MANIPULATING DESCRIPTIONSOFPROGRAMSFORDATABASEACCESS

P.M.D.Gray

Dept.

University of Aberdeen,

ABSTRACT

A method is described for manipulating
descriptions of programs to access Codasyl
Databases to meet a specification given in
relational algebra. The method has been
implemented as a Prolog program which is compared
with the previous Pascal version. The methodology
is discussed as an Automatic Programming technique
which explores the transformations on a program

induced by changes of data structure
representation at two levels.
|_ INTRODUCTION
The problem of generating equivalent programs

under changes of data representation is an
important one. In the case of list processing, a
change of data structure representing sets of
objects and their relationships can completely
change the program. The same applies to Codasyl
databases which are essentially enormous list
structures on secondary storage. However because
of the variety of redundant pointers it is
possible to traverse the same liststructurein
many different ways. Thus it is not just a
question of changing the program but of generating
alternative programs whose run-times, because of
disc access, may differ by factors of 10 or more.

This paper concerns the manipulation of
abstract descriptions of such programs. A query is
formulated in a functional language (relational
algebra) which specifies the logical relationships
between the retrieved data values and the stored
data items but does not specify the sequence used
to access them (the access path). The aim is to
generate a program that produces the desired items
efficiently by exploring a variety of alternative
program structures, which are the consequence of
following different access paths.

A method of doing this has been developed
(Bell 1980) and embodied in a system (ASTRID)
(Gray 1982) for typing in queries in relational
algebra and generating and running programs on
Codasyl databases (IDS-1I and IDMS). From the
user's point of view the benefits are twofold.

1. It gives the user a relational view of
the Codasyl database. Thus he is able to think
about his retrieval problem in terms of table
manipulations using the high level operations of

and D.S.Moffat

of Computing Science,

Scotland, U.K..

relational algebra instead of having to work at
the low level of record access operations
following pointers through the database and
embedding these operations in Fortran Code.

2. He can write complicated multi-line
queries that compute derived data both from
records and groups of records (averages, counts
etc.) and appear to generate several intermediate
tables. The system will endeavour to find an
access path that computes the same r e s u | t without
storing these tables, which could be very costly
forlarge databases. The program generated may be
quite complicated to write by hand and should be
competitive with a trained programmer's code.

The system goes through several stages.
First the user types a query in relational algebra
which i s parsed and c h e c ke d . Then i t i s
manipulated at two levels. At the top level the
query is rewritten still in algebraic form using
rewrite rules so as to assist transformations at
the next level. The lower level uses a concrete
representation of the Codasyl data structure by a
traversal (see below). The system reads in a
number of stored traversals for each relation.
These have each to be manipulated and combined in
various ways to satisfy the requirements of the
query. S o m e combinations w i | | represent very
slow and inefficient programs and be discarded.
However this cannot be done immediately, as a good
program forpartofthe query maylaterturnout
to be second best after modification to fit the
remainder. Finally the descriptions are costed
according to information on database access times
and the selected version is wused to generate
Fortran code to run against the actual database.
The system is oriented towards complex queries
accessing thousands of records which can only run
in batch producing substantial printout. Thus it
is not the run-time for the translator which
matters but the complexity of query which it can
handle. Currently other systems only handle a
very restricted relational view or a rather
restricted query language.

The ASTRID system was originally written in
Pascal. More recently the two levels of
manipulation have been rewritten in Prolog. This
paper describes the basic methodology and shows
how Prolog is well adapted to this task.

The layout of the paper is as follows.
Section {II} describes some transformations which
affect the resultant program but are best carried

22 P. Gray and D. Moffat

out on the relational algebra in Prolog. Section
{I11} describes the basic notion of a traversal
and how it is wused to represent a piece of
program. Section {IV} describes the combination
of traversals and how t h i s is used to b u i I d
descriptions of more complex programs. Section
{V} illustrates some of the Prolog used to combine
traversals and discusses its advantages and snags
in this application. The final section draws
conclusions for future work.

