
HOW TO SEARCH EFFICIENTLY*

Cynthia A* Brown and Paul Walton Purdom, J r .

Computer Science Department
Indiana Un ivers i t y

Bloomington, IN M7405

ABSTRACT

The only technique available for solving many
important problems is searching. Since searching
can b e ex t reme ly c o s t l y , i t i s i m p o r t a n t t o
i d e n t i f y features tha t improve the e f f i c i ency of
aearch a lgor i thms. We compute the e f f i c i e n c y of
simple backtrack ing, of an a lgor i thm s i m i l a r to
backtracking except tha t i t not ices when the
predicate is empty instead o f no t i c i ng when i t i s
unsatlsf iable (the empty predicate method), of the
combination of simple backtracking wi th the empty
predicate method, and of search rearrangement
backtracking (the u n i t clause r u l e combined w i t h
backtracking). The analysis is done over two sets
of random problems. We also consider the algorithm
based on the pure l i t e r a l ru le that was analyzed by
Goldberg and the resu l t s he obtained. A l l these
a lgor i thms are s i m p l i f i c a t i o n s of the complete
Putham-David procedure, which has not been analyzed
as yet (although most of i t s components have been
analyzed). The performances of the algorithms are
compared and features tha t lead to e f f i c i e n t
algorithms are ident i f ied.

1. Introduction

Some problems can be ao lved by d i r e c t
calculation in an e f f i c i e n t , s t ra igh t fo rward way,
but for many important classes of problems the best
known method is a control led search for solutions.
Such searches, unfortunately, can consume extremely
(exponentially) large amounts of time. Efforts to
study and improve search methods are therefore of
considerable pract ical importance.

* This research was supported in par t by the
Nat ional Science Foundation under Grant no. MCS
7906110.

By c a r e f u l l y analyzing a p a r t i c u l a r set of
problems it may be possible to f i n d problem-
spec i f i c in fo rmat ion tha t can be used to con t ro l
the search. This can be an excellent approach; in
some cases it has led to a lgor i thms that avoid
searching a l together . Often, however, a f t e r a l l
p r o b l e m - s p e c i f i c i n f o r m a t i o n has been used,
excessive search time is s t i l l requi red. Another
approach is to study general search algorithms and
ident i fy features that lead to an e f f i c ien t search.
The two approaches are complementary; the best
a lgor i thm fo r a p a r t i c u l a r problem is o f t e n
obtained by combining problem-specific techniques
with the best general search methods.

Here we repor t the i n i t i a l r esu l t s of a
systematic study of the average time performance of
search methods. A l l methods have about the same
worst case t ime (exponent ia l ly la rge) . Also,
techniques that lead to an improvement in average
performance often resul t in a minor degradation of
worst-case behavior, so a study of worst-case
behavior can be misleading. The average t ime
performance of these algorithms can be much better
than the worst-case performance. Some of the
methods we study lead to an exponential improvement
in average search time.

The search methods we analyzed include simple
backtrack ing, search rearrangement backtracking
[1,15], an algorithm s imi lar to backtracking except
that it notices when the predicate is true instead
of no t i c i ng when i t is unsa t l s f i ab le (the empty
predicate method), and the empty predicate method
combined w i t h simple backtracking. Our analys is
shows tha t the empty predicate ru le does not
con t r ibu te much to the performance of search
a l g o r i t h m s , and t h a t search rearrangement
backtracking can be much more e f f i c i e n t than
ordinary backtracking when the t y p i c a l problem
contains a large number of clauses w i t h few
l i t e r a l s per clause.

Goldberg [8] analyzed a version of the Putnam-

388

Davis procedure that essentially re l ies on the pure
l i t e r a l ru le . The analysis shows tha t the pure
l i t e r a l ru le can save a huge amount of t ime on
problems that have a large number of l i t e r a l s per
clause, but i t a lso suggests that the ru le is
unimportant when the typical clause does not have
many l i t e r a l s .

