
MANIPULATING DESCRIPTIONS O F P R O G R A M S F O R DATABASE A C C E S S

Dept. of

Univers i ty of

ABSTRACT

A method is described for manipulat ing
descr ip t ions of programs to access Codasyl
Databases to meet a spec i f i ca t ion given in
r e l a t i o n a l a lgebra. The method has been
implemented as a Prolog program which is compared
with the previous Pascal vers ion . The methodology
is discussed as an Automatic Programming technique
which explores the transformations on a program
induced by changes of data s t ructure
representat ion at two l eve l s .

I_ INTRODUCTION

The problem of generating equivalent programs
under changes of data representat ion is an
important one. In the case of l i s t processing, a
change of data st ructure represent ing sets of
objects and thei r re la t ionsh ips can completely
change the program. The same applies to Codasyl
databases which are essent ia l l y enormous l i s t
s t ructures on secondary storage. However because
of the var ie ty of redundant pointers it is
possible to traverse the same l i s t s t r u c t u r e in
many d i f f e r e n t ways. Thus it is not just a
question of changing the program but of generating
a l te rna t i ve programs whose run- t imes, because of
disc access, may d i f f e r by factors of 10 or more.

This paper concerns the manipulation of
abstract descr ip t ions of such programs. A query is
formulated in a funct iona l language (r e l a t i o n a l
algebra) which speci f ies the log ica l re la t ionsh ips
between the re t r ieved data values and the stored
data items but does not specify the sequence used
to access them (the access path). The aim is to
generate a program that produces the desired items
e f f i c i e n t l y by explor ing a var ie ty of a l t e rna t i ve
program s t ruc tu res , which are the consequence of
fo l low ing d i f f e r e n t access paths.

A method of doing th is has been developed
(Bel l 1980) and embodied in a system (ASTRID)
(Gray 1982) for typing in queries in r e l a t i o n a l
algebra and generating and running programs on
Codasyl databases (IDS- I I and IDMS). From the
user 's point of view the benef i ts are two fo ld .

1. It gives the user a r e l a t i o n a l view of
the Codasyl database. Thus he is able to think
about his r e t r i e v a l problem in terms of table
manipulations using the high leve l operations of

y and D.S.Moffat

Computing Science,

Aberdeen, Scot land, U.K..

r e l a t i ona l algebra instead of having to work at
the low level of record access operat ions
fo l lowing pointers through the database and
embedding these operations in Fortran Code.

2. He can wr i te complicated m u l t i - l i n e
queries that compute derived data both from
records and groups of records (averages, counts
e tc .) and appear to generate several intermediate
tab les . The system w i l l endeavour to f ind an
access path that computes the same r e s u l t without
s tor ing these tab les , which could be very cost ly
f o r l a r g e databases. The program generated may be
quite complicated to wr i te by hand and should be
competit ive with a t ra ined programmer's code.

The system goes through several stages.
F i r s t the user types a query in r e l a t i o n a l algebra
which i s parsed and c h e c k e d . Then i t i s
manipulated at two l eve l s . At the top level the
query is rewr i t ten s t i l l in algebraic form using
rewr i te rules so as to assist t ransformations at
the next l e v e l . The lower level uses a concrete
representat ion of the Codasyl data s t ructure by a
t raversa l (see below). The system reads in a
number of stored t raversa ls for each r e l a t i o n .
These have each to be manipulated and combined in
various ways to sa t i s fy the requirements of the
query. S o m e combinations w i l l represent very
slow and i n e f f i c i e n t programs and be discarded.
However th is cannot be done immediately, as a good
program f o r p a r t of the query may l a t e r t u r n out
to be second best af ter modi f ica t ion to f i t the
remainder. F ina l ly the descr ip t ions are costed
according to informat ion on database access times
and the selected version is used to generate
Fortran code to run against the actual database.
The system is or iented towards complex queries
accessing thousands of records which can only run
in batch producing subs tan t ia l p r i n t o u t . Thus it
is not the run-t ime for the t rans la to r which
matters but the complexity of query which it can
handle. Currently other systems only handle a
very res t r i c ted r e l a t i o n a l view or a rather
r es t r i c t ed query language.

