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ABSTRACT 
In t h i s paper we present a symbolic evaluator 

of LISP func t i ons . I t can handle d a t a - a l t e r i n g 
funct ions of the RPLACA type, i . e . funct ions that 
change one datas t ruc ture by rep lac ing par ts of i t 
by other s t ruc tu res that w i l l themselves not be 
changed f u r t h e r , at leas t not permanently. The 
s ta te desc r ip t i on language uses f i r s t - o r d e r 
predicate ca l cu lus . I t i s argued tha t symbolic 
eva luat ion in terms of t h i s language, although 
t h e o r e t i c a l l y adequate, i s not f eas ib l e in genera l , 
since i t may requ i re extremely complicated 
spec i f i ca t i ons fo r r e a l - l i f e funct ions w i th side 
e f f e c t s . Examples are given of the spec i f i ca t i ons 
needed to v e r i f y several versions of SUBSTAD, a 
non-copying SUBST. 
Keywords; LISP, symbolic eva lua t i on , v e r i f i c a t i o n 
o f d a t a - a l t e r i n g func t i ons , predicate ca l cu lus , 
frame problem. 

1, Introduction 
In 1978 we published SUBSTAD, a non-copying 

vers ion of SUBST [ 1 ] . Comparison of these two 
func t ions in the context of a u n i f i c a t i o n a lgor i thm 
showed some very favorable r e s u l t s . Two years l a t e r 
we found out tha t the resu l t s were biased by a bug 
in our machine implementation of SUBST. 

This experience increased our i n t e r e s t in 
v e r i f i c a t i o n , i n p a r t i c u l a r o f func t ions w i th side 
e f f e c t s , such as SUBSTAD. These funct ions pose a 
chal lenge to v e r i f i e r s . One simple RPLACA can have 
consequences f o r every datas t ruc ture around. 

Very few p r a c t i c a l , ready-to-use techniques 
are ava i lab le at present. The theo re t i c ians of 
program v e r i f i c a t i o n ( f o r an overview, see [ 5 ] ) are 
developing languages (Dynamic Logic e .g . ) that 
abst ract away from rea l a p p l i c a t i o n , concern 
t o y - l i k e programming languages and tend to be 
considered as i n t e r e s t i n g objects by themselves. 

More promising seem concrete e f f o r t s l i k e that 
of Topor [ 8 ] , who v e r i f i e d the correctness of the 
Schorr-Waite marking a lgo r i thm, an a lgor i thm 
somewhat s im i l a r to SUBSTAD. His proof by hand is 
reasonable to f o l l o w , but we are in te res ted in 
ac tua l l y automating the v e r i f i c a t i o n process as 
much as poss ib le . 
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We developed a program that can keep t rack of 
the many d e t a i l s involved when checking a l l 
possible branches of computation t r e e s . We have 
chosen the method of symbolic eva luat ion [ 3 , 6 ] , 
because i t guarantees that every branch is v i s i t e d 
and tha t a l l precondi t ions to operat ions are 
considered. 

Symbolic eva luat ion requi res the add i t i on of 
i npu t /ou tpu t s p e c i f i c a t i o n s to the program code and 
of i n v a r i a n t s to each loop in tha t code. The code 
is evaluated w i th symbolic input values tha t 
conform to the input s p e c i f i c a t i o n , producing a 
symbolic output value f o r each branch through the 
code. The symbolic evaluator should embody the 
semantics of the operators used in the code, in our 
case (a t l eas t ) the subset of LISP p r i m i t i v e s used 
in SUBSTAD. For each of those operators i t should 
be able to t ransform the desc r ip t ion of the s ta te 
in which t h i s operator is ca l l ed i n t o a desc r ip t ion 
o f the s ta te i t c reates . 

I t has to be v e r i f i e d tha t a l l o f the output 
values produced are in accordance w i th the output 
c o n d i t i o n . Th is , as we l l as checking ent ry and loop 
cond i t i ons , can be done "manually" or by a theorem 
prover. Although we have been experimenting wi th 
COGITO, our theorem prover ( f o r r e s u l t s see [ 2 ] ) , 
our conoern here is the automatic updating 
concerning funot ions w i th side e f f e c t s , l i k e 
RPLACA. For d e t a i l s on the ac tua l proofs (by hand) 
see [ 2 ] . 

2. The state Description Language 
In order to f a c i l i t a t e deduct ion, the s ta te 

desc r ip t i on language uses f i r s t - o r d e r predicate 
ca l cu lus . We s t a r t o f f w i th a countable domain of 
c e l l s C and a countable domain of atoms A, where C 
and A are d i s j u n c t . Let D be t h e i r union: 
D = C U A. We w i l l have the p a r t i a l f unc t ions : 
— car and cdr , w i th domain C and range D; and 
— addr, w i th domain D and range N, the na tu ra l 

numbers. 
We w i l l have the p a r t i a l p red ica te : 
— atom wi th domain D, and which, where def ined, 

coincides wi th the cha rac te r i s t i c predicate of 
A. 