We hope to analyze the f u l l Putnam-Davis
p r o c e d u r e [4] . The p o i n t s t h a t remain to be
analyzed are the effect of stopping the search when
the f i r s t so lu t ion is found and the e f f ec t of the
pure l i t e r a l rule when the typical clause has only
a few l i t e r a l s . The e f f ec t of combining various
techniques also needs to be analyzed.

Any problem in the class NP can be expressed
as a p r e d i c a t e in the form of Eq .O) . Many
examples of such problems are given in [6] . We
i l l u s t r a t e the encoding of problems in t h i s form
with the game of generalized instant insanity [16].
The game is played with n cubes. Each face of each
cube is painted with some color. The object of the
game is to form a stack of n cubes w i t h each cube
oriented so that each face of the stack consists of
cube faces tha t have d i s t i n c t co lors . Each cube
has twenty- four possible orientations. Since the
order of the cubes in the stack is i rrelevant, the
problem is equivalent to the predicate

(2)

where ok is the o r i en ta t i on of cube k and
R i j (o i f O j) is t rue i f and only i f , when cube i
has orientat ion o± and cube j has orientation
o j , the pa i r of cubes forms a lega l stack of
height two (a l l faces of the stack are made up of
d is t inc t co lo rs) .

The most obvious method of searching f o r
solutions to a predicate in th is form is to t r y a l l
combinations of values of the variables. This sort
o f exhaustive searoh is p r o h i b i t i v e l y slow fo r
large problems. Fortunately, the special form of
Eq, 1 permits three types of improvements. F i r s t ,
since each re la t ion is defined over a small subset
of the va r iab les , a r e l a t i o n may become fa lse as
soon as a l l of i t s var iab les have been assigned
values. In t h i s case no extension of the current
par t ia l assignment of values to variables can be a
s o l u t i o n . Such e x t e n s i o n s need n o t be
i n v e s t i g a t e d . T h i s i s t h e i d e a b e h i n d
backtracking,

A second improvement consists of looking for
var iab les tha t should be assigned values ear ly in
the search. I t i s p a r t i c u l a r l y he lp fu l to f i n d a
var iab le a l l of whose values make a clause fa lse
(under the current p a r t i a l assignment), or which
has only one value which does not make a clause
f a l s e . Th i s i s the bas ic idea o f search
rearrangement backtracking [1,15], and of the uni t
clause rule in the Putnam-Davis procedure [4] ,

A t h i r d approach Involves looking f o r the
values of a var iab le tha t are most l i k e l y to lead
to a solution. In some cases there is a value that
makes a l l r e l a t i ons which depend on the var iab le
t rue . In tha t case only tha t one value of the
variable requires consideration. This is the basis
of the pure l i t e r a l ru le in the Putnam-Davis
procedure.

These ideas have been used extensively to
improve the average runn ing t ime of search
a lgor i thms. We are studying algor i thms tha t use
various combinations of the ideas. To speci fy
these a lgor i thms we f i r s t g ive a common general
procedure and then p resen t the d e t a i l s t h a t
d i s t i ngu i sh the various methods. The procedure
uses a stack to keep track of which variables have
been set .

Generalized Search Procedure

1. [I n i t i a l i z e ,] Set each va r iab le to undefined.
Set Stack to empty,

2 . [S e l e c t v a r i a b l e ,] S e l e c t as the cur rent
variable a variable that needs to be tested. If
there is no such va r i ab l e , go to Step 5* Push
the cur rent va r iab le onto Stack and mark a l l
of i t s values as untested.

589

3. [Select value.] For the current variable select
an untested value tha t requi res t e s t i n g . I f
there is no such value, go to Step 6. Otherwise
set the va r iab le to tha t value and mark the
value as tested.

4 . [Test .] I f some clause of the predicate is
f a l se under the present p a r t i a l assignment of
values to va r iab les , go to Step 3 I f a l l
solutions are desired, go to Step 2.

5. [Solution.] The current assignment of values to
v a r i a b l e s Is a s o l u t i o n (any rema in ing
unasslgned var iab les may take on any of t h e i r
values). I f only one so lu t i on i s des i red,
stop. I f a l l so lu t ions are des i red, go to step
3.