The ASTRID system was o r i g i n a l l y wr i t ten in
Pascal. More recent ly the two levels of
manipulation have been rewr i t ten in Pro log. This
paper describes the basic methodology and shows
how Prolog is wel l adapted to th is task.

The layout of the paper is as fo l l ows .
Section { I I } describes some transformations which
af fect the resu l tant program but are best carr ied

P.M.D.Gray

22 P. Gray and D. Moffat

out on the re la t i ona l algebra in Pro log. Section
{ I I I } describes the basic not ion of a t raversa l
and how it is used to represent a piece of
program. Section {IV} describes the combination
of t raversals and how t h i s is used to b u i l d
descr ipt ions of more complex programs. Section
{V} i l l u s t r a t e s some of the Prolog used to combine
t raversa ls and discusses i t s advantages and snags
in th is app l i ca t i on . The f i n a l sect ion draws
conclusions for future work.

A. Relat ion to Other Work

Bu rs ta l l and Dar l ington (1977) describe a
system for speci fy ing a program by recursion
equat ions. These can be manipulated and play a
ro le s imi lar to r e l a t i o n a l algebraic expressions
in our system. They discuss a way to rewr i te the
abstract program given a concrete data
representat ion in terms of a "coding f u n c t i o n " .
However our use of a t raversa l represents the data
in a rather d i f fe ren t way. Apart from Tarnlund
(1978) few have addressed the problem of e f f i c i e n t
access to re la t ions using informat ion about the
mode of storage. Tarnlund has studied ways to
answer queries e f f i c i e n t l y by represent ing them as
theorems to be derived in the f i r s t order calculus
and looking for e f f i c i e n t der ivat ions where
re la t ions are held as a binary tree s t r u c t u r e .

I I_ RELATIONAL A L G E B R A TRANSFORMATIONS

The user asks his query in r e l a t i o n a l a lgebra.
We f i r s t describe t h i s and then see how the system
improves the query by rewr i t i ng i t .

A. Relat ional Databases

A r e l a t i o n is a set of tuples each contain ing
values for a f ixed set of a t t r i b u t e s . Viewed as a
table the a t t r i b u t e values are in columns. A
r e l a t i o n a l database usual ly contains several
re la t ions which have a t t r i bu tes in common. The
examples used come from a database on World Cup
f o o t b a l l r e s u l t s . The two re la t ions of in teres t
are shown in Table 1.

Table 1. R e l a t i o n a l View of World Cup Database

B. Relat ional Algebra

Relations can be treated as tables and new
re la t ions derived from them by the operations of
r e l a t i o n a l a lgebra. The operations used are
adapted from Codd. They are s e l e c t i o n ,
p r o j e c t i o n , j o i n , extend and group_by (Gray 1981).
The jo in operation is a generalised i n t e r s e c t i o n ,
formed from the cartesian product of two re la t ions
by se lect ing those tuples with matching values for
the common a t t r i b u t e s . A t y p i c a l query s ta r ts by
jo in ing several r e l a t i o n s , then selects tup les ,
then extends and or groups these tuples and
f i n a l l y projects to required columns.

The re l a t i ona l algebra can be r e w r i t t e n , just
l i k e standard a lgebra, by using rewr i te rules in
PROLOG. We have 17 such rules with special
predicates for handling commutation. A t y p i c a l
t ransformation would move a p r o j e c t i o n
operation(%) in an expression invo lv ing j o i n (*)
and se lec t i on (;) to ease the jo in method.

(STADIUM_ALLOCATION ; [stadium = "Cordoba''] %year,
group)*(GROUP_PLACINGS ; [p lac ing=1] *year,group)

becomes
(STADIUM_ALLOCATION ;[stadium="Cordoba"] *
GROUP_PLACINGS ; [p lacing = 1]) %year,group

I I I TRAVERSALS of CODASYL DATABASE STRUCTURES

Although the user thinks of re la t ions just as
tab les , they are actual ly complicated doubly-
l inked l i s t s t r uc tu res . At the second leve l of
t ransformat ion we need to represent possible paths
through these s t ructures by t raversals in order to
search for an e f f i c i e n t one. Thus we f i r s t
explain the Codasyl "set " re la t ionsh ip used to
l i n k d i f f e r e n t records. We then see how a
number of a l t e rna t i ve "base t rave rsa l s " can be
defined for each re l a t i on and held on f i l e .

