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ABSTRACT

The usual approach to plausible reasoning is
to associate a validity measure with each fact or
rule, and to compute from these a validity measure
for any deduction that is made. This approach is
shown to be inappropriate for some classes of prob-
lems, particularly those in which the evidence is
not internally consistent. Two current plausible
reasoning architectures are summarized and each
applied to the same small task. An analysis of the
performance of these systems reveals deficiencies
in each case. The paper then outlines a new
approach based on the discovery of consistent
subsets of the given evidence. This system can
be used either in isolation or in conjunction with
a validity-propagating architecture. Comparative
results from implementations of all three systems
are presented.

1. INTRODUCTION

Research in expert systems is concerned with
how to represent and reproduce the problem-solving
skills that experts exhibit in their respective
domains. One of the most basic of these skills is
the ability to put two and two together—to draw
reasoned conclusions that supplement direct obser-
vations. This poses a difficulty because our
models of reasoning are derived from the deduction
mechanisms of logic, but investigators have noted
that expert reasoning cannot be understood in
terms of such precise schema. Logic deals with
an idealized world in which facts are known with
certainty and rules of inference allow other facts
to be deduced with equal certainty. Experts, on
the other hand, are usually required to form
judgments based on evidence that may be subject to
errors of measurement or interpretation. Again,
experts can function in environments containing
inconsistent or contradictory "facts", but such
environments are useless in the logical sense.

Systems for expert-like reasoning typically
work with unquantified propositions and relations
among them. Propositions may be facts ("the car
won't start"), hypotheses ("the trouble is in the
ignition system"), findings ("the distributor cap
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is defective"), or any concept in the domain that
is relevant to the expert's problem-solving behav-
iour. Relations connecting subsets of the propo-
sitions are usually expressed as logical defini-
tions ("A is the conjunction of B, C, and D") or
inferential links ("If A is true, then so is B").
The feature that distinguishes uncertain inference
from the familiar propositional calculus is the
qualified nature of knowledge about both the
relations and propositions. Instead of being
either true or false, propositions have associated
with them some continuous measure of their validity.
Inferential relations also have a validity measure
that weakens the connection between antecedent
and consequent; the relation "If A, then B" may
support a less-than-categorical affirmation of B
even when A is known with certainty.

A useful way of viewing this formalism is as
an inference net (Duda, Gaschnig, and Hart, 1979)
in which propositions are nodes and the relations
among propositions become the links of the network.
Whenever the validity measure of a node is changed,
such as by the arrival of new evidence, this infor-
mation propagates along the links to related nodes
and may cause changes to their validity measures
in turn. The secondary changes propagate in the
same way so that the evidence responsible for the
initial change may be reflected in altered validity
measures of many propositions.

The general inference net framework does not
address the important questions of how validity is
to be represented and how the propagation above is
to be carried out. Some approaches measure the
validity of a proposition as its posterior proba-
bility given all the evidence to hand, computed
via Bayes' Theorem and ancillary assumptions.
Others use probability intervals rather than point
probabilities as a measure of validity, relying on
more general schemes of updating such as the
Dempster-Shafer theory of evidence (Garvey, Low-
rance, and Fischler, 1981). It is not uncommon
for the form of the inference net to be restricted;
for example, (Pearl, 1982) requires that it be a
tree. Many systems treat the links representing
relations as directional, so that the relation "If
A, then B" allows updating of B's validity when A
is known to be true but does not allow A's
validity to be altered if B is found to be false.
A review and critique of the more common app-
roaches can be found in (Quinlan, 1983).
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Expert systems embodying mechanisms for uncer-
tain inference have achieved notable successes, as
documented in recent reports (Buchanan, 1982;
Campbell, Hoilister, Duda, and Hart, 1982) on two
pioneering efforts, MYCIN and Prospector. Never-
theless, there appear to be applications requiring
an uncertain inference capability that are not
handled well by any current system. The charact-
eristics of these applications are discussed
later, but the gist of the difficulty and the
proposed solution can be obtained from the follow-
ing example.