6 . [Back up.] Set the c u r r e n t v a r i a b l e to
unde f i ned . Pop Stack . The new c u r r e n t
variable is at the top of Stack. I f Stack is
empty, stop. Otherwise go to Step 3.

Many search algorithms simpl i fy the predicate
as they search. For example, in the Putnam-Davis
procedure clauses tha t become t rue are dropped.
The dropped clauses are restored when the algorithm
backs up.

The a lgor i thms tha t we have analyzed search
f o r a l l so lu t i ons ; they never stop at Step 5. In
the future, unless otherwise stated, we w i l l assume
tha t Step 5 always goes to Step 3. For these
algorithms the order in which values are tested at
Step 3 is immate r ia l , since a l l values must
eventually be tested.

Simple backtracking Is obtained from the
general ized search procedure by se lec t ing the
variables in a f ixed order at Step 2 and the values
in a f i xed order at Step 3* Every var iab le and
every value tha t is considered at Step 3 requi res
test ing. In search rearrangement backtracking [1]
a simple test is used to select a variable at Step
2. Each value of each var iab le is tested (using
the same t e s t used in Step 4) , and the var iab le
f o r which the fewest values pass the t e s t is
selected. More sophisticated search rearrangement
algorithms [15] test combinations of values.

In the Putnam-Davis procedure var iab les are
selected by examining the predicate d i rec t ly rather
than by t e s t i n g the values of var iab les . This
method o f se lec t ion is more power fu l , but i t i s
a lso more d i f f i c u l t to program and requi res more

knowledge of the internal structure of the clauses.

The o r i g i n a l Putnam-Davis procedure was
designed for predicates in conjunctive normal form.
To describe a more general procedure we f i r s t give
some (nonstandard) def in i t ions. A re lat ion R is
a u n i t c lause i f , under the c u r r e n t p a r t i a l
assignment of values to var iab les , there is an
unset variable v such that R is false for every
value but one of v. We c a l l v the associated
var iab le of the u n i t clause. A var iab le v is
re levant i f there is a r e l a t i o n R whose value
under the current par t ia l assignment depends on v.
A variable v is associated with a BUS literal If
under the current par t ia l assignment there is some
value x of v such tha t when v is assigned
value x every R tha t depends on v is t rue .
The value x is called a safe IftlUft*

The generalized Putnam-Davis procedure is our
general search procedure w i t h the f o l l o w i n g
mod i f i ca t ions . In Step 2, i f poss ib le , se lec t a
variable associated wi th a uni t clause. Otherwise,
i f poss ib le , se lect a var iab le associated w i t h a
pure l i t e r a l . Only one safe value is tes ted. I f
t he re are no v a r i a b l e s assoc ia ted w i t h pure
l i t e r a l s or uni t clauses, then select any relevant
va r iab le . I f there are no re levant va r iab les , go
to Step 5. The Putnam-Davis procedure stops when
the f i r s t solution is found.

We also considered the empty predicate method,
an a lgor i thm tha t may be viewed as an extremely
s i m p l i f i e d version of the Putnam-Davis procedure.
In th is algorithm variables are selected in f ixed
order at Step 2, as long as some var iab le is
relevant (the selected variable is not necessarily
relevant). A l l values are tested at Step 3, and no
tes ts are done at Step 1 (i . e . the tes t gives the
r e s u l t t rue) unless a l l re levant var iab les have
been assigned values. The procedure searches f o r
a l l solutions. The procedure is l i ke backtracking
except tha t it backs up when a l l the RA are t rue
instead of when one of them is false. It works by
no t i c i ng when the predicate can be s i m p l i f i e d to
the point where it is empty.

3* Random Prpfrlfifflff

To do an average time analysis it is necessary
to se lec t a set of representat ive problems and a
p r o b a b i l i t y d i s t r i b u t i o n over the s e t . For
backtracking i t is not obvious what a " t y p i c a l "
problem is . In th is paper we consider two types of
random problem s e t s . Both are Ins tances of

590

conjunctive normal form predicates. For each type
of problem set we give a method of forming a random
clause; a random predicate is then the conjunction
of t random clauses selected independently
(thus, a random predicate may happen to contain two
copies of the same clause).