A. Relation to Other Work

Burstall and Darlington (1977) describe a
system for specifying a program by recursion
equations. These can be manipulated and play a
role similar to relational algebraic expressions
in our system. They discuss a way to rewrite the
abstract program given a concrete data
representation in terms of a “"coding function".
However our use of a traversal represents the data
in a rather different way. Apart from Tarnlund
(1978) few have addressed the problem of efficient
access to relations using information about the
mode of storage. Tarnlund has studied ways to
answer queries efficiently by representing them as
theorems to be derived in the first order calculus
and looking for efficient derivations where
relations are held as a binary tree structure.

I1_ RELATIONAL A L G E B R A TRANSFORMATIONS

The user asks his query in relational algebra.
We firstdescribethis and then see how the system
improves the query by rewriting it.

A. Relational Databases

A relation is a set of tuples each containing
values for a fixed set of attributes. Viewed as a
table the attribute values are in columns. A
relational database usually contains several
relations which have attributes in common. The

examples used come from a database on World Cup
football results. The two relations of interest
are shown in Table 1.

Table 1. RelationalView of World Cup Database

STADIUM_ALLOCATION

! year | group | game ! atadium | date i
1 1
[l]
71978 Y ' 1 | Buenos Alres | 2_Jun!
1978 1 ' 2 |} Mar_del Plata | 2_Jun)
GROUP_PLACINGS

! year | group | team ! placing |

1 1

] 1

H 1978 | 1 ! Italy] 1

{ 8 11 | Argentina | 2 1

e

B. Relational Algebra

Relations can be treated as tables and new

relations derived from them by the operations of
relational algebra. The operations used are
adapted from Codd. They are selection,

projection, join, extend and group_by (Gray 1981).
The join operation is a generalised intersection,
formed from the cartesian product of two relations
by selecting those tuples with matching values for
the common attributes. A typical query starts by
joining several relations, then selects tuples,
then extends and or groups these tuples and
finally projects to required columns.

The relational algebra can be rewritten, just
like standard algebra, by using rewrite rules in
PROLOG. We have 17 such rules with special
predicates for handling commutation. A typical
transformation would move a projection
operation(%) in an expression involving join(*)
and selection(;) to ease the join method.

(STADIUM_ALLOCATION ; [stadium = "Cordoba"] %year,

group)*(GROUP_PLACINGS ;[placing=1] *year,group)
becomes

(STADIUM_ALLOCATION ;[stadium="Cordoba"] *

GROUP_PLACINGS ; [placing=11]) %year,group

I1l _TRAVERSALS of CODASYL DATABASE STRUCTURES

Although the user thinks of relations just as
tables, they are actually complicated doubly-
linked list structures. At the second level of
transformation we need to represent possible paths
through these structures by traversals in order to

search for an efficient one. Thus we first
explain the Codasyl "set" relationship wused to
link different records. We then see how a
number of alternative "base traversals" can be

defined for each relation and held on file.

A Codasyl database consists of sets of records
of the same type which are linked by pointers to
other records in the set and to a common owner
record which uniquely identifies an instance of a
given set type. Figure 1 shows the linkages
between records in the World Cup database.

Figure 1. Bachmann diagram of World Cup Database

YENUE (stadium

game, date, score

A. Traversals

We can now define a traversal of a relation
more precisely. It is a description of a piece of
code which realises the tuples of the relation one

at a time by accessing the records in some
sequence following the set pointers and modifying
the values as necessary. Thus it is a generator
for a relation. Corresponding to each relation
stored in the database (e . g . GROUP_PLACINGS) we
hold on file one or more base traversals. Each
one is essentially a description of a piece of
code with a number of nested loops.

We have a notation for traversals as follows.
Internally it is represented by a Prolog list
structure. There are three obvious base traversals
of STADIUM-ALLOCATION and two for GROUP_PLACINGS.
Each {SA}traversalvisitsthe same number of GAME
records, generating one tuple for each.