Consider the task of a fictional detective
investigating a case in which (as usual) there are
many apparent contradictions in the evidence that
he unearths. How is he to proceed? Current app-
roaches to plausible inference would have him weigh
evidence for and against each hypothesis, consider-
ing the hypothesis confirmed to the extent that
the balance of evidence supports it. But any
mystery buff knows that this approach differs from
the one Poirot would adopt, and might even lead to
the anomalous situation in which the balance of
evidence individually supports propositions A and
B, but where A and B cannot both have occurred.
This paper suggests an alternative method of form-
ing conclusions that our detective, would find more-
familiar. Instead of making deductions from
contradictory information, we divide the evidence
into two classes, items to be believed and items
to be disregarded, so that all the evidence in
the former category is consistent and "makes sense".
Where there are many possible divisions we use some
model to weigh the validity, not of individual
propositions, but of the division itself. For
example, a division that would require our detect-
ive to disregard significantly more data than
another might be judged to be less valuable.

In the following sections we examine a seem-
ingly simple uncertain inference problem. Taking
Prospector as an example of a directed Baycsian
architecture, we show that the problem must be
redrafted to meet Prospector's requirements and
that there are difficulties interpreting the
results. We then describe INFERNO, a non-directed
non-Bayesian architecture, and show that it is also
less than satisfactory for this task. This leads
to a discussion of Ponderosa, a new system that
performs uncertain inference by evidence division
rather than by propagation of validity.

2. DESCRIPTION OF THE TRIAL APPLICATION

The setting for this application of uncertain
inference is a model of the interactions among
five econometric indicators. We are given several
assertions concerning both general relationships
among the indicators and predictions about what
will happen in the near future. The goal is to
draw meaningful inferences from these assertions
so as to arrive at a composite picture of what will
happen to all the indicators.

Table TI contains the ten assertions that
define the model. Numbers in brackets following
assertions are validity measures in the range 0 to
1; two such numbers following an assertion corres-
pond to the "if" and "only if" cases respectively.
Since we have not defined what we mean by "valid-
ity", the precise interpretation of these numbers
is open. A proposition or relation with validity
1 is correct without qualification and one with
validity 0 is false, but any of the different
meanings of a middle-ground validity that are used
in current systems wil] be acceptable.

Table TI: Assertions Defining the Model

Al Stocks will fall (.55)

A2 Either taxes will not be raised or both stocks
will fall and interest rates will fall (.85)
A3 Either taxes will be raised or interest rates

will not fall (.9)

A4 Interest rates won't fall (.75)

A5 Either taxes will-be raised or there will be a
high deficit (.85)
AG Bonds will rise or interest rates will fall

if, and only if, stocks fall or taxes are
not raised (.6, .85)

A7 Stocks will fall if, and only if, bonds rise
and taxes are raised (.7, .8)

A8 If interest rates fall, either stocks will not
fall or bonds won't rise (.95)

A9 Interest rates will not fall if there is a
high deficit (.95)

A10 If there is a high deficit, stock:; will fall
(-8)

The application maps directly into the infer-
ence net formalism. There arc five basic proposi-
tions corresponding to the indicators of primary
concern,

stocks will fall (abbreviated stocks-)
interest rates will fall (interest-)
taxes will be raised (taxes+)
bonds will rise (bonds+)
there will be a high deficit (deficit-*)

We have also several composite propositions
stated as logical combinations of these proposi-
tions, such as "bonds will rise or interest rates
will fall", that must be defined by logical rela-
tions. Assertions Al through A5 each provides
evidence in the form of a validity for one of the
basic or composite propositions, while each of
A6 through A10 becomes one or two inferential
relations.

Despite the simplicity of this model, it may
not be immediately apparent that the information
in the assertions is inconsistent. Al and A7

jointly support the inference that taxes will be
raised, while assertions A2 and A4 together sug-
gest that taxes will not be raised. In the

logical sense, therefore, this collection of



assertions is of no value because anything at all
can be inferred from it via the tautology A implies
(~A implies B). However, it seems that most plau-
sible reasoning tasks involve inconsistent infor-
mation so that the example is not an unfair one.

3.  PROSPECTOR

Prospector (Duda, Hart, and Nilsson, 1976) is
a general-purpose architecture for uncertain infer-
ence that has been used with several geological
models and whose basic approach has been taken up
by other systems such as AL/X (Reiter, 1981). It
is therefore representative of a well-developed
school of thought about uncertain inference.

