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ABSTRACT

This paper summarizes recent analytical Inves-
tigations of the mathematical properties of heuris-
tics and their Influence on the performance of
common search techniques. The results are reported
without proofs, together with discussions of moti-
vations and Interpretations.

Highlights include the following: relations
between the precision of the heuristic estimates
and the average complexity of the search, compari-
sons of the average complexities of A* and BACK-
TRACKING, procedures for comparing and combining
non-admissible heuristic functions, the influence
of the weight u> [In f m (I-u>)g ¢ <*h on the complex-
ity of A*, determination of the branching factors
of alpha-beta and SSS*, and the effects of successor
ordering on the complexity of alpha-beta and of
search depth on the quality of decisions.

ADMISSIBLE

1.0 THE MEAN COMPLEXITY OF
——BEST-nftST ALIORITHMS——

1.1 Introduction

Research in this area has focused on unraveling
the relation between the accuracy of the heuristic
estimates and the complexity of the search which
they control. We Imagine the following probabilis-
tic search space: a uniform m-ary tree T has a
unique goal state G at depth N, at an unknown loca-
tion. The best-first algorithm A* [1] searches for
the goal state G using the evaluation function:

f(n) »'g(n) + h(n)

where g(n) is the depth of node n and h(n) is a
heuristic estimate of h*(n), the distance or number
of branches from n to G. The estimates h(n) are
assumed to be random variables ranging over

LO, h*(n)], characterized by distribution functions
h(n)(*) ® KM * x] which may vary over the nodes
in trie tree. We further assume that each Fk/o\(x)
depends only on the distance between n and G (l.e.,
on h*(n)) and not on the heuristics assigned to
neighboring nodes. Our task is to characterize the
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Influence of the distributions FAWx) on E(Z),
the expected number of nodes expanded by A*, for
large values of N.

The first analysis of the effect of errors or
inaccuracies on the performance of A* was conducted
by Pohl [2]; the topic has since been pursued by
Munyer [3], Vanderbrug [4], Pohl [5], and Gaschnig
[6]. The basic motivation for these studies has
been the following enigma: when A* employs a per-
fectly informed heuristic (h - h*), it is propelled
directly toward the goal without ever getting side-
tracked, spending only N computational steps, where-
as at the other extreme, when no heuristic at all
is available (h = 0), the search becomes an exhaus-
tive, breadth first one, yielding an exponentially
growing complexity. Between these two extremes
lies an unknown accuracy-complexity dependency con-
taining the answers to important design questions.
Would the added computation invested in improving
the accuracy of a given heuristic pay for itself in
reduced search complexity? Can some heuristics
beat the "exponential explosion" that beset breadth-
first search? When 1s the large storage-space
required by A* justified in view of lower storage
procedures such as ING?

Sore initial answers to these questions were
obtained by Pohl [5] and Gaschnig [6]. For Instance,
they found that if the relative error
[h*(n)-h(n)]/h*(n) remains constant, then the search
complexity is exponential, but that when the abso-
lute error h*(n)-h(n) is constant, the search com-
plexity 1s linear. These results, however, were
derived for a worst case model where it Is assumed
that a clever adversary distributes the errors in
such a way that A* exhibits Its poorest performance.
Probabilistic extensions of these analyses are jus-
tified for two main reasons. First, worst case
results are often too pessimistic for describing
the typical behavior of an algorithm over a large
class of problems. Second, it is often hard to
guarantee precise bounds on the magnitude of errors
produced by a given heuristic, whereas probabilistic
characterization of these magnitudes might be more
natural.

1.2 When 1s Ore Heuristic Better Than Another For
Admissible Best-First Algorithms?

If one heuristic consistently provides a more
accurate estimate of A*, it ought to be preferred.
This 1s Indeed the essence of a theorem by Gel perin
[7], who showed that if for each node of the search



graph hy(n} < ha{n), and if both are admissidle,
then evéry node expanded by A3 is alsc expanded by
AI. that fs, ha{n} is to be pPeferred. However, we
séldom possess sufficient a prior! knowledge to
guarantee that the inequality hy(n) < hp{n} holds
for every node in the graph. Even when the improved
accuracy of h% 15 a product of invoking more sophis-
ticated computation procedures than hy, the {mprove-
ment 15 seldom guaranteed to take place at ever
node of the problem space. Generally, when h{n) is
made more accurate for some nodes, it may become
less accurate for others. It {s natural to ask,
then, whether a statement of preference can be made
1n the case where the inequality hy < hy is known
only to be a reasonably probable but occasionally
violated event. The formalization and affirmation
of such a statement {s expressed in the following
theorem (Huyn, Dechter, & Pearl [8]).

Definition: Given two random variables X; and X2,

we say that X, s stochastically greater than
@ Xz] 17 for every x:

X; (denoted by X,
P(X2 » X) 2 P(x1 > X)

Definition: Let AY and A} employ the admissible
euristic funétions R and hf' respectively,
A% is safd to be stochastically more fnformed
than At 1ff hy(n) n), ¥n e T. Similarly,
2 s la1d to be stochastically more efficient
than AY 1ff 2, ©7;, where I; and 7, are the
nymber of nodes expandad by Af and A%,
respectively.

