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ABSTRACT 

The only technique available for solving many 
important problems is searching. Since searching 
can b e ex t reme ly c o s t l y , i t i s i m p o r t a n t t o 
i d e n t i f y features tha t improve the e f f i c i ency of 
aearch a lgor i thms. We compute the e f f i c i e n c y of 
simple backtrack ing, of an a lgor i thm s i m i l a r to 
backtracking except tha t i t not ices when the 
predicate is empty instead o f no t i c i ng when i t i s 
unsatlsf iable (the empty predicate method), of the 
combination of simple backtracking wi th the empty 
predicate method, and of search rearrangement 
backtracking (the u n i t clause r u l e combined w i t h 
backtracking). The analysis is done over two sets 
of random problems. We also consider the algorithm 
based on the pure l i t e r a l ru le that was analyzed by 
Goldberg and the resu l t s he obtained. A l l these 
a lgor i thms are s i m p l i f i c a t i o n s of the complete 
Putham-David procedure, which has not been analyzed 
as yet (although most of i t s components have been 
analyzed). The performances of the algorithms are 
compared and features tha t lead to e f f i c i e n t 
algorithms are ident i f ied. 

1. Introduction 

Some problems can be ao lved by d i r e c t 
calculation in an e f f i c i e n t , s t ra igh t fo rward way, 
but for many important classes of problems the best 
known method is a control led search for solutions. 
Such searches, unfortunately, can consume extremely 
(exponentially) large amounts of time. Efforts to 
study and improve search methods are therefore of 
considerable pract ical importance. 

* This research was supported in par t by the 
Nat ional Science Foundation under Grant no. MCS 
7906110. 

By c a r e f u l l y analyzing a p a r t i c u l a r set of 
problems it may be possible to f i n d problem-
spec i f i c in fo rmat ion tha t can be used to con t ro l 
the search. This can be an excellent approach; in 
some cases it has led to a lgor i thms that avoid 
searching a l together . Often, however, a f t e r a l l 
p r o b l e m - s p e c i f i c i n f o r m a t i o n has been used, 
excessive search time is s t i l l requi red. Another 
approach is to study general search algorithms and 
ident i fy features that lead to an e f f i c ien t search. 
The two approaches are complementary; the best 
a lgor i thm fo r a p a r t i c u l a r problem is o f t e n 
obtained by combining problem-specific techniques 
with the best general search methods. 

Here we repor t the i n i t i a l r esu l t s of a 
systematic study of the average time performance of 
search methods. A l l methods have about the same 
worst case t ime (exponent ia l ly la rge) . Also, 
techniques that lead to an improvement in average 
performance often resul t in a minor degradation of 
worst-case behavior, so a study of worst-case 
behavior can be misleading. The average t ime 
performance of these algorithms can be much better 
than the worst-case performance. Some of the 
methods we study lead to an exponential improvement 
in average search time. 

The search methods we analyzed include simple 
backtrack ing, search rearrangement backtracking 
[1,15], an algorithm s imi lar to backtracking except 
that it notices when the predicate is true instead 
of no t i c i ng when i t is unsa t l s f i ab le (the empty 
predicate method), and the empty predicate method 
combined w i t h simple backtracking. Our analys is 
shows tha t the empty predicate ru le does not 
con t r ibu te much to the performance of search 
a l g o r i t h m s , and t h a t search rearrangement 
backtracking can be much more e f f i c i e n t than 
ordinary backtracking when the t y p i c a l problem 
contains a large number of clauses w i t h few 
l i t e r a l s per clause. 

Goldberg [8] analyzed a version of the Putnam-
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Davis procedure that essentially re l ies on the pure 
l i t e r a l ru le . The analysis shows tha t the pure 
l i t e r a l ru le can save a huge amount of t ime on 
problems that have a large number of l i t e r a l s per 
clause, but i t a lso suggests that the ru le is 
unimportant when the typical clause does not have 
many l i t e r a l s . 

We hope to analyze the f u l l Putnam-Davis 
p r o c e d u r e [ 4 ] . The p o i n t s t h a t remain to be 
analyzed are the effect of stopping the search when 
the f i r s t so lu t ion is found and the e f f ec t of the 
pure l i t e r a l rule when the typical clause has only 
a few l i t e r a l s . The e f f ec t of combining various 
techniques also needs to be analyzed. 