In the f i r s t method of construct ing random
clauses each clause has s l i t e r a l s for some fixed
s. The s l i t e r a l s are independently selected
from the 2v possible l i t e ra l s . This method was
used in our e a r l i e r analyses of backtracking
algorithms [2 ,13] .

In the second method each l i t e r a l has
p robab l i t y p of being in the clause for some
f i xed p. This method was used by Goldberg [8] .
The two models are roughly equivalent when the
parameters are set so that p z &/2v.

We fo l l ow the o r i g i n a l papers in computing
"running time" in the two models. In our model we
assume tha t the "running t ime" is equal to the
number of binary nodes in the search t ree. The
actual running t ime increases more rap id ly (by a

factor of approximately v [3]) but th is error is
unimportant compared to the exponential differences
in the average running times of the various search
algorithms.

In Goldberg's model we assume that the time to
process a node is equal to avt , where a is a
constant, v is the number of unset variables, and
t is the number of terms tha t are s t i l l being
considered. Both unary and binary nodes are
counted.

4. Results

Table 1 summarizes the exact resu l t s for the
average " r u n n i n g t i m e " o f va r i ous search
a lgor i thms. Most of the exact resu l t s are not in
closed form, so it is d i f f i c u l t to understand their
s ign i f i cance . An asymptotic analysis makes these
r e s u l t s eas ie r to i n t e r p r e t . To o b t a i n an
i n t e r e s t i n g a s y m p t o t i c a n a l y s i s , c a r e f u l
considerat ion must be given to how s, p, and t
should vary as v increases. We bel ieve tha t

Table 1. Exact formulae f o r tha number of so lu t ions a&d f o r tha " running
t i n e " of var ious s tarch ing algor i thms f o r two sodala of random problems.

591

keeping s f i xed (or l e t t i n g p= a/v f o r f i xed
a) and l e t t i n g t = by fo r f i xed b gives
r esu l t s s i m i l a r to those f o r many i n t e r e s t i n g
r e a l i s t i c problems. This keeps the i nd i v i dua l
terms smal l wh i le l e t t i n g the number of terms
increase wi th v. We also consider t s v for
f i xed a>1. (For example, general ized ins tan t
insan i ty can be coded w i t h s s 10 (f i v e l o g i c a l
variables for each o^ in the or ig ina l problem) and
t s (v /5) 2 .) The f i r s t choice fo r t produces
problems where the number of constraints increases
propor t ionate ly to the number of var iab les . The
second choice produces problems where the number of
constraints increases more rapidly.

Table 2 gives the approximate value of the
logar i thm of the average "running t ime" fo r each
algorithm. The two models generate problems wi th
the same number of so lu t ions when a = (In 2) s.
Usually the form of the answers is the same for the

two models, but Goldberg's model generates problems
that are much easier to solve by backtracking when
t s v (fo r The resu l t s show tha t the
empty predicate method is not helpful when p ->
0. A l i t t l e thought suggests tha t t h i s method is
less he lp fu l than stopping the search when the
f i r s t so lu t ion is found, because both approaches
need a solution before they can save any time.

Comparing the results for simple backtracking
w i t h those fo r search rearrangement on our model
wi th t s v° shows that search rearrangement saves
about as much t ime as reducing the s ize of the
c lauses by one l i t e r a l . Th is e x p o n e n t i a l
improvement indicates that search rearrangement can
be much more e f f e c t i v e than simple backtracking.
Further analysis is needed to determine how search
rearrangement behaves for t = bv.

592

The following table shows the results of
set t ing s = 3,a = 3 In 2 : 2.08, and b=

(In 2) (In (1 -2 - 8)) - 1 z 5.19 in the formulas
from Table 2. These values for the parameters lead
to an interest ing set of d i f f i c u l t problems where
the t y p i c a l problem has about one s o l u t i o n
regardless of the size of the problem, as is often
the case f o r r e a l i s t i c d i f f i c u l t problems. The
va lues i n the t a b l e demonstrate c l e a r l y the
exponential improvement that can resul t from using
simple backtracking.