A Codasyl database consists of sets of records
of the same type which are l inked by pointers to
other records in the set and to a common owner
record which uniquely i d e n t i f i e s an instance of a
given set type. Figure 1 shows the l inkages
between records in the World Cup database.

A. Traversals

We can now define a t raversa l of a r e l a t i o n
more p rec ise ly . It is a descr ip t ion of a piece of
code which rea l ises the tuples of the r e l a t i o n one

P. Gray and D. Moffat 23

at a time by accessing the records in some
sequence fo l lowing the set pointers and modifying
the values as necessary. Thus it is a generator
for a r e l a t i o n . Corresponding to each re la t i on
stored in the database (e . g . GROUP_PLACINGS) we
hold on f i l e one or more base t r ave rsa l s . Each
one is essent ia l l y a descr ip t ion of a piece of
code with a number of nested loops.

We have a notat ion for t raversa ls as fo l l ows .
In te rna l l y it is represented by a Prolog l i s t
s t r u c t u r e . There are three obvious base t raversa ls
of STADIUM-ALLOCATION and two for GROUP_PLACINGS.
Each {SA} t r a v e r s a l v i s i t s the same number of G A M E
records, generat ing one tuple for each.

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) {SA1}
V(VENUE) -> D(GAME) -> U(GROUP) -> U(YEAR) {SA2}
B(GROUP) -> U(YEAR) -> D(GAME) -> U(VENUE) {SA3)
S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) {GP1}
B(GROUP) -> U(YEAR) -> D(LINK) -> U(TEAM) {GP2}

Here S means a singular set a ccess to visi t -
a l l records of a given type (there is only one set
owning a l l year records) , D mean go down to v i s i t
a l l member records belonging to the given owner
using the appropriate set type (i f th is i s
ambiguous it is speci f ied) and U means go up to
v i s i t the owner of a given record, V means d i rect
access to the record containing a value (usual ly
given by se l ec t i on) . B means vi it every record
of that type in the database, In an A l g o l - l i k e
syntax we can represent the corres ponding code for
SA1 as : -

for each Y E A R record do
for each G R O U P record owned by Y E A R do

for each G A M E record owned by G R O U P do
for the VENUE owner of G A M E do

p r i n t YEAR.year, GROUP.group, GAME.game,
VENUE.stadium, GAME.date.

Thus each arrow in a t raversa l represents an
inner level of nested code. Note that the record
g e n e r a t i o n s such as D(GAME) in SA3 must f o l l o w
those such as B(GROUP), which generates the owner
f o r G A M E , but they need not be c o n s e c u t i v e .

IV COMBINATION & MODIFICATION of T R A V E R S A L S

Corresponding to every algebraic operation on
a given r e l a t i o n there is a mod i f i ca t ion to I t s
t raversa l which produces a derived t r a v e r s a l ,
which is a generator for the new r e l a t i o n . Thus
the method is complete. This derived t raversa l can
then be modif ied by the next operat ion and so on.
For example a se lec t ion can be done by i nse r t i ng
" i f (year=1978) then" just af ter " for each YEAR
record do" . The resu l t i ng t raversa l depends
somewhat on the order of app l i ca t ion of operations
spec i f ied by the user. However many of these are
commutative and the order of others can be
improved by top leve l r e w r i t i n g .

A. Combination by JOIN

Since Join is based on a cartesian product it
can be formed by a nested for loop with one
i t e r a t i o n for each record type i n v o l v e d . This is
very s imi lar to a t raversal s t ruc ture and it turns
out that the t raversa l represent ing the j o i n can
often be formed just by concatenating parts of the
separate t raversa ls {Bel l 1980, Gray 1981}. The
s e l e c t i o n s f o r matching are then performed
a u t o m a t i c a l l y by the f a c t t h a t a Codasyl owner
record w i l l in many cases be l inked to j u s t those
records whose values would have been selected by
the jo in operator! Let us consider examples of
th is using

RES:= STADIUM-ALLOCATION j o i n e d _ t o G R O U P -
PLACINGS

If we use S A 1 and G P 1 t h e n these both have
"common s t a r t " sec t ion .