Any problem in the class NP can be expressed 
as a p r e d i c a t e in the form of Eq .O) . Many 
examples of such problems are given in [ 6 ] . We 
i l l u s t r a t e the encoding of problems in t h i s form 
with the game of generalized instant insanity [16]. 
The game is played with n cubes. Each face of each 
cube is painted with some color. The object of the 
game is to form a stack of n cubes w i t h each cube 
oriented so that each face of the stack consists of 
cube faces tha t have d i s t i n c t co lors . Each cube 
has twenty- four possible orientations. Since the 
order of the cubes in the stack is i rrelevant, the 
problem is equivalent to the predicate 

(2) 

where ok is the o r i en ta t i on of cube k and 
R i j ( o i f O j ) is t rue i f and only i f , when cube i 
has orientat ion o± and cube j has orientation 
o j , the pa i r of cubes forms a lega l stack of 
height two ( a l l faces of the stack are made up of 
d is t inc t co lo rs ) . 

The most obvious method of searching f o r 
solutions to a predicate in th is form is to t r y a l l 
combinations of values of the variables. This sort 
o f exhaustive searoh is p r o h i b i t i v e l y slow fo r 
large problems. Fortunately, the special form of 
Eq, 1 permits three types of improvements. F i r s t , 
since each re la t ion is defined over a small subset 
of the va r iab les , a r e l a t i o n may become fa lse as 
soon as a l l of i t s var iab les have been assigned 
values. In t h i s case no extension of the current 
par t ia l assignment of values to variables can be a 
s o l u t i o n . Such e x t e n s i o n s need n o t be 
i n v e s t i g a t e d . T h i s i s t h e i d e a b e h i n d 
backtracking, 

A second improvement consists of looking for 
var iab les tha t should be assigned values ear ly in 
the search. I t i s p a r t i c u l a r l y he lp fu l to f i n d a 
var iab le a l l of whose values make a clause fa lse 
(under the current p a r t i a l assignment), or which 
has only one value which does not make a clause 
f a l s e . Th i s i s the bas ic idea o f search 
rearrangement backtracking [1,15], and of the uni t 
clause rule in the Putnam-Davis procedure [4 ] , 

A t h i r d approach Involves looking f o r the 
values of a var iab le tha t are most l i k e l y to lead 
to a solution. In some cases there is a value that 
makes a l l r e l a t i ons which depend on the var iab le 
t rue . In tha t case only tha t one value of the 
variable requires consideration. This is the basis 
of the pure l i t e r a l ru le in the Putnam-Davis 
procedure. 

These ideas have been used extensively to 
improve the average runn ing t ime of search 
a lgor i thms. We are studying algor i thms tha t use 
various combinations of the ideas. To speci fy 
these a lgor i thms we f i r s t g ive a common general 
procedure and then p resen t the d e t a i l s t h a t 
d i s t i ngu i sh the various methods. The procedure 
uses a stack to keep track of which variables have 
been set . 

Generalized Search Procedure 

1. [ I n i t i a l i z e , ] Set each va r iab le to undefined. 
Set Stack to empty, 

2 . [ S e l e c t v a r i a b l e , ] S e l e c t as the cur rent 
variable a variable that needs to be tested. If 
there is no such va r i ab l e , go to Step 5* Push 
the cur rent va r iab le onto Stack and mark a l l 
of i t s values as untested. 
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3. [Select value.] For the current variable select 
an untested value tha t requi res t e s t i n g . I f 
there is no such value, go to Step 6. Otherwise 
set the va r iab le to tha t value and mark the 
value as tested. 

4 . [Test . ] I f some clause of the predicate is 
f a l se under the present p a r t i a l assignment of 
values to va r iab les , go to Step 3 I f a l l 
solutions are desired, go to Step 2. 

5. [Solution.] The current assignment of values to 
v a r i a b l e s Is a s o l u t i o n (any rema in ing 
unasslgned var iab les may take on any of t h e i r 
values). I f only one so lu t i on i s des i red, 
stop. I f a l l so lu t ions are des i red, go to step 
3. 

6 . [Back up. ] Set the c u r r e n t v a r i a b l e to 
unde f i ned . Pop Stack . The new c u r r e n t 
variable is at the top of Stack. I f Stack is 
empty, stop. Otherwise go to Step 3. 

Many search algorithms simpl i fy the predicate 
as they search. For example, in the Putnam-Davis 
procedure clauses tha t become t rue are dropped. 
The dropped clauses are restored when the algorithm 
backs up. 

The a lgor i thms tha t we have analyzed search 
f o r a l l so lu t i ons ; they never stop at Step 5. In 
the future, unless otherwise stated, we w i l l assume 
tha t Step 5 always goes to Step 3. For these 
algorithms the order in which values are tested at 
Step 3 is immate r ia l , since a l l values must 
eventually be tested. 

