DIAGNOSTIC REASONING IN SOFTWARE FAULT LOCALIZATION

Sedimeyer*

William B. Thompson

Robert L.
Paul E.
University

ABSTRACT

We present a diagnostic model of software
fault localization. A diagnoatic. approach to
fault localization has proven effective In the
domains of medicine and digital hardware. Apply-
ing this approach to the software domain requires
two extensions: a heuristic abstraction mechanism
which infers program function from structure wusing
recognition and transformation tactics; and a
search mechanism which integrates both prototypic
and causal reasoning about faults.

l. INTRODUCTION

In this paper we present a model of fault
localization for program debugging based on a
trouble-shooting paradigm [J], Within a diagnostic
framework we define the. software fault localization
task as follows: A fault exists In a program when-
ever its output differs from that expected by the
user. These descrepancies are called fault mani-
festations. The task is to identify the cause of
each manifestation which is specific enough to
effect program repair.

Application of the trouble-shooting strategy
has proven effective in constructing intelligent
systems for hardware [2,3,4] and medical [5,6,7]
diagnosis. In contrast to verification-based
approaches (cf. [8,9,10,11] this strategy concen-
trates computational resources on suspect compo-
nents. Applying the diagnostic approach to the
software domain requires two extensions: a
heuristic abstraction mechanism that infers func-
tion from structure wusing recognition and transfor-
mation tactics; and a search mechanism that inte-
grates both prototypic and causal reasoning to
localize faults.

Several program debugging systems evidence
trouble-shooting tactics [12,13,14], but none are
based on a comprehensive diagnostic theory.
Sussman [1] was primarily interested in developing
a theory of skill acquisition and examined the role
of debugging in that context. While Miller and
Goldstein [13] addressed the debugging task direct-
ly, the faults which MYCROFT analyzed were tightly
constrained by the simplicity of the programs
Involved. Shapiro [14] addresses more realistic
debugging environments, but formulates a theory of

*Current address: Department of Computer Tech.,
Purdue University at Fort Wayne, Indiana 46805

Johnson

Minnesota

faults rather than of fault localization.

Our model partitions diagnostic knowledge for
the software fault localization task into knowledge
uspd to locate known and novel faults. For diag-
nosing known faults the knowledge base contains a
hierarchy of faults which are known to occur in
programs from a particular applications domain, and
a set of empirical associations which relate fault
manifestations to possible causes. For diagnosing
novel faults the knowledge base contains models of
implementation alternatives and execution behavior
of functions indigenous to the domain. Both know-
ledge sources are utilized by a set of localization
tactics to generate, select and test fault hypo-
theses.

II. KNOWLEDGE OF PROGRAM STRUCTURE AND FUNCTION

Knowledge of program structure and function
is necessary for diagnosis of both known and novel
faults. In the former case it is used to confirm
expectations associated with a given fault hypo-
thesis; in the latter case it is wused to trace
violations of expected behavior to their source.
In our model this knowledge is captured in
functional phototypes.

A functional. phototype, consists of four com-

ponents: a set of recognition triggers, a list of
pre- and post-conditions describing the execution
behavior, a description of prototype components

and their topology, and a List of constraints among
components that must hold for recognition. Proto-
types are defined at three levels of abstraction:

the language, programming, and applications levels;
and are hierarchically organized. A portion of the
functional prototype hierarchy describing the com-
ponent topology of the "master file priming read"

(MFPR) function is given in Figure 1.

master_file_priming read
file priming_ read
file input_stmt

|

T L]
read file record

Figure 1. Topological Hierarchy for
Magter File Priming Read

Functional FPrototype

30 R. Sedimeyer et al.

The figure shows that the MFPR consists of a single
component, the file priming read. A file_priming
read is only recognized as a MFPR if two con-
straints are met: the input record is used as a
master record and the input file is used as a
master file. Recognition triggers include the

file priming_read and file input stmt prototypes
as well as the language keyword "read".

M. KNOWLEDGE OF FAULTS

While functional prototypes describe expected
program structure and function; fault modals des-
cribe expected defects in program structure and
function. A fault model embodies knowledge of a
particular implementation error or class of errors.
This knowledge consists of conditions under which
the model is applicable, a set of fault hypotheses,
and a set of related fault models. A fault hypo-
thesis is an expected defect in a functional pro-
totype. Defects are defined as missing prototype
components or violated constraints. Like function-
al prototypes fault models are hierarchically
organized. Figure 2 details a fault model for a
master file input error.