Theorem 1: For any error distribution if A* 1s
stochastically more informed than A%, %hen AE
is stochastically more efficient thln Af.
Theorem 1 establishes a partial-order relation

on admissible heuristic functions characterized by

probability distributions. A different order holds

for non-admissible heuristics {see Section 2.3},

Note that stochastic superiority (Z2 © Z}) subsumes

superiority in the mean (E(Z;) = E(Zy)).

1.3 The Mean Complexity of A* Under Distance-
Dependent Errors

The quality of the heuristic estimates h(n)
often improves with proximity to the goal state.
This fact can be modeled by assuming that the typi-
cal magnitude of the errors h*(n)-h(n) increases
proportionally to the distance h*(n), or that for
all nodes in the tree, the relative errors
Y(n) = [h*(n)-h(n)]/h*(n) are likely to be bounded
away from zero.

Theorem 2: If, for eyery node in the tree, the
probability that the relative error exceeds
some fixed positive quantity e is greater than
1/m, then the average complexity of A* is expo-
nential in N (Huyn et al., [8]).

Theorem 2 Implies that in order to avoid an
exponential growth of E(Z), the magnitude of the
typical errors 1n the tree should Increase slower
than linearly with the distance from the goal.
Theorem 2 extends the results of Gaschnlg [6] from
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the worst case to the average case analysis.
Gaschnlg has shown that 1f at all nodes off the
solution path the relative errors stay at their max-
imal value above some fixed constant, then the com-
plexity of A* 1s exponential. Evidently, the expo-
nential explosion 1s not eliminated by diffusing
the errors smoothly over a continuous Interval.

This result delineates the spectrum of the
precision-complexity exchange by two points. On one
extreme we have Pohl [5] and Gaschnlg's [6] results
stating that 1f the absolute errors h*(n)-h(n) are
bounded by a fixed quantity, then A* is guaranteed
a linear complexity. On the other extreme, Theorem
2 states that if these errors h*(n)-h(n) grow lin-
early with h*(n), A* exhibits an exponential conn
plexity. The following result quantifies the pre-
cision-complexity exchange over the Interior of its
spectrum, thus determining how accurate the estimates
must be in order to guarantee a polynomial complexity.

Definition: A heuristic estimate h{.) 1s said to
Tnduce a typica) error of order g!n! if for all
nodes in an m-ary tree there exis fixed
positive quantities ¢ and §, and a normalizing
function ¢(-), such that:

* -
P > €1 5 1 (M
and simultaneousiy:
h*(n)-h{n) . 1
PRI} < 80 < & (2)

The first condition guarantees that the -
normalized errors [h*{n}-h{n)]/e[h*(n)] remain
bounded away from zero with sufficiently high prob-
ability. The second condition insists that the ¢-
normalized error §s 1ikely to remain finite even
when the distance to the goal {ncreases indefinitely.

The proportional errors treated in Thegrem 2
above are represented by the special case ¢{N) = N,
whereas the absolute errors analyzed by Pohl corre-
spond to ¢(N)} = constant.

Theorem 3: If the typical error induced by h{.) is
of order ofN) and &1! #(N)/N < =, then the mean
complexity of A* 1s given by:

E{Z) = G{N) axp {ce(N)[T + o{1}]}

where ¢ is a constant and G{N)} 1s at most
O(NC). Morecver, if only condition 1 {or 2
is known to hold, then the expression in (3
constitutes a lower or upper bound, respec-
tively (Pearl, [9]).

The exponential relatignship exhibited in
Theorem 3 implies that the precision-complexity
exchange for A* {5 fairly "{nelastic," requiring
that highly precise heuristics be devised to con-
tain the search complexity within a reasonable
growth rate. For example, Theorem 3 impifes that
if the typical distance-estimation error increases
faster than logarithmically in the actual distance
to the goal, then the mean complexity of A* grows
faster than MK for any finite k regardiess of the

(3)



shapes of the distribution functions. Thus, a nee
essary and sufficient condition for maintaining a
polynomial search complexity 1s that A* be guided
by heuristics with logarithmic precision, that Is,
4»(n) « O(log N).

1.4 Comparison to BACKTRACKING and the Effect of
HET¥¥E1Q Goals

The BACKTRACKING search strategy [10] also
employs an element of the best-first principle but
the "best,” lowest f, is chosen only among the set
of newly generated nodes, not among all the nodes
encountered in the past. Consequently, once BACK-
TRACKING decides to expand a node not lying on a
selution path, the entire tree beneath that node
mist be irrevocably expanded down to a given depth
bound before another path 15 tried. Thus, assuming
that node ordering in BACKTRACKING {s governed by
the same heuristic function f{n) = g(n? + hin}
which guides A*, the complexity 2z depends on how
often each node n on the solution path 1s assigned
an estimate f(n) higher than 1ts off-course siblings.
Assuming further that the ¢-normaifzed errors
Y = [h*-h]/¢{h*) are {identically distributed over
all nodes, that P(Y=0) = 8 and Yim ¢(N)/N < =, one
obtains [9]: Now :

E(Zy) 2 30-6%) n™ (1 + 0(gm)] (@)

implying that BACKTRACKING's complexity retains

its expanential character in spite of any improve-
ment in heuristic precision. Whereas the parameters
Fy(-), ¢{-}. characterizing the informedness of h{.),
have a direct impact on the growth-rate of the com-
plexity of A* (see, for example, Theoram 3) they
have only a tenuous influence upon the complexity
of BACKTRACKI!G strategies via the multiplication
constant (1-g<). Consequently, {f an admissible
distance-estimating heuristic is available, then A*
is a more effective instrument for converting this
information into appreciable savings in search time.