The expression pa r to f (d ,e ) s i g n i f i e s t ha t the data 
object e contains a c e l l or atom i d e n t i c a l to the 
root of d. Loopfree def ines the proper ty that a 
data ob ject does not conta in a cyc l e . 

A s ta te desc r ip t i on is a conjunct ion of fac ts 
r e f e r r i n g to a f i n i t e number of data ob jec t s , 
always conta in ing the data objects n i l and t , 
corresponding w i th NIL and T, members of A, f o r 
which ho lds : a t o m ( n i l ) , atom(t) and ~ ( t * n i l ) . 

A s ta te desc r ip t i on may re fe r to ' v i r t u a l * 
data ob jec ts , which ex is ted dur ing e a r l i e r s t a t e s . 
Two data ob jec ts are compat ible, if they can 
c o - e x i s t : 

When two data objects are non-compatible at leas t 
one has to be v i r t u a l . The RPLACX operat ions are 
responsible f o r making data objects v i r t u a l . 

The a l i s t contains the current bindings of the 
atoms. A data object is v i r t u a l w i th respect to an 
a l i s t i f i t i s non-compatible w i th an r^ from tha t 

a l i s t . An atom may occur more than once as a f i r s t 
element of a p a i r , fo r Instance as a oonsequence of 
recu rs ion . LISP funct ions r e t r i e v e and update 
le f tmost occurrences. Side e f f ec t s may propagate to 
the r i g h t in the a l i s t . Extensions and 
con t rac t i ons , as a consequence of en ter ing a higher 
or lower stack l e v e l , a lso occur at the l e f t . 

DEFINITION: A s ^ f t oonf l f iUr iUof l i s a P a i r 

(AL,FL) w i th AL an a l i s t and PL ( the f a c t l i s t ) a 
s ta te d e s c r i p t i o n . Atomic i ty o f n i l , t and a l l 
atoms a^ on the a l i s t is i m p l i c i t l y assumed. 

T. lu f i SYrtQllc. EYllUftWr 
When given LISP-code and a s t a t e con f i gu ra t i on 

the symbolic evaluator generates a t ree of s ta te 
con f i gu ra t i ons , corresponding t o a l l possib le 
computation paths through the oode. The symbolic 
evaluator works l i k e a r e a l LISP eva luator . I t has 
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a code po in te r , corresponding to a program counter , 
to tha t par t of the code which has to be executed, 
i t contains modules which correspond to b u i l t - i n 
LISP funot ions and it knows what to do w i th user 
def ined func t i ons . 

A non-numerical atomic form is evaluated by 
r e t r i e v i n g the most recent ( i . e . le f tmos t ) b ind ing 
from the current a l i s t . 

For b u i l t - i n func t ions , the rec ipe cons is ts of 
checking whether precond i t ions , parametrized fo r 
the current arguments, are f u l f i l l e d and, i f the 
check succeeds, updating the s ta te c o n f i g u r a t i o n . 
An exception is made f o r COND. The COND-module 
generates one or more b i f u r c a t i o n s of the current 
s ta te c o n f i g u r a t i o n . The correctness of a 
b i f u r c a t i o n ( s a t i s f i a b i l i t y o f a t e s t expression 
and i t s negation) is not proven by means of the 
deduction machinery but by cons t ruc t ing or having 
ava i lab le two models tha t possess opposite t r u t h 
values w i th respect to the t es t expression but are 
both cons is tent w i th the current s ta te 
c o n f i g u r a t i o n . To construct these models one could 
ask the user to provide several examples, which are 
processed concurrent ly wi th the symbolic input 
s p e c i f i c a t i o n f o r the code (not implemented). 
Test ing by running examples and formal v e r i f i c a t i o n 
should not be seen as mutual ly exc lus ive , but 
should go hand in hand. 

Modules are implemented f o r the f o l l ow ing 
subset of standard LISP func t ions : ATOM, CAR, CDR, 
COND, CONS, EQ, EQUAL, GO, NOT, NULL, PROG, PROGN, 
QUOTE, RETURN, RPLACA, RPLACD and SETQ. The 
funct ions COND, GO, PROG, PROGN, QUOTE and SETQ are 
of type FSUBR, i . e . evaluat ion of t h e i r arguments 
is to t h e i r own d i s c r e t i o n . The other funct ions 
have automatic - l e f t to r i g h t - argument 
evaluat ion before module-speci f ic ac t ions are 
taken. 

An essen t ia l requirement f o r the modules is 
that the compatab i l i t y property of s ta te 
con f igura t ions is preserved. Our only worry is 
RPLACA, RPLACD and SETQ beoause only those 
funct ions a f f e c t the a l i s t . We w i l l describe some 
of the modules. 