(master file priming read error
(trigpgered by
1. inwalid first master record
2. inwvalid first new master record
3. invalid master record count)
(expected defects
1. missing MFPR)
{related faults
1. insert_error)

Figure 2. Sample Fault Model

V. LOCALIZATION TACTICS

Localization is performed using three tactics:
fault-driven, function-driven and computation-
dntvan. Vault-driven.n localization directs search
at finding a particular kind of fault, such as an

unexpected end_of file. Function-driven locali-
zatA.on analyzes a particular functional prototype
for an error. Computation-driven localization

concentrates search on the computation of a set of
program variables. Each makes use of an abstrac-
tion mechanism (Section 5) to generate and test
fault hypotheses.

Multiple localization tactics are desirable
for three reasons. First, they enhance the pro-
bability of finding faults since different tactics

analyze the source code from different perspectives.

Secondly, tactics which best fit the available in-
formation can be chosen. Thirdly, each tactic is
optimal, in the sense of minimizing computational
resources, for a particular localization task.

Fault-driven localization wuses the fault model
hierarchy to generate fault hypotheses. Output
discrepancies serve as triggers for selecting a
particular fault model. The more salient the
trigger set the more specific the fault model and
the associated fault hypotheses. Given a fault
model, localization continues by first choosing
one of these fault hypotheses and then invoking

the abstraction mechanism to test it. If the
hypothesis fails then a related hypothesis can be
proposed, a different fault model can be applied,
or the tactic can be abandoned.

Function-driven localization wuses output dis-
crepancies to suggest that a particular functional
prototype is improperly implemented. The abstrac-
tion mechanism is then invoked to identify the
code which implements the prototype. Tf the pro-
totype cannot be found then the source code pro-
ducing the most feasible match is considered as

the intended implementation. The fault is identi-
fied by the statement causing failure in the match-
ing process. This tactic can also be directed to

examine a particular abstraction level for a fault.
All prototypes defined at the chosen level are con-
sidered suspect. This application of the function-
driven tactic is less directed and wusually less
desirable. Only when the output discrepancies
offer no basis for prototype selection does this
alternative become attractive.

Computation-driven localization traces the
computation of a particular set of program vari-
ables. The computation is analyzed by extracting
from the program those statements that directly
affect the values of variables in the set. This
extraction process is known as slicing [15]. The
computation can be followed in either a forward
or reverse order of execution flow. Faults are
found by wusing the abstraction mechanism to inter-
pret statements in the slice as members of more
abstract functional prototypes and comparing the
expected computational results to those derived.

V. PROGRAM ABSTRACTION

Program abstraction is performed by matching
functional prototypes to the source code. Ab-
straction may either be expectation-driven or
data-driven depending upon the localization tactic
selected. Expectation-driven abstraction matches
prototypes to code in a top-down manner, recursive-
ly matching components until a direct match can be
made against the source code or previously recog-
nized prototypes. Data-driven abstraction employs
language-level triggers to select prototypes for
matching. Prototypes matched at lower levels of
abstraction serve as triggers for matching at
higher levels. Once a functional prototype is
identified the corresponding code is bound to it.

Recognition-based abstraction is an efficient
technique, but it has Ilimitations. Recognition of
a functional prototype may fail for one of three
reasons: a defect exists in the source code
implementing the prototype, the wrong prototype is
selected, or the source code represents an un-
familiar but correct implementation. The effec-
tiveness of the recognition mechanism depends on
the exactness of the triggering process and the
richness of the alternative implementation set.
Purely structural matching is augmented by func-
tional matching. The behavior of a program segment
which is inferred from language semantics, can
also be compared to the functional descriptions
in the prototype hierarchy.

VI. AN EXAMPLE

We have implemented an initial version of the
model in a program named FALOSY (FAult Localization
SYstem). FALOSY addresses faults in master file
update programs [16]. In this section we illus-
trate FALOSY's reasoning for the master file
priming read error.

FALOSY is presented with a discrepancy list
and a list representation of the program's source
code. The discrepancy list formally describes
differences between expected and observed output.
An abridged trace of FALOSY's reasoning is given
in the Appendix. Numbers in parentheses refer to
line numbers in the Appendix.

A production system, whose antecedents are
sets of discrepancies, is used to select the

initial localization tactic. In this case lhe-

fault-driven tactic is chosen and the master file
priming read fault model is triggered (1). FALOSY
hypothesizes that the priming, read for the master

file is missing (2). The abstraction mechanism is
invoked to identify the corresponding prototype
(4). A check is first made to determine if it has
been previously identified. Since it has not, the
recognition mechanism is invoked recursively to
find the components oi the master file priming
read prototype.