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) {SA1}
V(VENUE) -> D(GAME) -> U(GROUP) -> U(YEAR) {SA2}
B(GROUP) -> U(YEAR) -> D(GAME) -> U(VENUE) {SA3)
S(YEAR) -> DGROUP) -> D(LINK) -> UTEAM) {GP1}
B(GROUP) -> U(YEAR) -> D(LINK) -> U(TEAM) {GP2}

Here S means a singular set a ccess to Vvisit-
all records of a given type (there is only one set
owning all year records), D mean go down to visit
all member records belonging to the given owner
using the appropriate set type (if this is
ambiguous it is specified) and U means go up to
visit the owner of a given record, V means direct
access to the record containing a value (usually
given by selection). B means vi it every record
of that type in the database, In an Algol-like
syntax we can represent the corres ponding code for
SAl as : -

for each Y E A R record do
foreachGROU P record owned by Y E AR do
foreach GAME record owned by GRO U P do
for the VENUE owner of G A M E do
print YEAR.year, GROUP.group, GAME.game,
VENUE.stadium, GAME.date.

Thus each arrow in a traversal represents an
inner level of nested code. Note that the record
generationssuch as D(GAME) in SA3 mustfollow
those such as B(GROUP), which generates the owner
forGAME, buttheyneednotbeconsecutive.

IV COMBINATION & MODIFICATIONof TRAVERSALS

Corresponding to every algebraic operation on

a given relation there is a modification to Its
traversal which produces a derived traversal,
which is a generator for the new relation. Thus

the method is complete. This derived traversal can
then be modified by the next operation and so on.
For example a selection can be done by inserting
"if (year=1978) then" just after "for each YEAR
record do". The resulting traversal depends
somewhat on the order of application of operations
specified by the user. However many of these are
commutative and the order of others can be
improved by top level rewriting.

P. Gray and D. Moffat 23

A. Combination by JOIN

Since Join is based on a cartesian product it
can be formed by a nested for Iloop with one
iterationforeachrecordtypeinvolved. Thisis
very similar to a traversal structure and it turns
out that the traversal representing the join can
often be formed just by concatenating parts of the
separate traversals {Bell 1980, Gray 1981}. The
selections for matching are then performed
automaticallybythefactthata Codasyl owner
record w i | | in many cases be linked to j u s t those
records whose values would have been selected by
the join operator! Let us consider examples of
this using

RES:= STADIUM-ALLOCATIONjoined _toGROUP -
PLACINGS

If we use SAland GP 1th e nthese both have
"common start" section.
S(YEAR) -> D(GROUP)

which generates the common attributes in the two
cases. If we concatenate the traversals keeping
one copy of the common st art we get

S(YEAR) -> D(GROUP) -> D(GAME) -> U(VENUE) ->
D(LINK) -> U(TEAM)

we can also get in the other order :-

S(YEAR) -> D(GROUP) -> D(LINK) -> U(TEAM) ->
D(GAME) -> U(VENUE)

Both traversals correspond to nested loop code
which will produce the desired tuples though in a
different sequence. Which is best depends on
subsequent selections. If a selection on
"placing=1"is made a fte r "D(LINK)" then the
second method is best as it visits fewer records.

One can also join traversals where the head of
one traversal matches the tail or middle of the
second. We can do this with the alternative
traversals SA2 & GP2 giving:-

V(VENUE) -> D(GAME) -> U(GROUP) -> U(YEAR) ->
D(LINK) -> U(TEAM)

We notice here that a B(GROUP) since it visits
all records can match a UGROUP) which visits only
certain records because join has the properties of
an intersection.

The second traversal (using SA2,GP2) would be
preferred if a subsequent s el e cti o n were made on
stadium as it could wuse V(VENUE) efficiently.
General conditions for choosing an optimum are
discussed in (Esslemont & Gray 1982).

10VERVIEWofthe JOINALGORITHMINPROLOG

The basic method is given in Figure 2. It
starts by reading in a number of traversals for
each relation and holds them as unit clauses
trav(X). The term X contains a record generation
list giving the sequence of record and set
accesses, which we have symbolised. The procedure
join trav (see below) then picks the first clause

24 P. Gray and D. Moffat

for each relation and tries to find an overlap in
accordance with the conditions given in (Bell

1980). Prod overlap is called twice with the
record generation lists reversed in order to try

the two cases of common start and Ilikewise for
head to tail (IV.A). If this is successful the
result traversal is asserted. A 'fail' clause then
causes backtracking and another pair of traversal
clauses is chosen thus trying all combinations of

the operand traversals. The 'fail' also has the
effect of reclaiming much-needed space once the
traversal is safely asserted. If all attempts

fail an operation node to join by sort-merge is
inserted.