ATOM 
Let the argument of ATOM evaluate to x. A new 
symbolic value w i l l be generated, say g 1 , which 
w i l l be returned as the va lue, whi le the fac t l i s t 
w i l l be expanded w i t h : 
{ g1=t & atom(x) } + { g1=ni l & ~atom(x) }. 

The implemented vers ion deals immediately w i th 
the a tomic i t y of x . I t re tu rns t or n i l when 
a tomic i t y or non a tomic i t y of x can eas i l y be 
derived from the given fac t l i s t , otherwise the 
user is asked to Ind ica te whether t , n i l o r both 
p o s s i b i l i t i e s are to be pursued. In t h i s l a s t case, 
i t generates a b i f u r c a t i o n o f the cur rent 
computation branch wi th t in one and n i l in the 
other branch, adding e i t he r atom(x) or ~atom(x) to 

the respect ive f a c t l i s t . 
CAR (and analogously CDR) 

Let the argument of CAR evaluate to x. In contrast 
w i th ATOM there is a precondi t ion check fo r CAR: 
~atom(x) should be der ivable from the current f ac t 
l i s t . I f t ha t de r i va t ion succeeds a new symbolic 
va lue, say g2, is generated and returned and 
g2«car(x) i s added to the fao t l i s t . 

COND 
This func t ion leads to b i f u r c a t i o n ( s ) of the 
current computation branch, as described fo r the 
implemented vers ion of ATOM. 

CONS 
Let the arguments of CONS evaluate to x and y. A 
new symbolic va lue, say g3> is generated and w i l l 
be re tu rned, whi le the f ac t l i s t w i l l be extended 
w i t h : ~atom(g3), car(g3)=x and edr (g3) *y . 

GO 
We assume only backward jumps. The loop i nva r i an t 
associated w i th the l abe l to which GO r e f e r s , 
provided by the user and parametrized f o r the 
cur rent bindings by the eva lua tor , should be 
der ivable from the current f ac t l i s t . A non-looping 
check, based on a we l l founded r e l a t i o n should a lso 
be performed. Because jumps are always backwards, 
we do not have to consider the current computation 
branch any f u r t h e r . 

RPLACA (and analogously RPLACD) 
Let the arguments of RPLACA evaluate to x and y. 
The precond i t ion fo r RPLACA is ~atom(x). A new 
symbolic va lue, say g6, is generated and re tu rned , 
whi le the fac t l i s t i s extended w i t h : eqa(x ,g6) , 
car (g6)*y and cd r (g6 )=cdr (x ) . 
Any non-atomic b inding z1 on the a l i s t , i d e n t i c a l 
to x or •above* x, w i l l be a f fec ted i n d i r e c t l y by 
the RPLACA operat ion and has to be replaced by a 
new binding z2 fo r which minimal ly holds: 
eqa(z1,z2) . In genera l : when a RPLACX operat ion 
causes x1 to be replaced by x2 then each b inding on 
the a l i s t , y 1 , w i l l be replaced by a f resh b ind ing , 
y2 , whi le the f a c t l i s t w i l l grow w i t h : 
eqaupto(y1,y2,x1,x2) , which says: y2 is i d e n t i c a l 
w i t h y1 unless there is a subst ructure of y1 that 
is i d e n t i c a l w i th x 1 . The predicate eqaupto is 
def ined as: 
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These lemmas oan be used to curb updating 
a c t i v i t i e s . For proofs of these and other lemma's 
and theorems, see [ 2 ] . 

THEOREM 1 Let y1 and z1 be o ld b indings which are 
respec t i ve ly replaced by y2 and z2 due to an 
RPLACX-operation tha t caused x1 to be changed i n t o 
x2, thus w i th eqa(x1,x2) , then compat ib le(y1,z1) , 
eqaupto(y1,y2,x1,x2) and eqaupto(z1,z2,x1 fx2) 
impl ies compat ib le(y2 yz2) . 

SETQ 
Let the second argument evaluate to x. The 
precond i t ion f o r SETQ is tha t the non-evaluated 
f i r s t argument is atomic, say A. The b ind ing of the 
le f tmost occurrence of A on the a l l s t w i l l be 
replaced by x. If A does not occur on the a l i s t -
i . e . when A is a g loba l va r iab le - then (A.x) w i l l 
be added at the r ighthand side of the a l l s t . 
Preservat ion of a l i s t - c o m p a t a b i l i t y is ensured when 
the eva luat ion of the second argument y i e l d s a 
value compatible w i th the current b ind ings . 

The modules not described t r i g g e r obvious 
updat ings. (For the equal pred icate needed by the 
EQUAL module, see [ 2 ] . ) 

3 . 1 , U s e r F u n c t i o n s 
Most LISP funct ions to be v e r i f i e d w i l l 

conta in func t ions other than the above mentioned 
p r i m i t i v e ones. These are provided e i t h e r by the 
user or are b u i l t - i n . They can be handled by the 
evaluator if they are accompanied by an input and 
an output c o n d i t i o n . 