5. Goldberg*a results

In [8] Goldberg reported an average t ime
analys is of an a lgor i thm based on using the pure
l i t e r a l r u l e to s i m p l i f y the predicate. When no
pure l i t e r a l is available it chooses a variable and
creates two s i m p l i f i e d predicates, one fo r each
value of the va r iab le . It uses the same stopping
ru le as the empty predicate method. The analysis
is over the Goldberg model as described above, but
with p constant. We are preparing a j o in t paper
w i t h Goldberg in which some minor errors in the
d e r i v a t i o n presented i n [8] are c o r r e c t e d .
(Reference [14] is becoming a draf t of th is paper.)
These analyses show that Goldberg's procedure takes
polynomial average time on his model. When p is
f i x e d , the s ize of the clauses increases w i th the
number of variables, and the number of solutions to
a t y p i c a l predicate also increases. The analysis
does not apply to models w i t h var iab le p, but i t
suggests that , for the case in which p approaches
zero as v becomes la rge , the performance of
Goldberg's a lgor i thm is not dramat ica l ly bet ter
than that of the empty predicate method.

6. conclusions

The Putnam-Davis procedure is the source of
many good ideas fo r improving the e f f i c i ency of
search a l g o r i t h m s . It may be viewed as a
combination of 1) backtracking, 2) un i t clause

se lec t ion (one l e v e l aearoh rearrangement), 3)
empty p r e d i c a t e d e t e c t i o n , 4) pure l i t e r a l
se lec t i on , and 5) stopping at the f i r s t so lu t ion .
The methods of [2 ,131 and of t h i s paper are
adequate to analyze an a lgor i thm w i t h the f i r s t
three features. To analyze the f i r s t four is more
d i f f i c u l t . Goldberg [8] analyzed the effect of the
pure l i t e r a l ru le in an algorithm where it does not
af fect the order of selection of the variables. I t
is qu i te l i k e l y tha t h i s methods can be combined
w i t h those of [2,13,14] to analyze an a lgor i thm
that uses a l l of the f i r s t four features. No work
has yet been done on the e f f ec t of stopping at the
f i r s t so lu t ion.

The analyses of random problems show that
backtracking is ef fect ive on problems that contain
a large number of clauses w i t h few l i t e r a l s per
c lause . When b a c k t r a c k i n g i s e f f e c t i v e ,
backtracking combined wi th the un i t clause rule is
even more ef fect ive, but when backtracking is not
effect ive adding the uni t clause rule does not help
much. The pure l i t e r a l r u l e works w e l l when each
clause contains a large number of l i t e r a l s . Since
such predicates usual ly have a large number of
so lu t ions , stopping a t the f i r s t so lu t ion i s also
e f f e c t i v e in t h i s case [5] . None of the analyzed
methods is very e f f e c t i v e fo r problems w i t h a
moderate number of l i t e r a l s per term and wi th the
number of terms equal to several times the number
of var iables.

The most straightforward direct ion for future
work is completion of the analysis of search
rearrangement backtracking. The blank entries in
Table 3 for level one backtracking can be f i l l e d in
by completing calculations s imi lar to those which
l e d t o the f i r s t e n t r y . The m u l t i - l e v e l
backtracking a lgor i thms appear to be even more
e f f i c i e n t f o r large problems [3] , but analyzing
their performance is d i f f i c u l t .

Backtracking algorithms are easy to use: once
the general search a lgor i thm has been coded the
user need only provide the routine to test pa r t i a l
so lu t ions . Adding features of the Putnam-Davis
procedure tha t manipulate the predicate requi res
more programming e f f o r t , bu t the r e s u l t i n g
algorithm may also be much more powerful. Analyses
are needed to determine whether th is is the case.