Simple backtracking Is obtained from the 
general ized search procedure by se lec t ing the 
variables in a f ixed order at Step 2 and the values 
in a f i xed order at Step 3* Every var iab le and 
every value tha t is considered at Step 3 requi res 
test ing. In search rearrangement backtracking [1] 
a simple test is used to select a variable at Step 
2. Each value of each var iab le is tested (using 
the same t e s t used in Step 4) , and the var iab le 
f o r which the fewest values pass the t e s t is 
selected. More sophisticated search rearrangement 
algorithms [15] test combinations of values. 

In the Putnam-Davis procedure var iab les are 
selected by examining the predicate d i rec t ly rather 
than by t e s t i n g the values of var iab les . This 
method o f se lec t ion is more power fu l , but i t i s 
a lso more d i f f i c u l t to program and requi res more 

knowledge of the internal structure of the clauses. 

The o r i g i n a l Putnam-Davis procedure was 
designed for predicates in conjunctive normal form. 
To describe a more general procedure we f i r s t give 
some (nonstandard) def in i t ions. A re lat ion R is 
a u n i t c lause i f , under the c u r r e n t p a r t i a l 
assignment of values to var iab les , there is an 
unset variable v such that R is false for every 
value but one of v. We c a l l v the associated 
var iab le of the u n i t clause. A var iab le v is 
re levant i f there is a r e l a t i o n R whose value 
under the current par t ia l assignment depends on v. 
A variable v is associated with a BUS literal If 
under the current par t ia l assignment there is some 
value x of v such tha t when v is assigned 
value x every R tha t depends on v is t rue . 
The value x is called a safe IftlUft* 

The generalized Putnam-Davis procedure is our 
general search procedure w i t h the f o l l o w i n g 
mod i f i ca t ions . In Step 2, i f poss ib le , se lec t a 
variable associated wi th a uni t clause. Otherwise, 
i f poss ib le , se lect a var iab le associated w i t h a 
pure l i t e r a l . Only one safe value is tes ted. I f 
t he re are no v a r i a b l e s assoc ia ted w i t h pure 
l i t e r a l s or uni t clauses, then select any relevant 
va r iab le . I f there are no re levant va r iab les , go 
to Step 5. The Putnam-Davis procedure stops when 
the f i r s t solution is found. 

We also considered the empty predicate method, 
an a lgor i thm tha t may be viewed as an extremely 
s i m p l i f i e d version of the Putnam-Davis procedure. 
In th is algorithm variables are selected in f ixed 
order at Step 2, as long as some var iab le is 
relevant (the selected variable is not necessarily 
relevant). A l l values are tested at Step 3, and no 
tes ts are done at Step 1 ( i . e . the tes t gives the 
r e s u l t t rue) unless a l l re levant var iab les have 
been assigned values. The procedure searches f o r 
a l l solutions. The procedure is l i ke backtracking 
except tha t it backs up when a l l the RA are t rue 
instead of when one of them is false. It works by 
no t i c i ng when the predicate can be s i m p l i f i e d to 
the point where it is empty. 

3* Random Prpfrlfifflff 

To do an average time analysis it is necessary 
to se lec t a set of representat ive problems and a 
p r o b a b i l i t y d i s t r i b u t i o n over the s e t . For 
backtracking i t is not obvious what a " t y p i c a l " 
problem is . In th is paper we consider two types of 
random problem s e t s . Both are Ins tances of 
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conjunctive normal form predicates. For each type 
of problem set we give a method of forming a random 
clause; a random predicate is then the conjunction 
of t random clauses selected independently 
(thus, a random predicate may happen to contain two 
copies of the same clause). 

In the f i r s t method of construct ing random 
clauses each clause has s l i t e r a l s for some fixed 
s. The s l i t e r a l s are independently selected 
from the 2v possible l i t e ra l s . This method was 
used in our e a r l i e r analyses of backtracking 
algorithms [2 ,13] . 

In the second method each l i t e r a l has 
p robab l i t y p of being in the clause for some 
f i xed p. This method was used by Goldberg [ 8 ] . 
The two models are roughly equivalent when the 
parameters are set so that p z &/2v. 

We fo l l ow the o r i g i n a l papers in computing 
"running time" in the two models. In our model we 
assume tha t the "running t ime" is equal to the 
number of binary nodes in the search t ree. The 
actual running t ime increases more rap id ly (by a 

factor of approximately v [3]) but th is error is 
unimportant compared to the exponential differences 
in the average running times of the various search 
algorithms. 