3.1 Overview of Prospector

Prospector takes the validity of a proposition
to be its posterior probability given the evidence
at hand. Let H be some proposition about which
inferences are to be drawn and E another proposi-
tion. Bayes' theorem gives the posterior proba-
bility (or likelihood) of H given E as

P(HIE) = PEIH) x P(H) / P(B)

where P(E) and P(H) are prior probabilities, and
similarly

P(~HIE) = P(EI~H) x P{~H} / P(E)

Assuming that the latter is non-zero, we can
divide the first equation by the second to obtain

OHIE) = oy x [P(EIR) / P(BI~H)]

which may be stated as, the posterior odds of H
is its prior odds multiplied by a factor (called
X) that characterizes the sufficiency of E as a
predictor of H. A similar analysis can be per-
formed replacing E by E in the above, and the
corresponding factor A characterizes the neces-
sity of E if H is to hold.

This formalism is insufficient by itself to deter-
mine what should happen to the odds of H when
several propositions EI, E2, ... are relevant to
it, or when the E's are known with less than
certainty. The approach taken in Prospector is
to make two additional assumptions (conditional
independence and interpolation) that allow the
posterior odds of proposition H to be computed

as the product of its prior odds and effective
multiplying factors obtained for each Ei.

Inferential links from one proposition to another
can thus be implmented by choosing appropriate
values for the factors X and A. The posterior
odds of logical combinations of propositions is

computed from those of the components, e.g., if A
is the conjunction of BIl, B2, ... , the odds of A
is the minimum of the odds of any Bi. Each

relation can cause the odds of only one proposi-
tion to be altered directly; inferential relat-
ions "If E, then H" as before affect only H, and
logical relations as above affect only A.
Accordingly, the links representing relations are
thought of as directed into the affected proposi-
tion. Prospector requires that there be no cycles
in the inference net and allows observed
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probabilities to be given only for "evidence"
propositions that have no links directed into them.

3.2 Applying Prospector to the Model

Several difficulties arise when we attempt to
use the Prospector architecture for the model. The
more serious of these are consequences of
Prospector's tacit assumption that propositions
can be arranged in a hierarchy with inference
chains flowing smoothly from raw evidence through
to conclusions.

Consider, for example, the proposition
"stocks will fall". This appears as evidence in
Al but as a conclusion in several other assertions.
Again, assertions A2, A3, and A5 provide validities
for logical combinations of propositions, but
Prospector contains no mechanism that would allow
evidence to bear directly on such composite
propositions. Similar problems arise from A6, A7,
and A8, where logical combinations are on the
receiving end of the inferential links.

The steps taken to reformulate the example
are as follows: (1) The two propositions "stocks
will fall" and "interest rates will fall" that
appear both as evidence and as potential conclu-
sions are represented each by two nodes in the
net. The first is a conventional evidence node

with a very strong inferential link to the second
copy that is also the recipient of other inferen-
tial links. (2) Assertions such as A2 of the

form "A or B" are represented functionally as the
pair of inference relations "If A is false, then
B" and "If is B is false, then A". (3) Complex
assertions are broken down into more primitive
relations that have a single proposition as the
inference. For example, A6, of the form "A or

B if, and only if, C or D" becomes the set of
relations (and their symmetric counterparts)

If (A or B) and ~C, then D
If (A or B) and ~D, then
If A and ~B, then ~C
If A and ~B, then ~D

(4) Finally, all prior probabilities are taken by
default as 0.5 since the example does not specify
other values, and the strengths of the multipliers
A and A' are determined so that, if the relation
"If A, then B" has validity V, the posterior
probability of proposition B given A is also V.

Even with these changes, the reformulated
example violates a Prospector prohibition on
cycles in the net. These arise from strong inter-
connections among the five indicators, however,
and there seems to be no way of eliminating them.
Rather than abandon the enterprise, we will gener-
alize the Prospector algorithm to allow computa-
tion of posterior probabilities by relaxation,
terminating when changes are small so that cycles
will not cause infinite loops.