The symbolic eva luator f i r s t asks fo r (and 
t r i e s to ass i s t w i th ) a check tha t the input 
cond i t i on is f u l f i l l e d and then looks whether the 
user wishes t h i s func t i on to be v e r i f i e d . I f so, 
she w i l l have to provide i t s body. Recursive user 
func t ions w i l l be opened at most once, f o r obvious 
reasons. A wel l - founded r e l a t i o n , user prov ided, 
should be used when v e r i f y i n g tha t arguments of a 
recurs ive c a l l score s t r i c t l y less w i t h respect t o 
tha t wel l - founded r e l a t i o n than the arguments at 
the top l eve l c a l l . This was not implemented. 

An output cond i t ion should describe the 
r e s u l t i n g s ta te in terms of the values used in the 
input cond i t ion to enable the symbolic evaluetor to 
update the s ta te con f igu ra t ion in which the 
func t ion was c a l l e d . This updat ing is 
s t ra ig th fo rward when the func t ion does not have 
s ide e f f e c t s and j u s t re turns a va lue, but b u i l t - i n 
and user func t ions of RPLACX-type need even more 
complicated a l i s t updating schemes than the one 
given above f o r RPLACX. 

Suppose we execute (NCONC LIS S1), where the 
bindings of LIS and S1 are respec t i ve l y l i s and s 1 . 
The r ightmost l e a f of S I , which must be NIL, w i l l 
be replaced by a po in te r to i t s second argument S 1 . 
Any datast ruoture conta in ing a po in te r to l i s or to 
a c e l l l y i n g on i t s 'sp ine ' ( i . e . the cdr chain 

s t a r t i n g at l i s ) w i l l be changed as a consequence 
of t h i s NCONC opera t ion . 

We w i l l describe an a l i s t update scheme fo r a 
c lass of side e f f ec t generat ing f unc t i ons , 
i nc lud ing NCONC, EFFACE and our SUBSTAD support 
funct ions SUBSTAD1 and SUBSTAD2. It app l ies to 
those funct ions which cause replacement of a c e l l , 
say x 1 , by a c e l l , say x2 , ( thus we have 
eqa(x1 ,x2) ) . 

Every b ind ing , z 1 , on the a l i s t is replaced by 
a f resh b ind ing , z2, and the fac t l i s t is expanded 
w i t h : t r a n s f ( z 1 , z 2 , x 1 , x 2 ) . The predicate t r a n s f and 
i t s support ing predicate t r 1 and t r 2 works by 
double recu rs ion . F i r s t , i t is checked whether z1 
is i d e n t i c a l w i th x1 or - using t r 1 - w i th a c e l l 
reachable from x l . I f the t r1-case appl ies the 
predioate t r 2 is invoked to r e l a t e z1 and z2. 
Second, when z1 is not i d e n t i c a l w i th x1 or a 
subce l l o f x1 then t r ans f is ca l l ed recu rs i ve l y to 
t e s t whether subcel ls of z1 are a f fec ted by the 
x1-x2 replacement. 
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THEOREM 2 Let y1 and z1 be o ld bindings 
which are respec t i ve ly replaced by y2 and z2 
due to an s i de -e f f ec t operat ion causing x1 to 
be changed i n t o x2, thus w i th eqa(x1,x2) , then 
eoapa t ib le (y1 ,z1 ) , t rans f (y1 ,y2 ,x1 ,x2 ) and 
t r ans f ( z1 , *2 , x1 , x2 ) impl ies compat ib le(y2,z2) . 

The l i m i t a t i o n s of t h i s updating 
scheme can be seen from the func t i on 
NC0NC2, def ined as: 
(NC0NC2(LAMBDA(LIS1 LIS2 S1) 

(NCONC LISKNCONC LIS2 S1) ) ) ) 
A b inding r e f e r r i n g to the * sp ine ' of the input 
b inding of LIS2 cannot be recognized and there fore 
w i l l not be updated, although i t i s not up- to-date 
anymore. 

We conclude tha t the user must be given the 
opt ion to spec i fy a s p e c i f i c , i d i osync ra t i c a l i s t 
update mechanism fo r any funot ion having side 
e f f e c t s . This w i l l considerably increase the 
v e r i f i c a t i o n burden, since i t w i l l have to be shown 
that the c o m p a t i b i l i t y requirement fo r the updated 
a l i s t i s f u l f i l l e d . 

4. Evaluting SVBSTAP 
To g ive an impression of the f e a s i b i l i t y of 

the method of symbolic eva luat ion as introduced 
above, we w i l l discuss our e f f o r t to v e r i f y 
SUBSTAD. This func t ion is ca l l ed w i th three 
arguments: S1, LAT and S3. It replaces al 
occurrences of LAT in S3 by S1 . The value of LAT 
should be a non-numeric Atom. This is checked by 
SUBSTAD, which also handles the case tha t S3 is 
atomic. Otherwise i t c a l l s a support func t ion w i th 
one argument, S3. 