In Goldberg's model we assume that the time to 
process a node is equal to avt , where a is a 
constant, v is the number of unset variables, and 
t is the number of terms tha t are s t i l l being 
considered. Both unary and binary nodes are 
counted. 

4. Results 

Table 1 summarizes the exact resu l t s for the 
average " r u n n i n g t i m e " o f va r i ous search 
a lgor i thms. Most of the exact resu l t s are not in 
closed form, so it is d i f f i c u l t to understand their 
s ign i f i cance . An asymptotic analysis makes these 
r e s u l t s eas ie r to i n t e r p r e t . To o b t a i n an 
i n t e r e s t i n g a s y m p t o t i c a n a l y s i s , c a r e f u l 
considerat ion must be given to how s, p, and t 
should vary as v increases. We bel ieve tha t 

Table 1. Exact formulae f o r tha number of so lu t ions a&d f o r tha " running 
t i n e " of var ious s tarch ing algor i thms f o r two sodala of random problems. 
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keeping s f i xed (or l e t t i n g p= a/v f o r f i xed 
a) and l e t t i n g t = by fo r f i xed b gives 
r esu l t s s i m i l a r to those f o r many i n t e r e s t i n g 
r e a l i s t i c problems. This keeps the i nd i v i dua l 
terms smal l wh i le l e t t i n g the number of terms 
increase wi th v. We also consider t s v for 
f i xed a>1. (For example, general ized ins tan t 
insan i ty can be coded w i t h s s 10 ( f i v e l o g i c a l 
variables for each o^ in the or ig ina l problem) and 
t s (v /5) 2 . ) The f i r s t choice fo r t produces 
problems where the number of constraints increases 
propor t ionate ly to the number of var iab les . The 
second choice produces problems where the number of 
constraints increases more rapidly. 

Table 2 gives the approximate value of the 
logar i thm of the average "running t ime" fo r each 
algorithm. The two models generate problems wi th 
the same number of so lu t ions when a = ( In 2) s. 
Usually the form of the answers is the same for the 

two models, but Goldberg's model generates problems 
that are much easier to solve by backtracking when 
t s v ( fo r The resu l t s show tha t the 
empty predicate method is not helpful when p -> 
0. A l i t t l e thought suggests tha t t h i s method is 
less he lp fu l than stopping the search when the 
f i r s t so lu t ion is found, because both approaches 
need a solution before they can save any time. 

Comparing the results for simple backtracking 
w i t h those fo r search rearrangement on our model 
wi th t s v° shows that search rearrangement saves 
about as much t ime as reducing the s ize of the 
c lauses by one l i t e r a l . Th is e x p o n e n t i a l 
improvement indicates that search rearrangement can 
be much more e f f e c t i v e than simple backtracking. 
Further analysis is needed to determine how search 
rearrangement behaves for t = bv. 
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The following table shows the results of 
set t ing s = 3,a = 3 In 2 : 2.08, and b= 

( In 2) ( In (1 -2 - 8 ) ) - 1 z 5.19 in the formulas 
from Table 2. These values for the parameters lead 
to an interest ing set of d i f f i c u l t problems where 
the t y p i c a l problem has about one s o l u t i o n 
regardless of the size of the problem, as is often 
the case f o r r e a l i s t i c d i f f i c u l t problems. The 
va lues i n the t a b l e demonstrate c l e a r l y the 
exponential improvement that can resul t from using 
simple backtracking. 

5. Goldberg*a results 

In [ 8 ] Goldberg reported an average t ime 
analys is of an a lgor i thm based on using the pure 
l i t e r a l r u l e to s i m p l i f y the predicate. When no 
pure l i t e r a l is available it chooses a variable and 
creates two s i m p l i f i e d predicates, one fo r each 
value of the va r iab le . It uses the same stopping 
ru le as the empty predicate method. The analysis 
is over the Goldberg model as described above, but 
with p constant. We are preparing a j o in t paper 
w i t h Goldberg in which some minor errors in the 
d e r i v a t i o n presented i n [ 8 ] are c o r r e c t e d . 
(Reference [14] is becoming a draf t of th is paper.) 
These analyses show that Goldberg's procedure takes 
polynomial average time on his model. When p is 
f i x e d , the s ize of the clauses increases w i th the 
number of variables, and the number of solutions to 
a t y p i c a l predicate also increases. The analysis 
does not apply to models w i t h var iab le p, but i t 
suggests that , for the case in which p approaches 
zero as v becomes la rge , the performance of 
Goldberg's a lgor i thm is not dramat ica l ly bet ter 
than that of the empty predicate method. 