One may wonder whether A* retains this effec-
tiveness when the search tree contains multiple
goal states. Clearly the presence of sub-optimal
solytions should cause some off-track nodes to
obtain deceptively low h and would, therefore,
increase the number of nodes expanded. An extreme
model whereby 411 nodes at depth N+1 are goal nodes
while only one goal exists at depth N will give an
idea of the magnitude of this effect. Under this
Eg;dition the expected complexity of A* becomes

E(Z) = 6(N) [m(3-8)]" e~a¥(N) (5)

N
where ¢(N} = 7 1/74(k) and G(N} 1s at most o(x?).
Hence, A* k=0 would retain {ts exponential com-
plexity regardiess of the character of the precision
function ¢; 1ts growth rate, however, still would be
affected by ¢. For sxample, when 4 = const. ﬁi.e..
bounded absolute errors), E(Z) becomes O[{m'}"]
where m' = mP(h*-h » 1"Nf°' ¢(N) = N we obtafn
E(z) = 6(N} N-2 [n(1-8){Y. Thus, atthough the pre-
sence of multiple solutions may significantly
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impair the ability of A* to benefit from Improved
precision, the complexity of A* remains more
sensitive to error reduction than that of BACKTRACK-
ING.

BACKTRACKING control strategies, on the other
hand, have several advantages over A*. They are
typically simpler to implement and, more signifi-
cantly, require much less storage. Whereas A*
stores all expanded nodes in either OPEN or QLOSED
lists, BACKTRACKING need only store nodes along a
single path, and therefore has a storage complexity
linear in N. Equation (4), though, reveals the
price paid for this storage economy—an exponential
time-complexity coupled with ineffective utilization
of heuristic knowledge. Mixed search strategies
combining the storage economy of BACKTRACKING with
the time savings of A* warrant empirical and theo-
retical investigations.

2.0 THE COMPLEXTY OF NONADMISSIBLE HEURISTICS

2.1 Introduction

Admissible search strategies are cursed with
two basic defects: they spend a disproportionate
amount of time investigating aV[ equally meritorious
alternative solutions, and they limit the selection
of heuristic functions to only those which never
over-estimate the optimal completion cost. The
literature on heuristic search contains many exam-
ples of non-admissible heuristics which empirically
out-perform any known admissible heuristics and yet
yery frequently discover the optimal path.

The aims of theoretical investigations in this
area are to answer several basic and pressing ques-
tions which until now have been treated only by
lengthy simulations 1n a few, specific domains.
When are non-admissible heuristics safe from a cat-
astrophic over-computation? How often are they
likely to miss the optimal solution? When is one
heuristic better than another? Is admissibility a
virtue in cases where just any solution will do?
How should one "debias" a given admissible heuris-
tic? How should one aggregate the estimates pro-
vided by several heuristic functions?

The results reported in the following sections

provide answers to some of these questions and pave
the way to resolve others.

2.2 Conditions for Node Expansion

The analysis of mean run time of admissible
best-first algorithms is facilitated by the simpli-
city of the condition for expansion. We know that
eyery node n in OPEN whose evaluation function
satisfies f(n) < f*(root) must eventually be ex-
panded and conversely, that eyery node satisfying
f(n) > f*(root) will not be expanded. In our
standard model of an m-ary tree with one goal at
depth N, these conditions amount to deciding whether
f(n) 1s larger or smaller than N [8].



The expansion condition for non-admissible
heuristics 1s complicated by the fact that f{n) may
exceed N at several places along the solution path.
This leads to the more general expansion cond$tion
for nodes {n OPEN:

S
f < f
(n) 02::1 (n}} {6}

where ng n? ng . nﬁ are nodsz along the solution

path and n? {5 the deepest common
ancestor of G and n (see Figute 1):

$ s

Figure 1

The right-hand side of {6} is a random variable
L; whose distribution determines the probability of
eipanding any node in subtree T;. The probabilistic
analysis of complexity is fact1ltated by the follow-
ing theorem [?Tﬁ which permits us to replace Lj
with a deterministic quantity.

Theorem 4: Let the ¢-normalized errors
= [h-h*]/4(h*} along the solution path be
independent random variables all having a non-
zero gver-estimation probability so that
P[Y(nS] <y'] >0 for some y' < 0 and all 1.
For s fficien§1y large j, the random variable
Ly = max f{ni) is almost sure to exceed the
Oci<] quantity N - ¢(j)y'.

To put it bluntly, 1f anything can go wrong on the
solution path, 1t aimost surely will. Theorem 4
implies that if y, is the maximal common over-
estimation error ?or all nodes atong the solution
path (i.e., y, = infly'IP[Y¥(n3) < y'] > 0 vi}),
then we are sa?e in assuming tﬂat this maximal
over-estimation indeed took place along the solu-
tion path and in subst{tuting it in the expansion
condition, which becomes:

f(n) < N - o(jly, (7)

Theorem 4 makes this condition, normally invoked in
worst case analysis, applicable to average case
analysis as well.