There may be algorithms that are both simpler
to analyze and more powerful than the Putnam-Davis
procedure. One weakness of the Putnam-Davis
procedure is tha t i t does not have any guidance
concerning which variable to select in eases where

593

the pure l i t e r a l r u l e ami the u n i t clause r u l e oo
not app ly . A good techn ique is to s e l e c t a
va r iab le from the shor tes t remaing clauae. A
recent analysis by Monien et al [12] shotted that a
problem wi th three l i t e r a l s per term can always be
salved in time 1.62v using an improvement on the
Putnam-Davis algorithm that selects variables from
the shor test clause. Some improvement is a lso
obtained for problems wi th more than three l i t e r a l s
per term. Other i n t e r e s t i n g techniques fo r
m o d i f y i n g b a c k t r a c k i n g have been proposed
[7,9,10,11].

Another area where progress is possible is in
the use of ru les to manipulate the pred icate .
Subsumption can be combined wi th the Putnam-Davis
procedure. Subs t i t u t i on of equal quan t i t i es can
also be used.

Many of the techniques used in th is paper were
developed in e a r l i e r work [2 ,8 ,13] . Each of the
o r i g i n a l papers analyses one a lgor i thm on one
model. Here we apply the techniques to a va r ie ty
of algorithms and models to determine how important
var ious features are to e f f i c i e n t searching. A
large number of ideas have been suggested fo r
improving the e f f i c i ency o f searching. I f they
were a l l combined the r e s u l t would be a la rge ,
complex program, conta in ing many par ts tha t made
l i t t l e o r n o c o n t r i b u t i o n t o i t s e f f i c i e n c y .
Analysis of average running t ime is a powerful
technique fo r determining the value of proposed
improvements.

REFERENCES

1. Janes R. B i t n e r end Edward M. Re ingo ld ,
Backtrack Programming Techniques, Comn, ACM 18
(1975) pp. 651-655.

2. Cynthia A. Brown and Paul Walton Purdom, Jr., An
Average Time Analysis of Backtracking, 5IAM JL
£flAJLu to appear.

3. Cynthia A. Brown and Paul Walton Purdom, Jr., An
Empirical Comparison of Backtracking Algorithms,
Indiana Univers i ty Computer Science Department
Technical Report No. 100 (1981).

4. Ha r t i n Davis, George Logemann, and Donald
Uveland, A Machine Program for Theorem Proving,
&MU.ACM 5 (1962) pp. 394-397.

5. John Franco, Case Western Reserve Un ive rs i t y ,
private communication.

6. Michael R. Garey and David &• Johnson, Computers
Ar t I n t rac tab i l i t y , W. H. Freeman (1979).

7 . John G a a c h n l g , P e r f o r m a n c e Measure a n d A n a l y s i s

fil certain search Algor i thms, Ph.D. Thesis,
Carnegie-Mellon University (1979).

8. Allen Goldberg, Average Case Complexity of the
S a t i s f i a b i l i t y Problem, Proceadlnfs of THE
jEfiuctb Hftdahop $Q Automated Deduction (1979),
pp. 1-6.

9. Robert M. Hara l ick , Larry S. Davis, A z r i e l
Rosenfeld, and David L. Mi lgram, Reduction
Opera t ions f o r C o n s t r a i n t S a t i s f a c t i o n ,
Inforfliatiop Sciences 14 (1978), pp. 199-219.

10. Robert M. Haral ick and Linda G. Shapiro, The
Consistent Labe l l ing Problem: Part I, IEEE
Transactions an faktsxn Analysis and fl&cMne
I n t e l l i g e n c e 1 (1979), pp. 199-219, and The
Consistent Labe l l ing Problem: Part I I , IEEE
Transactions sm f&fcfcflcn Analysis ami Hadiing
Intelligence 2 (1980), pp. 193-203.

11. Alan K. Mackworth, Consistency in Networks of
Relations, A r t i f i c i a l Intell igence 8 (1977),
pp. 99-118.

12. Burkhard Monien, Ewald Speckenmeyer, and G. H.
Paderborn, 3 - S a t i s f i a b i l i t y i s Testable in
0(1.62 r) Steps, Ber ich t Nr. 3/1979, Reihe
Theoretische Informstik (1979).