6. conclusions 

The Putnam-Davis procedure is the source of 
many good ideas fo r improving the e f f i c i ency of 
search a l g o r i t h m s . It may be viewed as a 
combination of 1) backtracking, 2) un i t clause 

se lec t ion (one l e v e l aearoh rearrangement), 3) 
empty p r e d i c a t e d e t e c t i o n , 4 ) pure l i t e r a l 
se lec t i on , and 5) stopping at the f i r s t so lu t ion . 
The methods of [2 ,131 and of t h i s paper are 
adequate to analyze an a lgor i thm w i t h the f i r s t 
three features. To analyze the f i r s t four is more 
d i f f i c u l t . Goldberg [8 ] analyzed the effect of the 
pure l i t e r a l ru le in an algorithm where it does not 
af fect the order of selection of the variables. I t 
is qu i te l i k e l y tha t h i s methods can be combined 
w i t h those of [2,13,14] to analyze an a lgor i thm 
that uses a l l of the f i r s t four features. No work 
has yet been done on the e f f ec t of stopping at the 
f i r s t so lu t ion. 

The analyses of random problems show that 
backtracking is ef fect ive on problems that contain 
a large number of clauses w i t h few l i t e r a l s per 
c lause . When b a c k t r a c k i n g i s e f f e c t i v e , 
backtracking combined wi th the un i t clause rule is 
even more ef fect ive, but when backtracking is not 
effect ive adding the uni t clause rule does not help 
much. The pure l i t e r a l r u l e works w e l l when each 
clause contains a large number of l i t e r a l s . Since 
such predicates usual ly have a large number of 
so lu t ions , stopping a t the f i r s t so lu t ion i s also 
e f f e c t i v e in t h i s case [ 5 ] . None of the analyzed 
methods is very e f f e c t i v e fo r problems w i t h a 
moderate number of l i t e r a l s per term and wi th the 
number of terms equal to several times the number 
of var iables. 

The most straightforward direct ion for future 
work is completion of the analysis of search 
rearrangement backtracking. The blank entries in 
Table 3 for level one backtracking can be f i l l e d in 
by completing calculations s imi lar to those which 
l e d t o the f i r s t e n t r y . The m u l t i - l e v e l 
backtracking a lgor i thms appear to be even more 
e f f i c i e n t f o r large problems [ 3 ] , but analyzing 
their performance is d i f f i c u l t . 

Backtracking algorithms are easy to use: once 
the general search a lgor i thm has been coded the 
user need only provide the routine to test pa r t i a l 
so lu t ions . Adding features of the Putnam-Davis 
procedure tha t manipulate the predicate requi res 
more programming e f f o r t , bu t the r e s u l t i n g 
algorithm may also be much more powerful. Analyses 
are needed to determine whether th is is the case. 

There may be algorithms that are both simpler 
to analyze and more powerful than the Putnam-Davis 
procedure. One weakness of the Putnam-Davis 
procedure is tha t i t does not have any guidance 
concerning which variable to select in eases where 
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the pure l i t e r a l r u l e ami the u n i t clause r u l e oo 
not app ly . A good techn ique is to s e l e c t a 
va r iab le from the shor tes t remaing clauae. A 
recent analysis by Monien et al [12] shotted that a 
problem wi th three l i t e r a l s per term can always be 
salved in time 1.62v using an improvement on the 
Putnam-Davis algorithm that selects variables from 
the shor test clause. Some improvement is a lso 
obtained for problems wi th more than three l i t e r a l s 
per term. Other i n t e r e s t i n g techniques fo r 
m o d i f y i n g b a c k t r a c k i n g have been proposed 
[7,9,10,11]. 

Another area where progress is possible is in 
the use of ru les to manipulate the pred icate . 
Subsumption can be combined wi th the Putnam-Davis 
procedure. Subs t i t u t i on of equal quan t i t i es can 
also be used. 

Many of the techniques used in th is paper were 
developed in e a r l i e r work [2 ,8 ,13 ] . Each of the 
o r i g i n a l papers analyses one a lgor i thm on one 
model. Here we apply the techniques to a va r ie ty 
of algorithms and models to determine how important 
var ious features are to e f f i c i e n t searching. A 
large number of ideas have been suggested fo r 
improving the e f f i c i ency o f searching. I f they 
were a l l combined the r e s u l t would be a la rge , 
complex program, conta in ing many par ts tha t made 
l i t t l e o r n o c o n t r i b u t i o n t o i t s e f f i c i e n c y . 
Analysis of average running t ime is a powerful 
technique fo r determining the value of proposed 
improvements. 
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