2.3 When {s One Heuristic Better Than Another {f
Over-Estimations are Possible?
If hy and hp are both admissible then the in-
equality hy < hy also fmplies that hp is a closer
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approximatfon to h* and would naturally lead to a
more efficient search. This simple criterion of
choosing the highest cost estimates breaks down
when over-estimations are encountered. Over-
estimations reduce the search complexity when they
occur at off-track nodes and increase 1t when they
take place along the solution path. The axact
effect of over-estimations on the mean run time of
A* depends on a delicate balance between these two
forces,

The following set of results are derived under
the assumption that the relative errors
Y(n} = [h*{n)-h(n)1/h*(n) are independent and fden-
tically distributed random variables, Letting
H = h/h*, 1t 15 convenient to characterize the
errors by the distribution function
Fy(x) = P([n/h*] < x). We will say that hy 1s more
eﬁficient than hy if the use of hy results in a

mean complexity lower or equal to that of ha.

Definition: A random varfable X is said to have an
upper support r $ff X s v and P{X s x) <1 for
altl x < r.

Theorem 5: Let hy(-) and hy(.} be two heuristic
unctions such that Hy = hy/h* and Hy = hp/h*
possess the same upper support r. [
Fy,(x} 2 Fy (x) for all x s r, then Hz is more
) 2 effictent than Hy.

Theorem 5 generalizes the criterion of Theorem 1 to
the non-admissible case simply by stating that the
heuristic whose density is more concentrated around
1ts upper support is the one to be preferred. It
{s a reascnable criterion in the admissible case
where such concentration also means increased accu-
racy. It is somewhat surprising, though, in the
non-admissible case where concentration around the
upper support and accuracy may not go hand {n hand.
In Figure 2, for example, hy s a more accurate
heuristfc since 1t assigns a greater weight to the
neighborhood of the correct estimate h/h* = |,
Sti11, Theorem 5 proclaims hy as the more efficient
heuristic,

Figure 2

The next theorem establishes a preference
between heuristics with different upper supports,

Theorem 6: Given two heuristic functions hy(.} and
hz{") such that #y and Hz have the upper sup-
parts ry and rz (1 < ry < ry), respectively,
if Fy (l[r /rzi) s Fy Eu) for al) x < rp, then
m is str]ctly more Efficient than hp.



Figure 3 balow {llustrates this preference
criterion graphically. The two dotted distribution
functions represent heuristics inferior to hy be-
cause they lie above its stretched distribution
Fuy ([ry/rzlx). Note that hp can be stochastically
grlater than hy and still be inferior to t as {1~
lustrated by the Yower dotted curve. Simply stated,
Theorem 6 implies that Hy is inferior to Hy 1€ it is
stochastically smaller tﬁan or equal to (rp/ry)Hy.
Thus, once a heuristic h possesses an upper support
which is greater than unity, all attempts to fur-
ther boost 1ts value by using f =g+ ah and a » 1
will only degrade its search performance. This has
a far-reaching consequence for “debiasing" tech-
niques. When a heuristic h is known to underesti-
mate h* consistently, that is, when r < 1, then the
weighted combination f = {1-w)g + wh (w > 1/2) may
be used [12] to “debias” f and compensate for h's
underestimation. Theoram 6 states that « should
not be made too large; the mean complexity mono-
%??ically jncreases with w once w is greater than

+r,

Figure 3

The quantity 1/1+r, of course, {s the highest
value of w which renders f admissible and, clearly,
maintaining w below that limit is necessary 1f one
wishes to guarantee that A* will not miss the opti-
mal solution.
strate that admissibility constraints are also bene-
ficial in cases where only one solution exists and
performance is judged solely by the effort required
to discover it. Moreover, since admissible heuris-
tics always improve by increasing the weight of h
(Theorem 1), we conclude that the admissibility
1imit @ = 1/1+r is optimal.

Figure 4 demonstrates the effect of the weaight
w on the average complexity E(Z,) of A* for three
cases: r'= 172 (h admissible with 50% underestima-
tion bias), r = 1 (h admissible and unbiased), and
r = 2 {h non-admissible with 200% overestimation
bias). The ordinate represents the growth rate
logp E(Z,) normalized by that of exhaustive search
w=0, ?he three curves were computed with the
assumption that the relative errors are distributed
by the truncated exponential distribution:

‘ Q x <0
P(h(n) s x h*(n)) = Je-olm=x} o o oy
1 rs<x

Yariations in the underlyfng distribution will only
change the smplitudes of thase curves but not their
essential charscteristics. The optimality of the
admtssibiiity V1imit w » 1/1+r is clesarly demon-

However, the preceding results demon-
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strated by the sharp dips of the curves at this
point. Note that when w is made too high the aver-
age complexity of A* may sxceed that of an exhaus-
tive search and may become unbounded for » =1,
This is to be expected sfnce reliance on h alone
may cause A* to explore depths greater than N,

tog E(Z)
Tog E(Zy)
-5t r=]
r=2
- " [
M ; 1 ::
0 173 1/2 2/3 ]
w
Figure 4

These results lead to a very simple procedure
of combining information from several heuristic
sourses, admissible as well as non-admissible.
Given the set of estimates hy, hz, ... hg having
upper supports ry, vz, ... g, respectively, the
combination rute:

h = max (h1/r‘. hy/ras o hkirk)
would yleld a more efficient estimate than any of
its constituents. The division by the upper support
removes the bfas from each constituent and renders
it admissible, with v = 1; the "max" operator fur-
ther improves the estimate by rendering it larger
than each of fts constityents, while also maintain-
ingr =1,