A Prospector-like system embodying this
modification was used to obtain the results shown
in Table T2. These results are deficient in at
least two respects. (1) They give no hint that
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the assertions from which the model was derived
are inconsistent. The assumptions that Prospector

makes will never produce an overconstrained system,

so any collection of evidence and relations will
lead to a solution. (2) The statement of a result
as a probability is fine when there is only one
result of interest, but can lead to problems in
cases such as this when we need a simultaneous
reading on several hypotheses. Suppose that the
model builder wished to predict the most likely
future state from the 2 possible in terms of the
five indicators. Converting the probabilities to
categorical form by thresholding as in Table T2
would lead to the conclusion that

stocks will fall;

interest rates will not fall:
taxes will not be raised;
bonds will rise; and

there will be a high deficit

These conclusions jointly violate the "only if"
part of assertion A7! Thus mapping from probal-
istic to categorical results for several variables
may produce conclusions that do not fit with the
evidence.

Table T2: Results from a Prospector-Style System

Posterior Categorical
Proposition Probability Interpretation
stocks- .64 T
interest- .08 r
taxes+ .27 F
bonds+ .59 T
deficit+ .66 T

In summary, in order to run our example on
Prospector we had to make significant alterations
to the formulation of the model and to modify
Prospector as well; even so, the results we
obtained were deficient. For all these reasons
it would seem that Prospector is not well-suited
to this application.

Konolige (1982) has developed an alternative
scheme for Bayesian inference that finesses many
of the difficulties above. This scheme, based on
information theory, allows non-directional prop-
agation among Local Event Groups, each character-
ized by a complete probability distribution. The
model could be run without modification, but the
deficiencies regarding inconsistencies and cate-
gorical interpretation would seem to remain.

4. INFERNO

INFERNO (Quinlan, 1983) is another inference

network system that was designed around four ideas:

1. General systems for uncertain inference
are better off without assumptions such
as conditional independence whose universal
validity is suspect (Pednault, Zucker,
and Muresan, 1981).

2. On the other hand, it should be possible

to assert that particular groups of
propositions exhibit relationships
such as independence.

3. There should be no restrictions on the
direction of information flow in the
network. (This was the cause of much
of Prospector's difficulty with the model.)

4. The consistency of the data should be
checked and the system should be able to
advise on alternative methods of rectify-
ing inconsistencies

The effect of these requirements has been to
lead away from Prospector-style formalisms.

4.1 Description of INFERNO

The first difference comes in the way that
the validity of a proposition is represented.
Instead of a single point probability, INFERNO
uses probability bounds; a proposition A is char-
acterized by a lower bound t(A) on the probability
P(A) of A and a lower bound f(A) on P(~A). This
approach has two advantages. The uncertainty of
our knowledge about A is apparent, being just the
difference between t(A) and 1 - f(A). Second, the
values of t(A) and f(A) are derived from evidence
tending to support and to deny A respectively, and
these values are retained and propagated
separately.

To achieve the non-directed propagation of
inferences as in point (3) above, INFERNO follows
WAND (Hayes-Roth, 1981) in viewing relations as
constraints on the respective validities of col-
lections of propositions. Changing a probability
bound of any proposition in the collection may
require some other bound to be altered to pre-
serve the constraint. For example, one form of
inferential relation, written as

A enables B with strength X

is intended to capture the (uncertain) relation
"If A, then B". This relation has two associated
constraints:

ti{B) # ti{A) » X
flay = 1 - {1 - f£(BYY / %

and thus can cause t(B) to be increased when t(A)

is increased, or f(A) to be increased when f(B)

is increased. Logical connections among proposi-

tions are handled in the same manner. The

relation defining A as the conjunction of BI, B2,
Bn gives four constraints: for all Bi,

tih) * 1 - Z;(1 - t{Bi)}

£ia) & £{Bi)

t(Bi) # t{a)

£(Bi) »  £(A) - Dy#i(l - £(Bj))

These and all other INFERNO constraints can
be derived from simple probability identities
without other assumptions.

