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ABSTRACT 

This paper summarizes recent analytical Inves-
t igations of the mathematical properties of heuris­
t ics and the i r Influence on the performance of 
common search techniques. The results are reported 
without proofs, together with discussions of moti­
vations and Interpretations. 

Highlights include the fol lowing: relations 
between the precision of the heurist ic estimates 
and the average complexity of the search, compari­
sons of the average complexities of A* and BACK­
TRACKING, procedures for comparing and combining 
non-admissible heurist ic functions, the influence 
of the weight u> [ In f ■ (l-u>)g ♦ <*>h] on the complex­
i t y of A*, determination of the branching factors 
of alpha-beta and SSS*, and the effects of successor 
ordering on the complexity of alpha-beta and of 
search depth on the qual i ty of decisions. 

1.0 THE MEAN COMPLEXITY OF ADMISSIBLE 
BEST-nftST ALflORITHMS 

1.1 Introduction 

Research in th is area has focused on unraveling 
the relat ion between the accuracy of the heurist ic 
estimates and the complexity of the search which 
they control . We Imagine the following probabil is­
t i c search space: a uniform m-ary tree T has a 
unique goal state G at depth N, at an unknown loca­
t ion . The bes t - f i r s t algorithm A* [1 ] searches for 
the goal state G using the evaluation function: 

f(n) »'g(n) + h(n) 

where g(n) is the depth of node n and h(n) is a 
heuristic estimate of h*(n), the distance or number 
of branches from n to G. The estimates h(n) are 
assumed to be random variables ranging over 
[0 , h*(n) ] , characterized by d is t r ibut ion functions 
Fh(n)( x ) s K^M * x] which may vary over the nodes 
in trie tree. We further assume that each Fk/0 \ (x) 
depends only on the distance between n and G ( I . e . , 
on h*(n)) and not on the heurist ics assigned to 
neighboring nodes. Our task is to characterize the 
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Influence of the distr ibut ions F ^ W x ) on E(Z), 
the expected number of nodes expanded by A*, for 
large values of N. 

The f i r s t analysis of the effect of errors or 
inaccuracies on the performance of A* was conducted 
by Pohl [ 2 ] ; the topic has since been pursued by 
Munyer [ 3 ] , Vanderbrug [ 4 ] , Pohl [ 5 ] , and Gaschnig 
[ 6 ] . The basic motivation for these studies has 
been the following enigma: when A* employs a per­
fect ly informed heurist ic (h - h*), it is propelled 
d i rect ly toward the goal without ever getting side­
tracked, spending only N computational steps, where­
as at the other extreme, when no heurist ic at a l l 
is available (h = 0) , the search becomes an exhaus­
t i ve , breadth f i r s t one, y ie lding an exponentially 
growing complexity. Between these two extremes 
l ies an unknown accuracy-complexity dependency con­
taining the answers to important design questions. 
Would the added computation invested in improving 
the accuracy of a given heurist ic pay for i t s e l f in 
reduced search complexity? Can some heuristics 
beat the "exponential explosion" that beset breadth-
f i r s t search? When 1s the large storage-space 
required by A* j us t i f i ed in view of lower storage 
procedures such as BACKTRACKING? 

Some i n i t i a l answers to these questions were 
obtained by Pohl [5 ] and Gaschnig [ 6 ] . For Instance, 
they found that if the re lat ive error 
[h*(n)-h(n)] /h*(n) remains constant, then the search 
complexity is exponential, but that when the abso­
lute error h*(n)-h(n) is constant, the search com­
plexity 1s l inear. These resul ts , however, were 
derived for a worst case model where it Is assumed 
that a clever adversary distr ibutes the errors in 
such a way that A* exhibits I ts poorest performance. 
Probabil ist ic extensions of these analyses are jus­
t i f i e d for two main reasons. F i r s t , worst case 
results are often too pessimistic for describing 
the typical behavior of an algorithm over a large 
class of problems. Second, it is often hard to 
guarantee precise bounds on the magnitude of errors 
produced by a given heur is t ic , whereas probabi l is t ic 
characterization of these magnitudes might be more 
natural. 

1.2 When 1s One Heuristic Better Than Another For 
Admissible Best-First Algorithms? 

If one heurist ic consistently provides a more 
accurate estimate of A*, it ought to be preferred. 
This 1s Indeed the essence of a theorem by Gel perin 
[ 7 ] , who showed that if for each node of the search 
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1.3 The Mean Complexity of A* Under Distance-
Dependent Errors 

The qual i ty of the heuristic estimates h(n) 
often improves with proximity to the goal state. 
This fact can be modeled by assuming that the typ i ­
cal magnitude of the errors h*(n)-h(n) increases 
proportionally to the distance h*(n), or that for 
a l l nodes in the t ree, the relat ive errors 
Y(n) = [h*(n)-h(n)] /h*(n) are l i ke ly to be bounded 
away from zero. 

