of
i npu t /ou tpu t statements as w e l l as loop i nva r i an t s
leads to a p r o l i f e r a t i o n of ad hoc d e f i n i t i o n s . We
expect t h i s t o hold f o r a l l c u r r e n t l y ava i l ab le
v e r i f i c a t i o n techniques. I f so, v e r i f i c a t i o n
s p e c i a l i s t s may be advlced to g ive more a t t e n t i o n
to the p r a c t i c a l imp l i ca t ions o f t h e i r t h e o r i e s ,

instead o f devot ing a l l t h e i r energies to eso te r i c
ref inements, or even to the design of l og i cs that
become an end in themselves.

The bot t le-neck l i e s in the necessity to
spec i fy in s t a te -desc r i p t i on terms what a func t ion
is supposed to do. Whether a funot ion is recurs ive
or not is not even e x p l i c i t l y express ib le in such a
s p e c i f i c a t i o n . Somehow people f e e l more ak in to a
d e f i n i t i o n in procedural terms, such as " the
termina ls equal to l a t w i l l be replaced by vs1 " and
w the t ree w i l l be v i s i t e d from l e f t t o r i g h t " .
Proving correctness of a func t ion would then
'reduce' to showing tha t the func t ion behaves
according to expectat ions ra ther than tha t
inpu t /ou tpu t descr ip t ion pa i rs conform to a ce r t a i n
r e l a t i o n .

The technique we have developed f o r descr ib ing
evo lv ing s ta tes using an a l i a t , a f ac t l i s t and
pred ic ta tes l i k e equaupto and t rans f tha t capture
s p e c i f i c s ide e f f e c t s , may be of i n t e r e s t to other
areas of A . I . . The a l i s t oan be considered a
c o l l e c t i o n of i n d i v i d u a l concepts, where the
bindings are the ac tua l extensions. A new s i t u a t i o n
d i f f e r s p r i m a r i l y in tha t some concepts have
d i f f e r e n t extensions, which are described by f resh
f a c t s . Outdated fac ts do not have to be deleted but
merely become i n v i s i b l e s ince they conta in
arguments not res id ing on the a l i s t any longer .

This more procedural approach to the frame
problem seems to have advantages over the s t r i c t l y
dec la ra t i ve method given in [7] . There is no need
fo r wieldy axioms to express that when
P (x , . . . , z , s 1) holds in s i t u a t i o n s1 and some
cond i t ions are f u l f i l l e d , the fac t P (x , . . . v z v s 2)
can be i n f e r r ed in s2. Instead we have a d i f f e r e n t
problem. A fac t may seem to be obsolete (s ince an
argument has been removed from the a l i s t) whi le an
analogous f ac t can be i n f e r r e d f o r a newly
introduced extens ion. We have encountered t h i s in
lemma 1-4, where p a r t i c u l a r circumstances a l low one
to equate the o ld and new b ind ing .

Since updatings and the recogn i t ion of
i d e n t i t i e s are object centered and there fore may
a f f e c t many fac ts s imultaneously, t h i s problem
seems less obs t ruc t i ve than the o r i g i n a l one, but
more t h i n k i n g and/or experimenting is needed to
va l i da te t h i s suggest ion.

Although we agree w i th De M i l l o e .a . [4] tha t
the present v e r i f i c a t i o n t oo l s do not lend
themselves to p r a c t i c a l use, we do not share t h e i r
conclusion tha t the whole e f f o r t should be
abandoned. V e r i f i e r s w i l l probably always run i n t o
resource l i m i t a t i o n s , but to assume tha t they w i l l
never be able to use meohanisms s i m i l a r to those
tha t enable humans to circumvent some of these
l i m i t a t i o n a f o r ce r t a i n tasks (wi thout s a c r i f i c i n g
preciseness) seems premature.

F i n a l l y , i t pays to have a second look at
one's program from a v e r i f i c a t i o n perspec t ive .

526

Wr i t i ng t h i s paper forced us to reconsider the
cond i t ions under which the func t ion SUBSTAD is
a p p l i c a b l e . The s p e c i f i c a t i o n tha t we publ ished
f i v e years ago turned out to be too l i b e r a l !

REFERENCES

[1] CHAMPEAUX, D. de, SUBSTAD: For Past
Subs t i t u t i on in LISP, w i th an App l i ca t ion on
U n i f i c a t i o n , In format ion Processing L e t t e r s ,
vo l 7, no 1, January 1978, pp 58-62.

[2] CHAMPEAUX, D. de, Algori thms in A I ,
forthcoming t h e s i s , Economische P a c u l t e i t ,
U n i v e r s i t e i t van Amsterdam, 1981.

[3] DARRINGER, J.A. & J.C. KING, Appl ica t ions of
Symbolic Execution to Program Tes t ing , IBM
Report RC 6965, January 1977.

[4] DE MILLO R.A. et a l , Socia l Processes and
Proofs of Theorems and Programs, CACM, vo l
22, no 5, May 1979, PP 271-280.

[5] HAREL, D., Proving the Correctness of Regular
Determin is t i c Programs: A Un i fy ing Survey
Using Dynamic Logic , IBM Report 7557, March
1979.

[6] KING, J . C , Symbolic Execution and Program
Tes t ing , CACM, vo l 19, no 7, Ju ly 1976, pp
385-394.

[7] MCCARTHY, J. & P.J. HAYES, Some Phi losophica l
Problems from the Standpoint of A r t i f i c i a l
I n t e l l i g e n c e , in B. Meltzer & D. Michie (Ed) ,
Machine I n t e l l i g e n c e 4, E lsev ier NY, 1969, PP
463-502.

[8] T0P0R, R.W., The correctness of the
Schorr-Waite L i s t Marking A lgor i thm, Acta
In fo rma t i ca , vo l 11 , pp 211-221, 1979.

527