This representation supports a probabilistic
concept of consistency. If t(A) + (f(A) > 1 for
some proposition A, the information about A is
inconsistent and one or both of the bounds must



be incorrect. Since the propagation constraints
are provably correct, the inconsistency can only
arise from contradictions implicit in the infor-
mation given to the system. INFERNO can suggest
ways to alter the data so as to make it consist-
ent. Such a suggestion, called a rectification,
identifies one or more assertions whose given
validity must be reduced and/or inferential rela-
tions that must be weakened. INFERNO can generate
the best n of the possible rectifications, ranking
them under the assumption that those involving the
least alteration of the original data are more
likely to be acceptable.

4.2 Applying INFERNO to the Model

When we wished to apply Prospector to the
model we first had to reformulate it to conform to
Prospector's architectural restrictions. INFERNO
does not impose any .such restrictions and the mode
can be run in its original form.

INFERNO immediately finds the set of assert-
ions to be inconsistent. Analysis of the various
interdependencies then leads it to propose four
alternative rectifications, each of which will
correct, all inconsistencies. Each rectification
consists of a single change:

Reduce the validity of assertion A4 to .71

Reduce the validity of assertion A2, to .81

Reduce the validity of assertion Al to .5

Weaken the only-if strength of assertion
A7 to .727

This analysis is intended to permit the user to
review selected fragments of the data with an eye
to making it consistent before trusting conclu-
sions based on it.

Let us suppose the user, after reflection,
decides that assertion Al is inapplicable in this
case and should be completely disregarded rather
than just having a lower validity. The consist-
ent set of probability bounds that INFERNO obtains
from A2 through A10 is shown in Table T3. In
general it is more difficult to place a categori-
cal interpretation on INFERNO's ranges than it was
in the case of Prospector's point probabilities,
but in this instance the mapping to (T,?,F) seems
reasonable. Notice, though, that the categorical
interpretation again violates a relatively strong
relation (A10) predicting that stocks will fall
if there is a high deficit!

To summarize: INFERNO avoids three of the
four difficulties that Prospector experienced with

the model. It allows assertions and inferences

Tahkle T3: PResults from INFERNO
Probability Categorical

Proposition Range Interpretation
stocks- .36 - .5 F
interest- 138 - .25 F
taxes+ .288 - .4 F
bonds+ .2BB - 1 ?
deficit+ .45 - .625 T
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about logical combinations of propositions and is
not put out by cycles in the net. It also makes
apparent any inconsistencies in the data and pro-
vides helpful aids to reviewing it. However, an
attempt to place categorical interpretations on
the results can once more lead to conclusions that
are not consistent with the data.

5. PONDEROSA

Ponderosa represents a departure from current
plausible inference systems because, although it
still deals with uncertain assertions and relations,
it docs not attempt to propagate validity measures
of any kind. Instead, it follows the approach of
trying to identify internally consistent subsets
of the information given to it. The merit of any
such division is then established as a function of
the validities of assertions that were not
included.

5.1 Description of the Approach

Each assertion in the model can be viewed as
a well-formed formula (wff) of the propositiona]l
calculus with a validity measure attached, or,
in the case of the "if and only if" assertions, a
pair of such formulas. Let C be a subset of the
wffs, where we disregard for the moment each wff's
validity measure. C is consistent if there is no
wff that can be both proved and disproved from C*
A subset is maximally consistent if it is consis-
tent but the addition of any other wff from the
original set will make it inconsistent.

Suppose now that the original set of wffs has
been divided into a maximally consistent subset
C and remainder R = {R1,R2, ..., Rnj and let V(Ri)
be the validity measure of Ri. One way of assess-
ing the situation would be to accept the wffs in
C together with all their (consistent) inferences
and to ignore the wffs in R as being either

erroneous (e.g., resulting from faulty observation)
or default assertions that do not apply in this
case. How plausible is this division? If it is

to be correct, each individual Ri must be incor-
rect or inapplicable. The probability that this
division is correct is then the probability of the
conjunction

P{~Rl& ~R2Z & ... & ~Rn)

If we again treat validity measures as probabili-
ties and use the identity

1 - {P(~A) + PI~B)} < PLA&B} < P(Aa),P(B)

we obtain the probability P({C,R) that the divisio
is correct as

1 -z; VirRi) & P{C,R] € min; (I - V(Ri}}

Since we are identifying walidity measures with
probabilities, P{C,R) represents the validity