Theorem 2: I f , for eyery node in the t ree, the 
probabil i ty that the relat ive error exceeds 
some fixed positive quantity e is greater than 
1/m, then the average complexity of A* is expo­
nential in N (Huyn et a l . , [ 8 ] ) . 

Theorem 2 Implies that in order to avoid an 
exponential growth of E(Z), the magnitude of the 
typical errors 1n the tree should Increase slower 
than l inear ly with the distance from the goal. 
Theorem 2 extends the results of Gaschnlg [6] from 

the worst case to the average case analysis. 
Gaschnlg has shown that 1f at a l l nodes o f f the 
solution path the re lat ive errors stay at thei r max­
imal value above some fixed constant, then the com­
plexity of A* 1s exponential. Evidently, the expo­
nential explosion 1s not eliminated by di f fusing 
the errors smoothly over a continuous Interval . 

This result delineates the spectrum of the 
precision-complexity exchange by two points. On one 
extreme we have Pohl [5 ] and Gaschnlg's [6] results 
stating that 1f the absolute errors h*(n)-h(n) are 
bounded by a fixed quanti ty, then A* is guaranteed 
a l inear complexity. On the other extreme, Theorem 
2 states that if these errors h*(n)-h(n) grow l i n ­
early with h*(n), A* exhibits an exponential conn 
plexi ty. The following result quantifies the pre­
cision-complexity exchange over the Inter ior of i t s 
spectrum, thus determining how accurate the estimates 
must be in order to guarantee a polynomial complexity. 
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shapes of the d is t r ibut ion functions. Thus, a nee 
essary and suf f ic ient condition for maintaining a 
polynomial search complexity 1s that A* be guided 
by heuristics with logarithmic precision, that I s , 
4»(n) « 0(log N). 

impair the a b i l i t y of A* to benefit from Improved 
precision, the complexity of A* remains more 
sensitive to error reduction than that of BACKTRACK­
ING. 

BACKTRACKING control strategies, on the other 
hand, have several advantages over A*. They are 
typ ical ly simpler to implement and, more s i g n i f i ­
cantly, require much less storage. Whereas A* 
stores a l l expanded nodes in either OPEN or CLOSED 
l i s t s , BACKTRACKING need only store nodes along a 
single path, and therefore has a storage complexity 
l inear in N. Equation (4) , though, reveals the 
price paid for this storage economy—an exponential 
time-complexity coupled with ineffect ive u t i l i za t i on 
of heuristic knowledge. Mixed search strategies 
combining the storage economy of BACKTRACKING with 
the time savings of A* warrant empirical and theo­
ret ica l investigations. 

2.0 THE COMPLEXITY OF NON-ADMISSIBLE HEURISTICS 

2.1 Introduction 

Admissible search strategies are cursed with 
two basic defects: they spend a disproportionate 
amount of time investigating aV[ equally meritorious 
alternat ive solut ions, and they l im i t the selection 
of heuristic functions to only those which never 
over-estimate the optimal completion cost. The 
l i te ra ture on heurist ic search contains many exam­
ples of non-admissible heuristics which empirically 
out-perform any known admissible heuristics and yet 
yery frequently discover the optimal path. 

The aims of theoretical investigations in th is 
area are to answer several basic and pressing ques­
tions which unt i l now have been treated only by 
lengthy simulations 1n a few, specif ic domains. 
When are non-admissible heuristics safe from a cat­
astrophic over-computation? How often are they 
l i ke ly to miss the optimal solution? When is one 
heurist ic better than another? Is admissibi l i ty a 
vir tue in cases where just any solution w i l l do? 
How should one "debias" a given admissible heuris­
t ic? How should one aggregate the estimates pro­
vided by several heurist ic functions? 

The results reported in the following sections 
provide answers to some of these questions and pave 
the way to resolve others. 

2.2 Conditions for Node Expansion 

The analysis of mean run time of admissible 
bes t - f i r s t algorithms is fac i l i t a ted by the s impl i ­
c i t y of the condition for expansion. We know that 
eyery node n in OPEN whose evaluation function 
sat is f ies f (n) < f * ( root ) must eventually be ex­
panded and conversely, that eyery node sat isfying 
f(n) > f * ( root ) w i l l not be expanded. In our 
standard model of an m-ary tree with one goal at 
depth N, these conditions amount to deciding whether 
f (n) 1s larger or smaller than N [ 8 ] . 
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player's best response to every conceivable move of 
the opponent. Second, the quality of a given st rat ­
egy Is determined solely by the properties of the 
terminal nodes it contains, not by the cost of the 
paths leading to these nodes. 