Needless to state, these manipulations only
diminish the growth rate of the mean search effort
but cannot turn its complexity from exponential to
polynomial. The exponential complexity implied by
Theorem 2 remains valid for non-admissible heuris-
tics as long as the condition:

Ph{n) = h*(n} (r-e}] > I/m

is satisfied by all nodes for some positive con-
stant ¢.

3.0 GAME-SEARCHING

Introduction

Game-sea, ching differs from shortest-path
search in two essential ways. First, the solution
desired 1s not a simple sequence of moves, a path,
but a strategy, a subtree, which spactfies the

3.1



player's best response to every conceivable move of
the opponent. Second, the quality of a given strat-
egy Is determined solely by the properties of the
terminal nodes it contains, not by the cost of the
paths leading to these nodes.

The theoretical results reported 1n this paper
concern three main issues: establishing absolute
limits on the complexity of game-searching proce-
dures, comparing performances of known procedures
under various conditions, and evaluating the quality
of a decision as a function of the search effort.

The model most frequently used for evaluating
the performance of game-searching methods consists
of a uniform tree of depth d (d even) and degree n,
where the terminal positions are assigned random
values independently drawn from a common distribu-
tion F. We shall refer to such a tree as a
(d, n, F)-tree. The expected number of terminal
nodes examined during the search and its branching
factor have become standard criteria for the com-
plexity of the search method.

Definition: Let A be a deterministic algorithm
which searches a (d, n, F)-tree to determine
the minimax value of its root, and let
IA(d, n, F) denote the expected number of ter-
minal positions examined by A. The quantity:

&pln, F} = Uim [IA(d. n, Fﬂwd
[ 23

i1s called the

branching factor corresponding
to the algorithm A.

The results reported in this paper are direct con-
sequences of a somewhat surprising convergence prop-
erty of tall minimax trees [13]:

Theorem 7: The root value of a (d, n, F)}-tree with
a continuous, strictly increasting terminal
distribution F converges as d ~ = (in probabil-
ity} to a unique predetermined value v* satis-
fying F{v*} = 1-¢,, where g, is the solutien
of xN+x-1 = @,

3.2 The Branching Factor of Alpha-Beta

The Alpha-Beta (a-e) pruning algorithm is the
most commonly used procedure in game-playing appli-
cations. Yet although the exponential growth of
game-tree searching is slowed significantly by that
algorithm, quantitative analyses of its effective-
ness have been frustrated for over a decade. Ore
concern has been to determine whether the a-e algo-
rithm is optimal over other game-searching procedures.

Slagle and Dixon (1969) showed that the number
of terminal nodes examined by a-e must be at least
nLd/2j + nld/21 . i but may, in the worst case,
reach the entire set of n° terminal nodes [14].

The analyses of expected performance using uniform
trees with random terminal values had begun with
Fuller, Gaschnlg, and Gillogly [15] who obtained
formulas by which the average number of terminal
examinations, N, 4, can be computed. Unfortunately,
the formula would not facilitate asymptotic analysis;
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simulation studies led to the estimate Ru_a ~ (n)'n.

Knuth and Moore [16] analyzed a less powerful
but simpier version of the a-8 procedure by ignoring
deep cut-uffs. They showed that the branching factor
of this simplied model s O{nnog n) and speculated
that the inclusion of deep cut-offs would not alter
this behavior substantfally. A wmore recent study by
Baudet [17] confirmed this coniecture by derfving
an {ntegral formulz for N, ., (deep cut-offs
included), from which the Dranching factor can be

estimated. In particular, Baudet i’!us that Ry.p
1s bounded by £p/l-Epy < My.p = M, /%, where £ is
the pos{tive rvoot of x"+x-T = 0 and 1s the maxi-

mal value of the polynomial P{x} = [{1-xM)/(1-x}] »
[1-{1-xP}"]/xM {n the range 0 s x s 1. Pearl [13]
has shown that both £,/1-£p lower bounds the branch-
ing factor of every d?rect onal game-searching al-
gorithm, and that an algorithm exfsts {called SCOUT)
which actually achieves this bound. Thus, the enig-
ma of whether a-g8 is optimal remained contingent upon
determining the exact magnitude of & ,.p within the
range delineated by Baudet.

This enigma has been resolved [18] with the aid
of Theorem 7 and the fact that if the terminal val-
ues of a {d, n, F)-tree are drawn from a character-
istic distribution ¢(x), then the distribution of
every node {n the tree would be identical in shape
to ¢(x) save for a scale factor depending on the
node's level {19]. The result is summarized by the
following theorem {Peari [18]).