It is possible for a traversal to pass through
twoinstancesofthesamerecordtype.lnorder
to distinguish which instance is being wused for
accessingsubsequentrecordtypesitis necessary
to assign a unique number to each record
generation element in the traversal.
Correspondences are established by clauses of the
form equiv_curr(X.Y).

Figure 2, PROLOG Version of Traversal Join Method

Join_trav(Rel1,Rel2,Rel3) :=
common_columns (Rel 1,Rel2,ComCol ,NumComCol),
trav(Rell, , ,nda_list(Nds1),recg_list{fg1)),
trav(Rel?, ,_ ,nda_list(Nds?),recg_list(Rg2)),
exists nondup list(ComCol,Nds1,Nds2,Rg1,Rg2),
{retractall{equiv_curr(_)),
pred_overlep(Rg1,Rg2,Rg3,Rgl, NumComCol) ;
retractall (equiv_curr()],
prod_overlap(Rg2,Rg1,Rg3,Rgl, NumConCol) },
asmsert trav{Rel3,Rg3,Rgl),
fail.

Join_trav(_,_,_).

A. Effect of Joining Modified Traversals

Traversals which have been modified by
selection, extension, projection or group-by will
have elements in their record generation lists to
indicate these operations(operation nodes). Such
traversals are joined as before but with all

operation nodes being copied directly into the
result traversal.
B. Comparison of Pascal and Prolog Versions

The Pascal version takes several thousand
lines whereas Prolog needs several hundred and is
much easier to read and modify. Pascal is a very
much wordier language for list processing. Also
one has to write multiple versions of many
functions such as "member" because the type of
list argument must be known at compile time.
Further the use of Prolog Definite Clause Grammars
saves pages of recursive Pascal procedures to
parse base traversals etc.. Finally because
Pascal has no backtracking facilities it has to
keep returning sets of alternative combined
traversals and currently runs out of list space on
large queries. The Prolog version can handle these
because it reclaims space following fail.

\ CONCLUSIONS

Although the direct use of Codasyl databases
for storage of facts is unlikely in A.l. the
general problem of generating programs that
traverse and manipulate list structures is

important and the techniques described could have
other applications. The methodology wused is :-

1. Arrange that the specification of the
result to be computed by the generated program is

given in functional form such as relational
algebra but not in procedural form with loops and
assignment. This is easier for the wuser to think
about and also does not commit him to an
unsuitable representation. It allows easier
overall program transformation; in particular some
transformations are easier in the functional form
than the traversal form.

2. Prolog is particularly suitable for this
work because of its good list-matching and back-
tracking facilities. The wuse of "assert and fail"
was necessary, but given this it out-performs
Pascal by running larger problems in the PDP 11
address space in similar time.

ACKNOWLEDGEMENTS
The rewrite rules described in section Il were

developed by T.N. Scott (now at SCICON, London).
Ben du Boulay gave us many valuable comments
during the preparation of this paper. The
generous assistance of the U.K. SERC is also
acknowledged.

REFERENCES

[1] Bell R., "Automatic Generation of Programs
for Retrieving Information from CODASYL Data
Bases", PhD Thesis, Aberdeen University,1980.

[2] Burstall R.M. & Darlington J. "A
Transformation System for Developing
Recursive Programs", JACM, (1977), pp 44-67.

[3] Esslemont P.E. & Gray P.M.D. "The
Performance of a Relational Interface to a
Codasyl Database" in Proc. BNCOD-2, ed.
S.M.Deen and P.H. Hammersley, Bristol 1982.

[4] Gray, P.M.D. "The GROUP_BY Operation in
Relational Algebra”, in "Databases (Proc.
BNCOD-2)" ed. S.M. Deen & P. Hammersley
(1981),pp. 84-98.

[5] Gray, P.M.D. "Use of Automatic Programming
and Simulation to Facilitate Operations on

Codasyl Databases" in "State of the Art
Report DATABASE", Series 9 No.8, ed.
M.P.Atkinson, Pergamon Infotech (Jan 1982),pp
346-369.

[6] Tarnlund S-A, "An Axiomatic Data Base
Theory" in "Logic and Data Bases", ed.

Gallaire & Minker (1978), pp. 259-289.