The support func t ion publ ished in [ 1 ] uses 
po in ter reversa l to avoid the use of a s tack, as is 
done in garbage c o l l e c t o r s . Before d iscussing t h i s 
f u n c t i o n , we w i l l make some remarks on the 
v e r i f i c a t i o n of two simpler vers ions , to show how 
the method works and to i l l u s t r a t e how a s l i g h t 
mod i f i ca t ion in a program can lead to subs tan t i a l 
d i f fe rences i n i t s v e r i f i c a t i o n . 

The precondi t ions are : 
- the b inding of S3, say vs3, is not atomic; 
- the b inding of LAT, say l a t , is atomic; and 
- l a t is not a l e a f of the b inding of S1 , say v s 1 . 

This l a s t precondi t ion is meant to prevent the 
i n t r oduc t i on o f cyc les . 

To s imp l i f y the proofs , we w i l l assume tha t 
vs1 does not share substructure w i th vs3. 
Consequently, lemma 4 w i l l apply and there fore 
updating of the S1 binding w i l l never happen. (When 
vs1 does share s t ruc tu re we can s t i l l Invoke 
lemma 2, since l a t is not a l ea f of vs1.) 

Since we assume the precondi t ions to h o l d , the 
fao t l i s t w i l l ( i m p l i c i t e l y ) con ta in : a tom( la t ) & 
~atom(vs3) * ~ p a r t o f ( l a t , v s 1 ) . 
The input a l l s t i s : ((S1.vs1) (LAT. la t ) (S3 .vs3) ) . 
Assume the output a l l s t to be: ((S1.vs1) (LAT. la t ) 
(S3.nvs3) ) . 
The output asser t ion to be v e r i f i e d w i l l be: 
rep lacedd(vs1, la t ,vs3,nvs3)» 
w i t h replaoedd (replacement w i th p o t e n t i a l 
des t ruc t ion of vs3) def ined as: 

There are 9 d i f f e r e n t paths through the code. We 
w i l l work our way along one of the paths. 

I n i t i a l l y the fac t l i s t con ta ins : 
a tom( la t ) & ",atom(vs3) 4 - p a r t o f ( l a t , v s 1 ) . 
Assuming that (ATOM(CAR S3)) y i e lds T we get in 
a d d i t i o n : 
xarcar(vs3) & atom(xa). 
Assuming tha t (EQ LAT(CAR S3)) y ie lds T we g e t : 
l a t e x a . 
RPLACA generates a new va lue, say nv1 , adding: 
eqa(nv1,vs3) & car(nv1)«vs1 6 cdr (nv1)scdr (vs3) . 
The a l l s t update scheme f o r RPLACA generates a new 
b ind ing fo r S3, say i v s3 , so the a l l s t becomes: 
( ( S l . v s D (LAT. la t ) (S3 . i v s3 ) ) , 
whi le the f ac t l i s t grows w i t h : 
eqaupto(vs3, ivs3.vs3,nv1) . 
Assuming tha t (ATOM(CDR S3)) y i e lds NIL we ge t : 
xdscdr( ivs3) * ~atom(xd). 
The next ac t ion concerns the recurs ive c a l l on the 
CDR. I t s parametrized and s i m p l i f i e d input 
c o n d i t i o n : 
"atom(xd) & a tom( la t ) & " p a r t o f ( l a t , v s D , 
is t r i v i a l l y s a t i s f i e d . The func t ion w i l l not be 
opened, but instead the faot l i s t grows w i t h : 
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rep laoedd(vs1, la t ,xd ,nxd) & 
t r a n s f ( i v s 3 , j v s 3 , x d , n x d ) , 
whi le the a l l s t changes i n t o : ((S1.vs1) (LAT. la t ) 
( S 3 . j v s 3 ) ) . 
The output asser t ion to be proven f o r t h i s 
p a r t i c u l a r path i s : 
replacedd(vs 1 , la t , vs3•Jvs3) • 

We w i l l not g ive p roo fs . The general s t ra tegy 
in t h i s and fo l l ow ing oases is a combination of 
subproblem r e c o g n i t i o n , case reasoning, expansion 
of recurs ive d e f i n i t i o n s and app l i ca t i on of oar /cdr 
i n d u c t i o n . 

4.2. SUBSTAP2 
The treatment of SUBSTAD1 as given above was 

s l i g h t l y i n c o r r e c t , although t h i s d id not a f f e c t 
the r e s u l t . Upon en t ry of SUBSTAD1 the a l i s t is in 
f a o t : 
((S3.vs3) (S1.vs1) (LAT. la t ) (S3 .vs3) ) , 
where the f i r s t occurrence of S3 cones from 
SUBSTAD1 and the second one from SUB3TAD. The 
output asser t ion of SUBSTAD1 d id r e fe r to the 
second occurrence of vs3- This more sub t le 
treatment o f the a l i s t i s essen t ia l f o r the h a l f 
recurs ive h a l f i t e r a t i v e support func t ion SUBSTAD2. 
(SUBSTAD2(LAMBDA(S3)(PROG(HH) 
AGAIN 