Theorem 8: The branching factor of the a-f proce-
ure for a continuous-valued uniform tres of
degresa n 13 given by:

£

- ;]
Foes I‘En (@)
where £, is the positive root of the eguation
whix-1 = 0,

The asymptotic behavior ofﬂr_ is 0{n/l0g n},
as predicted by Knuth's analysis IE]. However,
for moderate values of n {n s 1000} £,/1-&y, 1;
fitted much better by the formula {.995)n -747 (see
Figure 4 of reference [13]), which vindicates the
simulation results of Fuller et al. [15]. This
approximation offers a more meaningful appreciation
of the pruning power of the a-8 al r;shn. Rou”ly
speaking, a fraction of only (.925?:- Tin = p-

of the legal moves will be explorad by a-8. Alter-
natively, for a given search time allotment, the
a-8 pruning allows the search depth to be increased
by a factor log n/log &, =~ 4/3 over that of an
exhaustive minimax search.

The establfshment of the precise value of Wa.p
for continuous-valued trees, together with a previ-
ous result that Rg.g = n1/2 for almost all discrete-
valued trees [13], completes the characterization
of the asymptotic behavior of a-g. Morsover, the
fact that £5/1-gn Tower-bounds the branching factor
of any directional algoritim [13] renders a-8 as-
ymtotically optimal over this class of algorithms.
However, the global optimality of =2 has remained
an unresolved issue until very recently. HNaturally,
the focus of attention has turned to non-directional



algarithms, raising the question whether any such
algorithm exists which exhibits a branching factor
Tower than £ /1-£q-

3.3 A Minimax Algorithm Better Than Alpha-Beta?
Yes and No

Stockman [20] has Introduced a non-directional
algorithm called SSS* which consistently examined
fewer nodes than a-£. Hopes were then raised that
the superiority of Stockman's algorithm reflected
an Improved branching factor over that of a-B.

A simple heuristic argument exists which re-
futes these hopes and Indicates that SSS* and aB$
possess ldentical branching factors. It Is based
on the fact that when the terminal nodes are as-
signed only two values (say 1 and 0), SSS* becomes
directional (ldentical to a-B). Now, since the
search of continuous games must be harder than the
search of any b1valued games of the same structure,
and since directional algorithms for b1valued games
may require [13] a branching factor of Cn/A-Cn* we
conclude that SSS* would also exhibit a branching
factor of at least gqf1-¢,-.

The weakness of this argument lies in the pos-
sibility that SSS* belongs to the rare class of
algorithms whose performances Improve with randomi-
zation, thus finding 1t easier to search continuous-
valued games. This weakness has motivated the eval-
uation of A?s$s* by direct methods using techniques
similar to those of Baudet [17] and Pearl [18].

This evaluation has been completed recently [21]
with a definite confirmation of the relation:

Eﬂ
Rossr = Hoop”™ T -

Thus, the superiority of SSS* over a-e 1s not re-
flected in their growth rates; the two algorithms
can be regarded as asymptotically equivalent.

The possible existence of some other algorithm
with a branching factor superior to that of o-g has
also been eliminated by a more recent result of
Tarsi {22). Cons{dering a standard bivalued game-
tree in which the terminal nodes are assigned the
values 1 and 0 with the probabilities ¢, and 1-¢,,
respectively, Tarsi's result states that any algo-
rithm which selves such a game-tree must, on the
average, examine at least ?gnll-cn)‘ terminal posi-
tions. At the same time the task of solving any
bivalued game-tree is equivalent to the task of
verifying an inequality proposition regarding the
minimax value of a continuous-valued game-tree [13]
of {dentical structure, and, consequently, the for-
mer cannpt be more cona!ex than the latter., Thus,
the quantity (g,/1-£,)° should also lower-bound the
expected number of nodes examined by any algorithm
searching a continuous-valued game-tree. This,
together with {8), establishes the asymptotic opti-
mality of a~g over all game-searching algorithms,
directional as well as non-directional.

3.4 When Is Successor Ordering Beneficial?

The analyses presented in the preceding two
sections assumed that the order in which a-B selects
nodes for expansion 1s completely arbitrary, say
from left to right. In practice, the successors of
each expanded node are first ordered according to
their static evaluation function. Successors of MAX
nodes are then expanded in a descending order of
their evaluation function (their highest first) and
those of MIN nodes 1n ascending order (their lowest
first). It is normally assumed that such preorder-
ing increases substantially the number of cut-offs
induced and results in a lower branching factor.

Clearly, when the static evaluation function 1s
well Informed, correlating with the actual node val-
ue, such ordering will induce all possible cut-offs
yielding 37 « n?/2. On the other hand, when the
static evaluation is uninformed, the ordering is
superfluous and yields <¥» Un)/0~tn) * *" random
ordering. The analysis of this section attempts to
quantify the relation between the informedness of
the static evaluation function and the branching
factor induced by successor ordering.