The theoretical results reported 1n this paper 
concern three main issues: establishing absolute 
l imi ts on the complexity of game-searching proce­
dures, comparing performances of known procedures 
under various conditions, and evaluating the quali ty 
of a decision as a function of the search e f fo r t . 

The model most frequently used for evaluating 
the performance of game-searching methods consists 
of a uniform tree of depth d (d even) and degree n, 
where the terminal positions are assigned random 
values independently drawn from a common d is t r ibu­
t ion F. We shall refer to such a tree as a 
(d , n, F)-tree. The expected number of terminal 
nodes examined during the search and i t s branching 
factor have become standard c r i te r ia for the com­
plexi ty of the search method. 

Def in i t ion: Let A be a deterministic algorithm 
which searches a (d , n, F)-tree to determine 
the minimax value of i t s root , and le t 
IA(d, n, F) denote the expected number of ter­
minal positions examined by A. The quantity: 

3.2 The Branching Factor of Alpha-Beta 

The Alpha-Beta (a-e) pruning algorithm is the 
most commonly used procedure in game-playing appl i ­
cations. Yet although the exponential growth of 
game-tree searching is slowed s igni f icant ly by that 
algorithm, quantitative analyses of i t s ef fect ive­
ness have been frustrated for over a decade. One 
concern has been to determine whether the a-e algo­
rithm is optimal over other game-searching procedures. 

Slagle and Dixon (1969) showed that the number 
of terminal nodes examined by a-e must be at least 
nLd/2j + nld/2 l . i but may, in the worst case, 
reach the entire set of n° terminal nodes [14]. 
The analyses of expected performance using uniform 
trees with random terminal values had begun with 
Ful ler, Gaschnlg, and Gil logly [15] who obtained 
formulas by which the average number of terminal 
examinations, Nn d, can be computed. Unfortunately, 
the formula would not f ac i l i t a t e asymptotic analysis; 
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3.3 A Minimax Algorithm Better Than Alpha-Beta? 
Yes and No 

Stockman [20] has Introduced a non-directional 
algorithm called SSS* which consistently examined 
fewer nodes than a-£. Hopes were then raised that 
the superiori ty of Stockman's algorithm reflected 
an Improved branching factor over that of a-B. 

A simple heuristic argument exists which re­
futes these hopes and Indicates that SSS* and a-B$ 
possess Identical branching factors. It Is based 
on the fact that when the terminal nodes are as­
signed only two values (say 1 and 0 ) , SSS* becomes 
directional (Identical to a-B). Now, since the 
search of continuous games must be harder than the 
search of any b1valued games of the same structure, 
and since directional algorithms for b1valued games 
may require [13] a branching factor of Cn/^-Cn* we 
conclude that SSS* would also exhibit a branching 
factor of at least 

The weakness of this argument l ies in the pos­
s i b i l i t y that SSS* belongs to the rare class of 
algorithms whose performances Improve with randomi­
zat ion, thus f inding 1t easier to search continuous-
valued games. This weakness has motivated the eval­
uation of ^?s$s* by direct methods using techniques 
similar to those of Baudet [17] and Pearl [18] . 
This evaluation has been completed recently [21] 
with a def in i te confirmation of the re la t ion : 

Thus, the superiority of SSS* over a-e 1s not re­
flected in thei r growth rates; the two algorithms 
can be regarded as asymptotically equivalent. 

3.4 When Is Successor Ordering Beneficial? 

The analyses presented in the preceding two 
sections assumed that the order in which a-B selects 
nodes for expansion 1s completely arb i t rary , say 
from l e f t to r igh t . In pract ice, the successors of 
each expanded node are f i r s t ordered according to 
their s tat ic evaluation function. Successors of MAX 
nodes are then expanded in a descending order of 
thei r evaluation function ( thei r highest f i r s t ) and 
those of MIN nodes 1n ascending order ( thei r lowest 
f i r s t ) . It is normally assumed that such preorder-
ing increases substantial ly the number of cut-offs 
induced and results in a lower branching factor. 

Clearly, when the s tat ic evaluation function 1s 
well Informed, correlat ing with the actual node val­
ue, such ordering w i l l induce a l l possible cut-offs 
yielding 31 « n^/2. On the other hand, when the 
stat ic evaluation is uninformed, the ordering is 
superfluous and yields <3f » Un ) /0~ tn ) as *n random 
ordering. The analysis of this section attempts to 
quantify the relat ion between the informedness of 
the stat ic evaluation function and the branching 
factor induced by successor ordering. 

For s impl ic i ty , we treat bivalued n-ary trees 
with probabil i ty P " £n that a terminal node obtains 
the value 1. The information qual i ty of the stat ic 
evaluation function V can be characterized by two 
d is t r ibut ion functions: 



3.5 When is Look-Ahead Beneficial? 

The basic rationale behind a l l game-searching 
methodologies is the bel ief that look-ahead followed 
by minimaxing improves the qual i ty of decisions or , 
1n other words, that the "back-up" evaluation func­
t ion has a greater discrimination power to d i s t i n ­
guish between good and bad moves. Although no 
theoretical model has supported this be l ie f , it has 
become entrenched 1n the practice of game-playing 
and i t s foundation rarely challenged. 