13* Paul Walton Purdom, Jr . and Cynthia A. Brown,
An A n a l y s i s of Back t rack ing Wi th Search
Rearrangement, Indiana Univers i ty Computer
Science Department Technical Report No. 89
(1980).

14. Paul Walton Purdom, Jr . and Cynthia A. Brown,
Average Time Analyses of S i m p l i f i e d Putnam-
Davis Procedures, Indiana University Computer
Science Department Technical Report No. 101
(1981).

15. Paul Walton Purdom, J r . , Cynthia A. Brown and
Edward L. Rober tson, Back t rack ing w i t h
Mu l t i p le -Leve l Search Rearrangement, ACTA
Informatics 15 (1981), pp. 99-113.

16. Edward R o b e r t s o n and I a n Munro , NP
Completeness, Puzzles and Games, u t i l i t a a Math.
13 (1978), pp. 99-116.

594

AUTHOR INDEX

Abe, No r i h i r o . 77
Agar, Michael 190
Aggarwal, J. K 686
Agusa, K iyosh i 949
A i k i n s , Janice S 886
A l l e n , E l i zabeth 983
A l l e n , Janes F 221
Anderson, John R 97, 163
Arens, Y iga l 52
Asada, Haruhiko 773
A t t a r d i , Giuseppe • • 304
A u s t i n , Howard 846

Baker, Har lyn 631
B a l l a r d , Dana H 607, 1068
Bane, Bob 933
B a n e r j i , Ranan 127
Barnet t , Je f f rey A 866
Barstov, David R 927
B a r t e l s , U l r i c h 1037
Bar th , Paul 975
Bechte l , Robert J 1053
Bennett , James S. 843
B e r l i n e r , Hans J 561
Berry , Michael 1054
Bienkowski, M.A 362
B i n f o r d , Thomas 0 613, 631 , 752
Birnbaum, Lawrence 58
B ischo f f , Miriam B 876
Black, John B 184
B las ius , K 511
Bobrow, Daniel G 913
Boguraev, B.K 443
Boissonnat, J.D 658, 796
Bo l l es , Robert C 637
Bond, Alan 159
Borgida, Alexander 254
Borning, Alan 466
Bouchard, Susan A 1065
Brachman, Ronald J 452
Bradshaw, Gary L 121
Brooks, Rodney A 619
Brown, Cynthia A 588
Brown, Richard H 998
Buchs ta l l e r , Walter 850
Bundy, Alan 466, 551

* * * ind ica tes tha t the paper was not received in
t ime fo r p u b l i c a t i o n

Volume Two begins on page 395

Canmarata, Stephanie 171
Campbell, A. Bruce 876
Carbone l l , Jaime G 147, 432
Carlbom, I n g r i d 846
Cavthorn, R.C 109
Chandrasekaran, B 1055
Charniak, Eugene 1079
Clancey, Wi l l i am J 829
Cohen, P h i l i p R 31
Coleman, E. North Jr 652
C o l l i n s , Carter 704
Colmerauer, A 947, 1056
Coulon, Daniel 64
Cr iacuo lo , Giovanni 270
Croucher, Monica . 197
C u l l i n g f o r d , Richard E 362

Dahl , Har t v ig 394
Davis, Mar t in 330
Davis, Randall 846
de B ru in , Jos • • 519
d e Champeaux, Dennis 519
DeJong, Gerald 6 7
Deer ing, Michael F 704, 930
Dehn, Na ta l ie 16
Descotte, Yannick 766
D i g r i c o l i , Vincent J 539
Dixon, John K 1065
Dreschler , L 692
Dyer, Michael G 37, 234, 1057

Eisenstadt , Marc 964
E is inger , Norbert 480, 511
Erman, Lee 409

Fahlman, Scott E 257
F a l e t t i , Joseph 930
Faugeras, 0.D 656
F ickas, Stephen 409
F i r sche in , 0 740
F i sch le r , Mar t in A. . . 319, 637, 740
Flowers, Margot • 58
Forbus, Kenneth D 326
Fox, Mark S 313, 1058
Frawley, Bud 846
F r e i t a s , Robert A . J r 803
F r i ed land , Peter E . 856
Friedman, Leonard 467
Fu, King-Sun 837
Funt, Br ian V 216
Fu rugo r i , T e i j i • • • • 426
Furukawa, Ko i ch i 1010