S(YEAR) -> D(GROUP)

which generates the common a t t r i b u t e s in the two
cases. If we concatenate the t raversa ls keeping
one copy of the common s t a r t we get

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) ->
D(LINK) -> U(TEAM)

we can also get in the other order :-
S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) ->

D(GAME) -> U(VENUE)

Both t raversa ls correspond to nested loop code
which w i l l produce the desired tuples though in a
d i f fe ren t sequence. Which is best depends on
subsequent se lec t ions . If a se lect ion on
" p l a c i n g = 1 " is made a f t e r "D(LINK)" then the
second method is best as it v i s i t s fewer records.

One can also jo in t raversa ls where the head of
one t raversa l matches the t a i l or middle of the
second. We can do th is with the a l te rna t i ve
t raversals SA2 & GP2 g i v i n g :-
V(VENUE) -> D(GAME) -> U(GROUP) -> U(YEAR) ->

D(LINK) -> U(TEAM)

We notice here that a B(GROUP) since it v i s i t s
a l l records can match a U(GROUP) which v i s i t s only
cer ta in records because j o i n has the propert ies of
an i n t e r s e c t i o n .

The second t raversa l (using SA2,GP2) would be
preferred if a subsequent s e l e c t i o n were made on
stadium as it could use V(VENUE) e f f i c i e n t l y .
General condi t ions for choosing an optimum are
discussed in (Esslemont & Gray 1982).

1 O V E R V I E W of the JOIN ALGORITHM in P R O L O G

The basic method is given in Figure 2. It
s ta r ts by reading in a number of t raversals for
each r e l a t i o n and holds them as unit clauses
t r av (X) . The term X contains a record generation
l i s t g iv ing the sequence of record and set
accesses, which we have symbolised. The procedure
j o i n trav (see below) then picks the f i r s t clause

24 P. Gray and D. Moffat

for each r e l a t i o n and t r i e s to f i n d an overlap in
accordance w i t h the c o n d i t i o n s given in (B e l l
1980). Prod overlap is c a l l e d twice w i t h the
record generation l i s t s reversed in order to t r y
the two cases of common s t a r t and l i k e w i s e f o r
head to t a i l (IV .A) . If t h i s is successful the
r e s u l t t raversal is asserted. A ' f a i l ' clause then
causes b a c k t r a c k i n g and another p a i r of t r a v e r s a l
clauses i s chosen thus t r y i n g a l l combinations o f
the operand t r a v e r s a l s . The ' f a i l ' also has the
e f f e c t of r e c l a i m i n g much-needed space once the
t r a v e r s a l i s safely asser ted. I f a l l attempts

f a i l an o p e r a t i o n node to j o i n by sort-merge is
i nse r ted .

It is p o s s i b l e f o r a t r a v e r s a l to pass through
two i n s t a n c e s of the same r e c o r d t y p e . In o r d e r
to d i s t i n g u i s h which instance is being used f o r
a c c e s s i n g subsequent r e c o r d types i t i s necessary
to assign a unique number to each record
generation element in the t r a v e r s a l .
Correspondences are e s t a b l i s h e d by clauses of the
form equiv_curr (X.Y) .

A. Effect of Joining Modified Traversals

T r a v e r s a l s which have been m o d i f i e d by
s e l e c t i o n , extension, p r o j e c t i o n or group-by w i l l
have elements in t h e i r record g e n e r a t i o n l i s t s to
i n d i c a t e these operat ions(operat ion nodes). Such
t r a v e r s a l s are joined as before but with a l l
operation nodes being copied d i r e c t l y i n t o the
resul t t r a v e r s a l .

B. Comparison of Pasca l and P r o l o g Ve rs i ons

The Pascal v e r s i o n takes s e v e r a l thousand
l i n e s whereas Pro log needs s e v e r a l hundred and is
much e a s i e r to read and m o d i f y . Pasca l is a very
much wo rd ie r language f o r l i s t p r o c e s s i n g . A lso
one has to w r i t e m u l t i p l e v e r s i o n s of many
f u n c t i o n s such as "member" because the type of
l i s t argument must be known at comp i le t i m e .
Fu r the r the use of P r o l o g D e f i n i t e Clause Grammars
saves pages of r e c u r s i v e Pasca l p rocedures to
parse base t r a v e r s a l s e t c . . F i n a l l y because
Pasca l has no b a c k t r a c k i n g f a c i l i t i e s it has to
keep r e t u r n i n g se ts of a l t e r n a t i v e combined
t r a v e r s a l s and c u r r e n t l y runs out of l i s t space on
l a r g e q u e r i e s . The P r o l o g v e r s i o n can handle these
because it r e c l a i m s space f o l l o w i n g f a i l .