For simplicity, we treat bivalued n-ary trees
with probability P " £, that ® terminal node obtains
the value 1. The information quality of the static
evaluation function V can be characterized by two
distribution functions:

FH(xJ = P(V s x given that a node is

actually a WIN] (%)

FL(x) = P[V < x given that a node is
actually a LOSS]

IT we treat x as a variable parameter, then Fy can
be regarded as a function of F, or Fy = g(F Y.
g{z) is a monotonic, weakly increasing funct*an of
z between the points {0,0) and (1,1). Totally
uninformed ¥ will be represented by g{z} = z, while
"noiseless” ¥ wil) be characterized by:

glz) = {10 <

z=1
The parameter which directly controls the branching
factor 1s given by the integral:

l-gn
4

$= " } te, - 9(2)(1-¢ N a2
20 n n

n

Theorem 9: The branching factor of a-8 with succes-
sor ordering over a (d, n, &)-game tree is
given by:

R(S) = [n + 5—55-)— (1+/ 1+ 4rlfAz(SH]”2

where:
A(S) T——E" S
“tn n

Numerfcal computations of #(S$) show that, for all
n, #(5) 15 slmost 1inear with §, 95&dua1ly increas-
fng from its minfmal value 3= nl/< to its maximal
value R(S=1} = (£,)/(1-¢p).

1-§,




3.5 Wen is Look-Ahead Beneficial?

The basic rationale behind all game-searching
methodologies is the belief that look-ahead followed
by minimaxing improves the quality of decisions or,
1n other words, that the "back-up" evaluation func-
tion has a greater discrimination power to distin-
guish between good and bad moves. Although no
theoretical model has supported this belief, it has
become entrenched 1n the practice of game-playing
and its foundation rarely challenged.

Two heuristic arguments are usually advanced in
support of look-ahead. The first invokes the notion
of visibility, claiming that since the fate of the
game is more apparent near its end, nodes at deeper
levels of the game-tree will be more accurately
evaluated and choices based on such evaluation
should be more reliable. The second alludes to the
fact that whereas the static evaluation is computed
on the basis of the properties of a single game
position, the back-up value integrates the features
of all the nodes lying on the search frontier, and
so should be more informed. This latter argument
essentially takes after a filtering model; the more
samples, the less noise.

A recent work of Nau [23] demonstrated that the
filtering argument is utterly fallacious. In a
large class of game-trees, reaching deeper consis-
tently degrades the quality of a decision. This
phenomenon, which Nau termed pathologicall, is not
confined to the special game-trees considered by
Nau but can be shown to be a common occurrence in
the ensemble of games defined by the standard prob-
abilistic model of (h, n, P)-trees.

Assume that the evaluation function V computed
at each terminal node of a (h, n, P*s,)-tree re-
flects the likelihood of that node being a WIN
position. The quality of such an estimate can be
characterized by the pair of distribution functions
defined in (9). Given the pair Fy(x) and FL(X), one
can compute the two conditional distributions of Vg,
the minimax value of the root node:

Fﬁ(x} = P[V, s xgiven that the root is WIN)

Ff(x] = P[\'d s X given that the root {1s LOSS)

starting pair

The analysis shows that, for "erﬁ
Fa. FL) satisfies
that as the search

{Fy, F ], the back-up pair {
Y tké - £
g depth increases, the minimax value

= 0. This implies
of the root node possesses the same statistics
regardless of whether the root 15 in fact a WIN or
a L0SS. Thus, the ability to discriminate between
a WIN and a L0SS sftuation deteriorates by the min-
imax back-up procedure.

To understand why the filtering argument fails
in the case of game-trees, consider the task of
estimating the value of an arbitrary function
£(xi» XE. ... X,) on the basis of the estimates xj,
X2, xn of its arguments. Knowing x1 ... X, can
Improve the estimation of y if we integrate them
according to strict statistical rules, as by form-
ing the conditional expectation of y given
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X1 ... X,. Instead, the minimax procedure amounts
to taking y(xj, £2, ... x,) as an estimate for y—
It computes the minimax value of the estimators
rather than estimates the minimax.

This point can be further illustrated by the
following game-tree. Assume that the terminal val-
ues signify the probability that player 1 can force
a WIN from these positions. Which move should be
selected, towards A or towards B? The minimax eval-
uation procedure would assign to node A the value
.3, to node B the value .2, and so would lead play-
er 1 to prefer A over B. On the other hand, if one
computes the probabilities that nodes A or B are
WN (for player 1) on obtains:

P(A is WIN) = P{a)] A's
= . 3x 4=

P(all B's successors are WIN)

9 x . 2= 18

successors are WIN)
L1

P(B 1n WIK) =
player 1 move

B player 2 move

.4 -3 .2 .9

Clearly, B is to be preferred. It is obvious from
this example that if one wants to maximize the
chances of choosing WIN positions, the minimax rule
is inadequate and should be replaced by product-
propagation rules, nPj for MIN nodes and I-n(I-Pi)
for MAX nodes. If these propagation rules 1

are used, the phenomenon of pathology should be
reduced, if not eliminated.

However, the example also facilitates a line
of defense 1n favor of the minimax rule. In prac-
tical game-playing, one 1s not concerned with main-
taining a WINNING position, winning regardless of
what the opponent does, but simply with beating a
fallible opponent. Such an opponent, if he shares
our assessment of the terminal values, can be
predicted to choose the left move from position B
and the right move from position A. Therefore, on
the basis of such a prediction, we have:

P(player 1 wins from A) » .3

P(player 1 wins from B) m .2

which agrees with the minimax calculation. In sum-
mary, although the minimax rule is inadequate when
playing against an omnipotent opponent, tacitly it
contains a realistic model of a fallible opponent
who shares the knowledge and limitations of player
1, and therefore should be effective against such
opponents. This, perhaps, may account for the fact
that pathology 1s not observed in practical game-
playing programs; the quality of play usually Im-
proves with search depth.