*

This notion of consistency is stronger than the
one used for INFERNO in which it is permissible

to infer both A and ~A so long as the sum of the
upper bounds of P(A) and P(~A) does not exceed 1.
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of the division of the original set of wffs into
C and R

The number of potential splits of a set of
wffs into a maximally consistent subset and a
remainder grows exponentially with the size of the

set. The validity measures attached to proposi-
tions, however, provide methods of reducing the
computational load. First, we are clearly unin-

terested in any division whose validity is zero.
If any wff in R has a validity of 1, the inequal-
ity above gives a zero upper bound on the validity
of that division. Consequently, we need consider
only divisions in which all categorical assert-
ions are included in the consistent subset C.
Second, we do not wish to swamp the user with all
possible divisions, but rather to generate and
display only the best N of them for some small,
fixed N.

5.2 Algorithm for Finding Divisions

We now give a method for finding the best N_
maximally consistent subsets of the wffs. This
is necessary to demonstrate that Ponderosa's
approach is computationally feasible, but casual
readers might prefer to move directly to section
5.3.

Each proposition A is broken into two find-
ings "A is true" and "A is false". Associated
with each finding is a collection of justifications
for the finding, where a null justification
indicates that there is no reason to believe the
finding. Each justification for the finding is
either that the finding is an explicit assertion
given to the system, or that the finding is an
inference from a relation and one or more other
findings with non-null justifications. For
instance, the finding "B is false" and the relat-
ion "A implies B" together justify the finding
"A is false", and the logical relation "X is the
disjunction of A and B" together with both these
findings justifies "X is false".

Every datum is either a relation or a given
finding and all findings depend ultimately on the
data. Ponderosa keeps with each finding a
removal plan in the form of a collection of sets
of data, the idea being that all justifications
for this finding would evaporate if, and only if,
any one of these sets of data were removed. The
algorithms below depend on the observation that
a removal plan is isomorphic to a logical expres-
sion in disjunctive normal form. Let us map each
datum D to the predicate "D is excluded" and the
removal plan

{ {b11,D12,...}, {D21,D22,... }, o)
to the logical expression
(DIl is excluded and D12 is excluded and ... )
or (D21 is excluded and D22 is excluded and ...)

or

Then the expression is true if, and only if, one
of the sets of data making up the removal plan
has been discarded, in which case the plan is
satisfied.

The computation of removal plans keeps pace
with the propagation of inferences. Initially the
only findings with justifications are those that
appear in the data, and the removal plan for such
a finding is {{itself}}. Suppose now that a new
justification for finding F has been inferred from
a relation R and findings {si}. This justifica-
tion could be removed if either R or any of the
S's could be removed, as given by the plan (in
disjunctive form)

X = { R} v removal plan(Sl)
v removal plan(S2)
v

But previous justifications may have been found
for F and removal of F would require removal of
them as well. In this case, the new removal plan
for F becomes the conjunction of the old removal
plan and X.

When the data are inconsistent there will be
one or more propositions { Ai} that can be both
proved and disproved, i.e., one or more pairs of

findings "Ai is true" and "Ai is false", both with
non-null justifications and removal plans. Clear-
ly, the data would become consistent if, and only
if, one of each such pair of findings could be
removed. When put into disjunctive normal form,
the removal plan obtained as the conjunction over
i of
removal plan ("Ai is true")
v removal plan ("Ai is false")

is then just the set of remainders corresponding
to all possible maximally consistent sets.

The final problem is to find the best divis-
ions without computing all of them. The validity
of a division is known only as a range, but div-
isions can be ranked approximately by comparing
the midpoints of their ranges. Ponderosa com-
putes the overall removal plan above in a depth-
first fashion so that, if a partial remainder is
generated that is already more implausible than
the best N_ complete remainders found so far, all
possible remainders containing the partial one are
skipped.