VI CONCLUSIONS

A l though the d i r e c t use of Codasyl databases
fo r s to rage o f f a c t s i s u n l i k e l y in A . I . the
genera l problem of g e n e r a t i n g programs tha t
t r a v e r s e and man ipu la te l i s t s t r u c t u r e s i s
impo r tan t and the t echn iques desc r i bed could have
o ther a p p l i c a t i o n s . The methodology used is :-

1. Arrange that the s p e c i f i c a t i o n of the
r e s u l t to be computed by the genera ted program is
g iven in f u n c t i o n a l form such as r e l a t i o n a l
a lgebra but not in p r o c e d u r a l form w i th loops and
ass ignmen t . This is eas i e r fo r the user to t h i n k
about and a lso does not commit him to an
u n s u i t a b l e r e p r e s e n t a t i o n . I t a l l ows eas ie r
o v e r a l l program t r a n s f o r m a t i o n ; in p a r t i c u l a r some
t r a n s f o r m a t i o n s are eas ie r in the f u n c t i o n a l form
than the t r a v e r s a l f o r m .

2 . Prolog i s p a r t i c u l a r l y s u i t a b l e fo r t h i s
work because of i t s good l i s t - m a t c h i n g and back­
t r a c k i n g f a c i l i t i e s . The use o f " a s s e r t and f a i l "
was necessa ry , but g iven t h i s i t o u t - p e r f o r m s
Pascal by runn ing l a r g e r problems in the PDP 11
address space in s i m i l a r t i m e .

ACKNOWLEDGEMENTS

The r e w r i t e r u l e s d e s c r i b e d in s e c t i o n II were
deve loped by T . N . S c o t t (now at SCICON, London) .
Ben du Boulay gave us many v a l u a b l e comments
d u r i n g the p r e p a r a t i o n of t h i s paper . The
generous a s s i s t a n c e of the U.K. SERC is a l s o
acknow ledged .

REFERENCES

[1] B e l l R., "Au toma t i c G e n e r a t i o n of Programs
f o r R e t r i e v i n g I n f o r m a t i o n f rom CODASYL Data
B a s e s " , PhD T h e s i s , Aberdeen U n i v e r s i t y , 1 9 8 0 .

[2] B u r s t a l l R.M. & D a r l i n g t o n J. "A
T r a n s f o r m a t i o n System f o r Deve lop ing
Recu rs i ve P rog rams" , JACM, (1 9 7 7) , pp 4 4 - 6 7 .

[3] Esslemont P.E. & Gray P.M.D. "The
Performance of a R e l a t i o n a l I n t e r f a c e to a
Codasyl Da tabase" in P roc . BNC0D-2, e d .
S.M.Deen and P.H. Hammersley, B r i s t o l 1982.

[4] Gray, P.M.D. "The GR0UP_BY O p e r a t i o n in
R e l a t i o n a l A l g e b r a " , in "Databases (P r o c .
BNC0D-2)" e d . S.M. Deen & P. Hammersley
(1 9 8 1) , p p . 8 4 - 9 8 .

[5] Gray, P.M.D. "Use of Automat ic Programming
and S i m u l a t i o n to F a c i l i t a t e Ope ra t i ons on
Codasyl Da tabases" in " S t a t e of the Ar t
Report DATABASE", S e r i e s 9 N o . 8 , e d .
M . P . A t k i n s o n , Pergamon I n f o t e c h (Jan 1982) ,pp
346-369 .

[6] Ta rn lund S-A, "An Ax ioma t i c Data Base
Theory " in " Log i c and Data B a s e s " , e d .
G a l l a i r e & Minker (1 9 7 8) , pp . 259 -289 .