(COND((ATOM(SBTQ HH(CAR S3))) 
(CONDUEQ LAT HHHRPLACA S3 S1) ) ) ) 

(T(SUBSTAD2 HH))) 
(COND((ATOM(SETQ HH(CDR S3))) 

(COND((EQ LAT HH)(RPLACD S3 S I ) ) ) ) 
(T(SBTO S3 HH) 

(GO AGAIN))) 
))) 

Because of the assignment of the l o c a l S3 to 
i t s CDR Just before the loop , we no longer have a 
handle on the da tas t ruc tu re as a whole, to which we 
must be able to r e fe r in order to spec i fy the loop 
i nva r i an t and to enable a cor rec t update of the 
c a l l i n g environment a f t e r e x i t i n g SUBSTAD2. The 
problem is solved by r e f e r i n g to the g loba l S3, the 
argument w i th which SUBSTAD2 is c a l l e d . ( I n general 
a pre-prooessor should take care tha t a l l arguments 
given to user def ined func t ions are e x p l l c l t e l y 
assigned on the a l i s t . ) 

Ve r i f y i ng SUBSTAD2 requi res deducing the loop 
inva r ian t when oon t ro l reaches the l abe l AGAIN upon 
enter ing the f u n c t i o n , deducing the output 
asser t ion fo r s i x paths through the oode and 
deducing the loop i n v a r i a n t f o r three paths. 

The input a l i s t is as given above. The output 
a l i s t , a f t e r e x i t i n g from SUBSTAD2 w i l l be: 
US1.vs1) (LAT. la t ) (S3.nvs3) ) . 
The input and output asser t ion are the same as fo r 
SUBSTAD1. We have to provide a loop i nva r i an t w i th 
the l abe l AGAIN. This loop asser t ion w i l l r e f e r to 
the current bindings of the va r i ab l es , so we a lso 
have to spec i fy an a l i s t at the l a b e l : 

((HH.vhh) (S3.1s3) ( S l . v s l ) (LAT. la t ) (S3.gs3)) 
The value l s3 is the l o c a l value of S3, and gs3 is 
the g loba l value of S3. The loop asser t ion w i l l be: 
a tom( la t ) & ~atom(ls3) & ~atom(vs3) & 
~ p a r t o f ( l a t , v s 1 ) & 
s p i n e ( v s 1 , l a t , v s 3 , g s 3 , l s 3 ) . 

We w i l l not g ive the d e f i n i t i o n s of spine and 
other support p red ica tes . Giving a general 
desc r ip t i on o f the s i t u a t i o n a t the l abe l i s ra ther 
compl icated, since i t is not enough to say tha t 
every t ree hanging o f f the spine above the l o c a l S3 
has been checked and replaced if necessary. 
S t ruc tu re shar ing may have led to changes in the 
par t o f the t ree tha t i s s t i l l to be i n v e s t i g a t e d . 
It may even have caused the replacement of the 
r i g h t most lea f of vs3 by a po in te r to v s 1 , so S3 
may eventua l ly po in t to a c e l l f o r which there is 
no corresponding c e l l in the o r i g i n a l vs3. 

We w i l l j u s t g ive one d e f i n i t i o n as an 
example, fo r the others we again re fe r to [ 2 ] . The 
predicate s i d e f c t is used to describe that xp and 
xq , which are par ts of the not yet v i s i t e d subtrees 
x3 and xl of the o r i g i n a l (xo) and cur rent (xn) 
i nca rna t i on , are the same unless s t r uc tu re shar ing 
has led to side e f f e c t s . 
( xo ) (xn ) (x3 ) (xso ) (xsn ) (xp ) (xq ) 

{ s ide fc t ( xo ,xn ,x3 ,xso ,xsn ,xp ,xq ) <--> 
[eqa(xp,xq) & 

{xsosx3 —> 
[ {a tom(car (xp) ) —> car (xp)scar (xq) } & 

{~atom(car(xp)) —> 
s i d e f c t ( x o , x n , x 3 , x o , x n , c a r ( x p ) , c a r ( x q ) ) } & 

{atom(cdr(xp)) —> cdr (xp)scdr (xq) } & 
{~atom(cdr(xp)) —> 
s i d e f c t ( x o , x n , x 3 , x o , x n , c d r ( x p ) , c d r ( x q ) ) } ] } & 

{~(xso=x3) —> 
[ (ca r (xso)sxp —> car(xsn)sxq) & 

(~(car(xso)rxp) —> 
[ { t r 1 ( xp , ca r ( xso ) , ca r ( xsn ) ) —> 

t r 2 ( xp , xq ,oa r ( xso ) , ca r ( xsn ) ) } & 
(~ t r1 (xp ,ca r (xao) ,ca r (xsn ) ) —> 
s i d e f c t ( x o , x n , x 3 , c d r ( x s o ) , c d r ( x s n ) , x p , x q ) } ] 