Two heuristic arguments are usually advanced in 
support of look-ahead. The f i r s t invokes the notion 
of v i s i b i l i t y , claiming that since the fate of the 
game is more apparent near i t s end, nodes at deeper 
levels of the game-tree w i l l be more accurately 
evaluated and choices based on such evaluation 
should be more re l iable. The second alludes to the 
fact that whereas the stat ic evaluation is computed 
on the basis of the properties of a single game 
posi t ion, the back-up value integrates the features 
of a l l the nodes lying on the search f ron t ie r , and 
so should be more informed. This la t te r argument 
essentially takes after a f i l t e r i n g model; the more 
samples, the less noise. 

A recent work of Nau [23] demonstrated that the 
f i l t e r i n g argument is u t ter ly fal lacious. In a 
large class of game-trees, reaching deeper consis­
tent ly degrades the quali ty of a decision. This 
phenomenon, which Nau termed pathologicalI, is not 
confined to the special game-trees considered by 
Nau but can be shown to be a common occurrence in 
the ensemble of games defined by the standard prob­
ab i l i s t i c model of (h , n, P)-trees. 

Assume that the evaluation function V computed 
at each terminal node of a (h, n, P*sn)-tree re­
f lects the l ikelihood of that node being a WIN 
posit ion. The quali ty of such an estimate can be 
characterized by the pair of d is t r ibut ion functions 
defined in (9). Given the pair Fy(x) and F L ( X ) , one 
can compute the two conditional distr ibut ions of Vd, 
the minimax value of the root node: 

To understand why the f i l t e r i n g argument fa i l s 
in the case of game-trees, consider the task of 
estimating the value of an arbitrary function 
£(xi» X£. . . . xn) on the basis of the estimates x j , 
x2 , . . . xn of i t s arguments. Knowing x1 . . . xn can 
Improve the estimation of y if we integrate them 
according to s t r i c t s ta t i s t i ca l rules, as by form­
ing the conditional expectation of y given 

X1 . . . xn . Instead, the minimax procedure amounts 
to taking y ( x j , £2, . . . xn) as an estimate for y— 
It computes the minimax value of the estimators 
rather than estimates the minimax. 

This point can be further i l lus t ra ted by the 
following game-tree. Assume that the terminal val­
ues signi fy the probabil i ty that player 1 can force 
a WIN from these positions. Which move should be 
selected, towards A or towards B? The minimax eval­
uation procedure would assign to node A the value 
.3 , to node B the value . 2 , and so would lead play­
er 1 to prefer A over B. On the other hand, if one 
computes the probabi l i t ies that nodes A or B are 
WIN (for player 1) on obtains: 

Clearly, B is to be preferred. It is obvious from 
this example that if one wants to maximize the 
chances of choosing WIN posit ions, the minimax rule 
is inadequate and should be replaced by product-
propagation rules, nPj for MIN nodes and l -n ( l -P i ) 
for MAX nodes. If these propagation rules 1 
are used, the phenomenon of pathology should be 
reduced, if not eliminated. 

However, the example also fac i l i ta tes a l ine 
of defense 1n favor of the minimax ru le . In prac­
t i ca l game-playing, one 1s not concerned with main­
taining a WINNING posi t ion, winning regardless of 
what the opponent does, but simply with beating a 
f a l l i b l e opponent. Such an opponent, if he shares 
our assessment of the terminal values, can be 
predicted to choose the l e f t move from position B 
and the r ight move from position A. Therefore, on 
the basis of such a predict ion, we have: 

P(player 1 wins from A) » .3 

P(player 1 wins from B) ■ .2 

which agrees with the minimax calculat ion. In sum­
mary, although the minimax rule is inadequate when 
playing against an omnipotent opponent, t a c i t l y it 
contains a rea l i s t i c model of a f a l l i b l e opponent 
who shares the knowledge and l imitat ions of player 
1, and therefore should be effect ive against such 
opponents. This, perhaps, may account for the fact 
that pathology 1s not observed in practical game-
playing programs; the quali ty of play usually Im­
proves with search depth. 
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Another reason for the absence of pathology 1n 
practical game-playing could be that the evaluation 
functions become more accurate toward the end of the 
game, possessing Increased v i s i b i l i t y then, an ef­
fect not included in the preceding analysis. Nau 
[24] has recently demonstrated that pathological 
behavior occurs 1n a specif ic game despite an In­
crease in evaluation function accuracy. Determining 
the rate of Improved accuracy necessary for combat­
ing pathology remains an open theoretical problem. 
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