Another reason for the absence of pathology 1n
practical game-playing could be that the evaluation
functions become more accurate toward the end of the
game, possessing Increased visibility then, an ef-
fect not included in the preceding analysis. Nau
[24] has recently demonstrated that pathological
behavior occurs 1n a specific game despite an In-
crease in evaluation function accuracy. Determining
the rate of Improved accuracy necessary for combat-
ing pathology remains an open theoretical problem.

REFERENCES

[1] Hart, P., N. Nllsson, and B. Raphael. "A For-
mal Basis for the Heuristic Determination of
Minimum Cost Paths." I|EEE Trans, on Systems
Science and Cybernetics, Vol. SSC-4, No. 2.
July 1968, pp. 100-107.

[2] Pohl, I. "First Results on the Effect of Error
in Heuristic Search." In B. Meltzer and D.
M1chle (Eds.), Machine Intelligence 5. Edin-
burgh: Edinburgh University Press, 1970.

[3] Munyer, J. "Some Results on the Complexity of
Heuristic Search 1n Graphs." Technical Report
HP-76-2, Information Sciences Department,
University of California, Santa Cruz, Septem-
ber 1976.

[4] Vanderbrug, G. "Problem Representation and
Formal Properties of Heuristic Search." [nfor-
mation Sciences, Vol. 11, No. 4, 1976.

[56] Pohl, I. "Practical and Theoretical Consider-
ations In Heuristic Search Algorithms." In
E. Elcock and D. Michle (Eds.), Machine Intel-
ligence 8, Chichester, England: Ellis Horwood

[6] Gaschnig, J. "Performance Measurement and
Analysis of Certain Search Algorithms." Ph.D.
Dissertation, Department of Computer Science,
Carnegie-Mellon University, 1979.

[7] Gelperin, D. "On the Optimallty of A*." Arti-
ficial Intelligence, Vol. 8, No. 1, 1977,
pp. 69-76.

[8] Huyn, N., R. Dechter, and J. Pearl. "Prob-
abilistic Analysis of the Complexity of A*."
Artificial Intelligence, Vol. 15, No. 3, 1980,
pp. 241-254.

[9] Pearl, J. "The Utility of Precision 1n Search
Heuristics." UCLA-ENG-CSL-8065, Cognitive
Systems Laboratory, University of California,
Los Angeles, October 1980.

[10] Nllsson, N. Principles of Artificial Intelli-
gence. Palo Alto, CA: Tioga Publishing Com-

pany, 1980.

[11] Pearl, J. "The Complexity of Non-Adm1ssible
Search Heuristics." In preparation.

[12] Pohl, I. "Heuristic Search Viewed as Path

562

[13]

[14]

[15]

[16]

(7]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

Finding In a Graph." Artificial Intelligence,
Vol. 1, 1970, pp. 193-5ET

Pearl, J. "Asymptotic Properties of Minlmax
Trees and Game-Searching Procedures." Artifi-
cial Intelligence, Vol. 14, No. 2, 1980,

pp. 113-138.

Slagle, J. R., and J. K. Dixon. "Experiments
with Some Programs that Search Gare Trees."
Journal of the ACM, Vol. 2, 1969, pp. 189-207.

Fuller, S. H., J. G. Gaschnig, and J. J.
Glllogly. "An Analysis of the Alpha-Beta
Pruning Algorithm." Department of Computer
Science Report, Carnegie-Mellon University,
1973.

Knuth, 0. E., and R. N. Moore. "An Analysis
of Alpha-Beta Pruning." Artificial Intelli-
gence, Vol. 6, 1975, pp. 293-326.

Baudet, G. M. "On the Branching Factor of the
Alpha-Beta Pruning Algorithm." Artificial
Intelligence, Vol. 10, 1978, pp. 173-199.

Pearl, J. "The Solution for the Branching
Factor of the Alpha-Beta Pruning Algorithm."
UCLA-ENG-CSL-8019, Cognitive Systems Labora-
tory, University of California, Los Angeles,
April 1980. To be published 1n Communications
of the ACM.

Pearl, J. "A Space-Efficient On-L1ne Method
of Computing Quantile Estimates." UCLAENG-
CSL-8018, Cognitive Systems Laboratory, Univer-
sity of California, Los Angeles, December 1980.
To be published in Journal of Algorithms.

Stockman, G. "A Minimax Algorithm Better Than
Alpha-Beta?" Artificial Intelligence, Vol. 12,
1979, pp. 179-1W:

Rolzen, |., and J. Pearl. "A Minimax Algorithm
Better Than Alpha-Beta?: Yes and No." In
preparation.

Tarsi, M. "Optimal Searching of Some Gare
Trees." UCLA-ENG-CSL-8108, Cognitive Systems
Laboratory, University of California, Los
Angeles, May 1981.

Nau, D. S. "Pathology on Gare Trees: A Sum-
mary of Results." Proceedings of the first
National Conference"” Artificial Intelligence,
August TM6, pp. 162-164.

Nau, D. S. "Pearl's Gare 1s Pathological."
Technical Report TR-999, Computer Science
Department, University of Maryland, January
1981.