Symbolic eva luat ion of SUBSTAD2 generates f ac t 
l i s t s tha t are much longer than those generated f o r 
SUBSTAD1, since the a l i s t in t h i s case conta ins 
three arguments (HH, l oca l S3 and g loba l S3) tha t 
have to be updated a f t e r an RPLACX or a recurs ive 
c a l l to SUBSTAD2. Th is , and the greater amount of 
predicates needed to speci fy the loop i n v a r i a n t , 
made v e r i f i c a t i o n of t h i s func t ion j u s t barely 
f e a s i b l e . The great d i f fe rence in v e r i f i c a t i o n 
e f f o r t caused by a s l i g h t change in the code, 
challenges the c la im tha t once a program is 
v e r i f i e d , mod i f i ca t ions w i l l requ i re very l i t t l e 
add i t i ona l e f f o r t . 

4.3. SUBSTADP 
The d i s p a r i t y between amount of oode and 

amount of ad hoc d e f i n i t i o n s is even worse fo r 
SUBSTADP: 
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In t h i s ve rs ion , the use of a stack is avoided 
by revers ing po in te r s , i . e . when the car or cdr 
part o f a c e l l is non-atomic, t h i s par t is saved, 
whi le the car or cdr is replaced by a po in ter back 
to the parent c e l l immediately above i t . Marking is 
used to i nd i ca te whether the car or the cdr par t of 
the c e l l contains the reversed po in te r . The t ree is 
searched in a depth f i r s t manner. 

The code contains three l a b e l s , so in add i t i on 
to the input and output asser t ion we have to set up 
three loop i n v a r i a n t s . Descr ibing the s i t u a t i o n at 
the var ious loops is extremely complicated because 
of the much greater number of (temporary) 
replacements. 

We def ined the predicates tha t are necessary 
to describe the s i t u a t i o n at one l a b e l , L2, 
assuming tha t vs1 is atomic. Even w i th t h i s d ras t i c 
s i m p l i f i c a t i o n , we needed a stagger ing amount of 
d e f i n i t i o n s : eleven pred ica tes , several of them 
w i th seven arguments and t o t a l l i n g near ly 200 l i n e s 
of t e x t (see [ 2 ] ) . To get an impression of what is 
Invo lved, glance at the d e f i n i t i o n s of two 
pred ica tes , Ib2at3 and i t s support Ib2a t5 . They 
describe the subtrees hanging o f f the spine above 
the inver ted po in ter cha in . 
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When nwsex, we can descr ibe it w i t h replaoedd, 
keeping in mind whether i t s car (markb) or i t s cdr 
("markb) contains the back p o i n t e r . 

If nw l i e s somewhere e lse on the Inver ted 
po in te r chain and the non-reversed po in te r po in ts 
to an atomic s t r u c t u r e , descr ib ing t h i s par t is 
s t r a i g t h f o r w a r d . However, i f i t i s non-atomic, we 
have to recurs i ve ly Invoke Ib2a t3 , because 
s t ruc tu re shar ing between tha t par t of nw and the 
reversed po in ter chain is again poss ib le . 

To describe the par t o r i g i n a l l y pointed to by 
the now reversed po in te r , we have to use 
e x i s t e n t i a l q u a n t i f i c a t i o n . We do not have a d i r e c t 
po in ter to i t , but we know were to s t a r t (a t EX) 
and we know i t s unique i d e n t i f i c a t i o n : 
e q a ( i c e l , c a r ( o l ) ) . This i d e n t i f i c a t i o n i s par t o f 
Ib2a t5 . 

Possible s t ruc tu re shar ing s i m i l a r l y 
complicates the desc r ip t i on of subtrees on the 
inver ted po in ter cha in , under 13 or to the r i g h t of 
the inver ted po in te r cha in . 

5. Discussion 

Although we were able to w r i t e a symbolic 
evaluator tha t can handle the func t ions we were 
i n te res ted in (and no doubt a host of o t h e r s ) , i t 
was not possib le to g ive a completely general 
update a lgor i thm to handle a l l RPLACX-type 
f unc t i ons . We def ined one f o r a common c l ass , in 
which one datas t rueture is changed by rep lac ing 
c e r t a i n subparts by other dataat ructures tha t w i l l 
not themselves be mutated before the func t i on is 
ex i ted (a t leas t not permanently). To make the 
v e r i f i e r a general one, i t should a l low the user to 
spec i fy her own update procedures in other cases. 
Since c o m p a t i b i l i t y w i l l have to be proven by the 
user in those cases, t h i s places a ra ther heavy 
burden on her . 

The a lgor i thm given is extremely o a r e f u l , 
rep lac ing a l l b indings on the a l i a t a f t e r every 
c a l l to an RPLACX-type f u n c t i o n . This has i t s 
p r i c e . Updated bindings need p o t e n t i a l l y 
complicated proofs to show t h e i r i nva r iance , even 
though i t may be very obvious ( t o us) tha t in fac t 
they could not have been changed at a l l . Of course 
one could keep the number of updated bindings down 
by incorpora t ing the lemma's given above and other 
s p e c i f i c knowledge i n t o the eva lua tor , but t h i s 
would amount to pushing the problem around. 