Index-1

AUTHOR INDEX (cont inued)

Galen, Robert 8 853
Garvey, Thomas D 319
Gennery, Donald B • . • 667
Georgeff , H 563
Germain. F . 796
Gershmen, Anatole 423
Ghal lab, Mal ik 310
Gibbon*, Je f f 978
G i l r e a t h , Al 846
Glaser, Frank 644
Goers. G 429
Go ld in , Sarah E 212
Go lds te in , I r a 913
Goossens, D 992
Granger, Richard H. Jr 354
Greenfe ld , Morton R 978

Haas, Andrew 382
Hagert . Goran 178
Hanson, A l l e n R 648
H a r t l e y , Roger T 862
Havens, W i l l i am S 625
Hayes, P h i l i p J 416, 432
Healy. Timothy J 803
Henschen, Lawrence J. • . . 472, 528
Hero ld , A 511
H in ton , Geoffrey E 683, 1088
Hirschman, Lynet te 289
Hobbs, Je r ry 85, 190
Hol lander , C l i f f o r d R 843
Horn, Werner 850

I i j i m a , J u n ' i c h i 779
I k e u c h i , Katsushi 595
I sh izuka , Mi tsuru . . 837
I s r a e l , David J 203, 452

Jacobs, Char lo t te D 876
Jacobs, Howard 343
J a i n , Ramesh 652
Johnson, Paul E 215
Jones, K. Sparck • 443
J o s h i , Aravind K 6 1 , 385
Jouannaud, J.P 1016

Kahn, Kenneth M 933
Ka ihara , S 910
Kanade, Takeo 674, 775
Kanal , Laveen • 569
Kanayama, Yutaka • 779
Kanoui , H 947, 1056
Kastner , John K 908
Katz , Shmuel 1030
Kayaer, Danie l . • • 64
K e l l y , Van 343

Kennedy, Wi l l i am G 1065
K i b l e r , Dennis 345
K ing , M 43
K i rchner , C 1016
K i rchner , H 1016
K lah r , P h i l i p 212
K l i n e , Paul J 296
Kodra to f f , Yves 141
Kolbe, Werner 153
Kolodner, Janet 227
Konol ige, Kurt 496
Ko r f , Richard 1007
Ko rn fe l d , Wi l l iam 575
K o r s i n , Mar t in 1057
Koyama, T 910
Krueger, M.W 362
Ku l i kowsk i , Casimir A 853
Kumar, V ip in • 569
Kurokawa, T 910

Lang l e y , Pat 121
Lanka, Sitaram 61
Latombe, Jean-Claude 766
Laubsch, Joachim 964
Lawton, Daryl T 700
Lebowitz, Michael . . . 13, 348, 1059
Lehner t , Wendy G 184
Lescanne, P ie r re 548
Lesmo, L 440
Le ts inger , Reed 829
Levesque, Hector J 240
Lev in , D.Ya * * *
Lieberman, Henry 1060
L o i s e l , Regine 141
London, P h i l i p 409
Long, James E 803
Lowe, David 613
Lowrance, John D 319
Lucas, Bruce D 674

MacVicar-Whelan, P.J 752
Mackworth, Alan K 625
Maenobu, K iyosh i 746
Magnani, D 440
Marburger, Heinz 49
Mar ik , V lad imi r 773
Mark, W i l l i am 375
Markuss, Zsussanna 264
M a r t i n , Wi l l i am A. 940
Mays, Er ic 61
M c A l l e t t e r , David A 1024
McArthur, David 171, 809
McCarty, L. Thorne 246
McDermott, John 824
McDonald, David B 1061
McDonald, David D 1062
McGuire, Rod 58
McKay, Donald 368
Mero, Laszlo 572

lndex-2

AUTHOR INDEX (c o n t i n u e d)

I n d e x - 3

AUTHOR INDEX (cont inued)

lndex-4