Eventually search is carried out at the source
level, and three read statements (6, 26) are
selected for further matching. Constraints are
now checked starting with those at the Ilowest level
in the abstraction hierarchy. The first candidate
is rejected since the file identifier is not used
as the master file (20). The second and third
candidates are rejectee’ because they do not pre-
cede the update loop (24,28). No candidate satis-
fies all constraints and recognition fails. The
original hypothesis is thus verified.

APPUNDIX

1. Applicable fault models {m_[_pr)

. Expected defacts ({m_f pr mlssing))

3. Fault hypothesis {(m [_pr missing))

4, Trying to recognize: m [pr

5. Triggers are (read f 18 [p.r

6. Matching m _f pr to (s6 read tramsfile transbuf)

7. m_f _pr hus role f_p r

8, Matching £ p 1 tu (86 read transfile transbuf)

9, £ p r has role f i s

10, Matching £ 1 8 to (86 read transellle transbuf)

11.f 1 &5 is primitive

12, Checking constraint {data-type file pascal_fid}

11, Checking constraint (data-type record pascal_rec;

14, Match for [i 8 succeeds

15, Checking constraint (before £ i_s update loop)

16, Trying to recognize; update-loop

17. Recognition of update-loop succeeds

18, Match for f p r succeeds

19, Checking constraint (use file m_f)

20, Role file, which is bound to tranmfile, is used
a8 a t_f whereas m_f was expected

21. Match for m_f_pr fails

22, Matching m_f pr to (524 read oldfile oldbuf)

23, Checking constraint (before £ i s update-locp)

L

R. Sedimeyer et al. 31

24. Hole f_i_s, which
precede role update
g0005

25. Match for f p r fails

26. Matching m f pr to (sb2 read

2 7. Checking constraint (before

28. Role f i s, which is bound

is bound to g 00014, does not
loop, which is bound to

transfile transbuf)
f_i_s wupdate loop)
to gO0O018, does not

precede role update loop which is bound to
g()0005

29. Match for f_p_r fails

30. Recognition of m f pr fails

31. Fault hypothesis verified

32. Fault is: (m f pr missing)

BIBLIOGRAPHY

[11 J. DeKleer, "Local methods for localization of
faults in electonic circuits,” MI1T-A! Memo 394,
1976.

[2] M.Genesereth, "Diagnosis using hierarchic
design models," Proceeding* of the Second AAA]
Conference-, August, 1982.

[3] R. Davis, H. Shrobe, w. Hamscher, K. Wieckert,
M. Shirley, and S. Pol it, "Diagnosis based on

description of structure and function,"

proceeding of the Second AAA! Coference,
August, 1982.

[4] R. Hartlev, "How expert should an expert system
be?", Proceeding* 1JCAI-81, August 1981.

[5] R. Patil, P. Szolovits, W. Schwartz, "Causal
understanding of patient illness in medical
diagnosis,” Proceedings of 1JCA1-81, August,
1981.

[6] E. Short life, Computer Based Medical Consulta-
tions' MYCIN, American Elsevier, New York,
New York, 1976.

[71 B. Chandrasekaran and S. Mittal, "Deep versus
compiled knowledge approaches to diagnostic
problem-solving," Proceeding* of the Second

AAAI Conference, August, 1982.

[81 H. Wertz, "Understanding and improving LISP
programs,” 7 TCAI-77 Proceeding*.

[91 R. Ruth, "Intelligent program analysis,"
artifical Intelligence, Vol. 7, No. I, 1976

[101 C. Adam and M. "LAURA, a system to debug
student programs,” Atrtificial Intelligence,
November, 1980.

[11] F. "Understanding and debugging computer
programs,” International Journal of Man-Machine.

Studies, Vol. 12, 19S0, pp. 189-202.

[12) G Sussman, A Computational Model of Skill
Acquisition, American Elsevier, New York, 1975.
[13]Miller, "A structured planning and debugging

environment," International Journal of Man-
Machine Studies, Vol. 11. 1978.

[14] D. Shapiro, "Sniffer: a system that understands
bug," MIT-Al Memo 638, June, 1981

[151M. Weiser, "Program slices: formal, psychologi-
cal, and practical investigations of an

automatic program abstraction method,"
University of Michigan Ph.D. Thesis, 1979.
[16]B. Dwyer, "One more time - How to update a

master file," Communications of the ACM,
Vol. 24, No. 1, January 1981.