The attempt to give correctness proofs f o r 
several versions of SUBSTAD revealed tha t the 
method of symbolic eva lua t ion - al though 
t h e o r e t i c a l l y adequate - f lounders in some cases on 
a p r a c t i c a l problem: formal desc r ip t i on of 
i npu t /ou tpu t statements as w e l l as loop i nva r i an t s 
leads to a p r o l i f e r a t i o n of ad hoc d e f i n i t i o n s . We 
expect t h i s t o hold f o r a l l c u r r e n t l y ava i l ab le 
v e r i f i c a t i o n techniques. I f so, v e r i f i c a t i o n 
s p e c i a l i s t s may be advlced to g ive more a t t e n t i o n 
to the p r a c t i c a l imp l i ca t ions o f t h e i r t h e o r i e s , 

instead o f devot ing a l l t h e i r energies to eso te r i c 
ref inements, or even to the design of l og i cs that 
become an end in themselves. 

The bot t le-neck l i e s in the necessity to 
spec i fy in s t a te -desc r i p t i on terms what a func t ion 
is supposed to do. Whether a funot ion is recurs ive 
or not is not even e x p l i c i t l y express ib le in such a 
s p e c i f i c a t i o n . Somehow people f e e l more ak in to a 
d e f i n i t i o n in procedural terms, such as " the 
termina ls equal to l a t w i l l be replaced by vs1 " and 
w the t ree w i l l be v i s i t e d from l e f t t o r i g h t " . 
Proving correctness of a func t ion would then 
'reduce' to showing tha t the func t ion behaves 
according to expectat ions ra ther than tha t 
inpu t /ou tpu t descr ip t ion pa i rs conform to a ce r t a i n 
r e l a t i o n . 

The technique we have developed f o r descr ib ing 
evo lv ing s ta tes using an a l i a t , a f ac t l i s t and 
pred ic ta tes l i k e equaupto and t rans f tha t capture 
s p e c i f i c s ide e f f e c t s , may be of i n t e r e s t to other 
areas of A . I . . The a l i s t oan be considered a 
c o l l e c t i o n of i n d i v i d u a l concepts, where the 
bindings are the ac tua l extensions. A new s i t u a t i o n 
d i f f e r s p r i m a r i l y in tha t some concepts have 
d i f f e r e n t extensions, which are described by f resh 
f a c t s . Outdated fac ts do not have to be deleted but 
merely become i n v i s i b l e s ince they conta in 
arguments not res id ing on the a l i s t any longer . 

This more procedural approach to the frame 
problem seems to have advantages over the s t r i c t l y 
dec la ra t i ve method given in [ 7 ] . There is no need 
fo r wieldy axioms to express that when 
P ( x , . . . , z , s 1 ) holds in s i t u a t i o n s1 and some 
cond i t ions are f u l f i l l e d , the fac t P ( x , . . . v z v s 2 ) 
can be i n f e r r ed in s2. Instead we have a d i f f e r e n t 
problem. A fac t may seem to be obsolete (s ince an 
argument has been removed from the a l i s t ) whi le an 
analogous f ac t can be i n f e r r e d f o r a newly 
introduced extens ion. We have encountered t h i s in 
lemma 1-4, where p a r t i c u l a r circumstances a l low one 
to equate the o ld and new b ind ing . 

Since updatings and the recogn i t ion of 
i d e n t i t i e s are object centered and there fore may 
a f f e c t many fac ts s imultaneously, t h i s problem 
seems less obs t ruc t i ve than the o r i g i n a l one, but 
more t h i n k i n g and/or experimenting is needed to 
va l i da te t h i s suggest ion. 

Although we agree w i th De M i l l o e .a . [ 4 ] tha t 
the present v e r i f i c a t i o n t oo l s do not lend 
themselves to p r a c t i c a l use, we do not share t h e i r 
conclusion tha t the whole e f f o r t should be 
abandoned. V e r i f i e r s w i l l probably always run i n t o 
resource l i m i t a t i o n s , but to assume tha t they w i l l 
never be able to use meohanisms s i m i l a r to those 
tha t enable humans to circumvent some of these 
l i m i t a t i o n a f o r ce r t a i n tasks (wi thout s a c r i f i c i n g 
preciseness) seems premature. 

F i n a l l y , i t pays to have a second look at 
one's program from a v e r i f i c a t i o n perspec t ive . 
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Wr i t i ng t h i s paper forced us to reconsider the 
cond i t ions under which the func t ion SUBSTAD is 
a p p l i c a b l e . The s p e c i f i c a t i o n tha t we publ ished 
f i v e years ago turned out to be too l i b e r a l ! 
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