5.3 Applying Ponderosa to the Model

As was the case with INFERNO, Ponderosa
contains no restrictions that would require the
model to be reformulated. Once again the infor-
mation in assertions Al through A10 is found to
be inconsistent and Ponderosa generates the six
possible divisions of the corresponding wffs into
a maximally consistent subset and a remainder.
The six remainders are displayed in Table T4
together with the bounds on the validity of the
divisions and the midpoints of these ranges.
Notice that, whereas INFERNO would accept the
weakening of just "stocks will fall" as sufficient
to remedy the inconsistencies, Ponderosa uses a
stronger definition of consistency and finds that
removal of assertion Al alone is not enough.



Table T4: Ponderosa Remainders
Validity
Remainder Low Mid High
ATb stocks- only if .2 .2 .2
bends+ & taxes+
A2 ~taxes+ v stocks- & -15 .15 .15
interest—
Al stocks- ] 125 245
A4 ~interost-
Al stocks- a .1 .2
AlD if deficitt Lthen stocks-
Al stocks- O 075 15
A5  taxest v deficit+
hd “interest- 4] 025,05

AB L interest~ then
~stocks- v ~honds+

Ponderosa does not automatically select the
"best" or any other maximally consistent .subset as
being correct. Its function stops with pointing
out to the user the possibilities that exist for
making his information consistent, using the
validity ranking only as a filter and heuristic
guide. The user's specialist knowledge may place
a value on various subsets of the information that
differs from this simple plausibility model. In
this instance, let us suppose that, the fourth
remainder (assertions Al and AIO) is selected as
the least, valuable of the six. When these assert-
ions are deleted, we have a maximally consistent
subset of the data whose implications for the five
indicators appear in Table T5.

Table T5: Consistent Inferences
Proposition validity
stocks-
interest-
taxcs+
bonds+
deficit+

AT m

6, CONCLUSION

This paper has focused on a class of plausible
reasoning tasks with three characteristics: incon-
sistent data, non-hierarchical interaction of
concepts, and the need to obtain simultaneous
readings on several hypotheses. A simple model
with these attributes was used to demonstrate that
existing systems for inexact inference are not
suited to this kind of task. We first examined
Prospector as the quintessential example of a
Bayesian system and showed that both the model and
Prospector itself would have to be altered to get
any results at all. Even then, the inconsistency
inherent in the given model was not made evident
and a straightforward interpretation of the results
turned out to be at variance with the model.
INFERNO, a more tolerant non-Bayesian system,
fared better in that the model did not have to be
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changed and its inconsistencies were discovered,
but once more the attempt to wring a categorical
interpretation from the results produced an
anomaly. Ponderosa was introduced as a system to
perform uncertain inference by finding maximal
consistent subsets of the model, leading to
results that are always categorical and that agree
with whatever reduced model is used.

There are clearly other classes of plausible
reasoning tasks to which Ponderosa is unsuited.
If all the data is consistent or if there is a
single proposition about which information is
sought, the probability-bounding approach of
INFERNO gives a better appraisal of the confidence
with which the results can be accepted. This sug-
gests an interesting possibility for combining
the talents of Ponderosa and INFERNO. First,
Ponderosa would be used to find whether the data
is categorically consistent and, if not, to help
the user choose a maximally consistent subset of

it. INFERNO could then be run with this subset to
supplement Ponderosa's categorical inferences with
probability bounds. For instance, in the previous

section we selected a maximally consistent subset
A2 through A9 of the assertions in Table TIl. The
analysis of this subset with INFERNO is shown in
Table TG. It now becomes apparent that, while
categorical inferences from the subset justify
both the predictions that bonds will rise and that
there will be a high deficit, the former conclu-
sion has weaker probability bounds as a consequence
of its derivation from less valid assertions.

Table Té: Combining INFERNO and Ponderosa

Categorical Probahility
Propeositicon validity Bounds
stocks- ¥ o - .5
interest- I .35 = .25
taxes+ P L5 - 4
bonds+ T .11 - 1
deficit+ T .45 - .79

Ponderosa has been implemented in Pascal and
C for a VAX 11/780 minicomputer, based on a
similar implementation of INFERNO. The prototype
has been applied only to small tasks with less
than 100 relations and propositions, and on these
it is fast enough to be useful but considerably
slower than INFERNO. For comparison, where
INFERNO required just over a second to run the
model, including finding rectifications, Ponderosa
needed about 6 seconds.
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