
A Method of Computing Generalized Bayesian Probability Values 
For Expert Systems 

Peter Cheese man 

SRI International, 333 Ravenswood Road 
Menlo Park, Cali fornia 94025 

A b s t r a c t 

This paper presents a new method for calculating the 
conditional probabil i ty of any multi-valued predicate given par­
ticular information about the individual case. This calcula­
t ion is based on the principle of Maximum Entropy (ME), 
sometimes called the principle of least informat ion, and gives 
the most unbiased probabil i ty estimate given the available 
evidence. Previous methods for computing maximum entropy 
values shows that they are either very restrictive in the probabil-
istic information (constraints) they can use or combinatorial ly 
explosive. The computational complexity of the new procedure 
depends on the inter-connectedness of the constraints, but in 
practical cases it is small. In addit ion, the maximum entropy 
method can give a measure of how accurately a calculated con­
dit ional probabil i ty is known. 

§1 I n t r o d u c t i o n 

Recently computer-based expert systems have been de­
veloped that store probabilistic knowledge obtained from ex­
perts and use this knowledge to make probabilistic predictions 
in specific cases. Similar ly, analysis of data, such as question­
naire results, can reveal dependencies between the variables that 
can also be used to make probabilistic predictions. The essen­
t ial problem in such systems is how to represent all known de­
pendencies and relationships, and how to use such information 
to make specific predictions. For example, knowledge of inter­
relationships between factors such as age, sex, diet, cancer risk 
etc. should allow the prediction of say an individual's cancer 
risk, given informat ion on the individual. However because of 
possible interactions between the factors, it is not sufficient to 
combine the effects of each factor separately. 

The major problem faced by all such probabilistic in­
ference systems is that the known constraints usually under-
constrain the probabil i ty space of the domain. For example, if 
the space consists of 20 predicates, then 2 2 0 — 1 jo in t probabil­
ity constraints are needed to ful ly specify all the probabilit ies. 
When a space is under- constrained, any desired probabi l i ty 
usually has a range of possible values. The problem is to find 
a unique probabil i ty value w i th in the allowed range that is the 
best estimate of the true probabi l i ty, given the available infor­
mat ion, and to determine how reliable this estimate is. Such 
an estimate is given by the method of maximum entropy (ME) , 
sometimes called the method of least informat ion. This method 
gives a probabil i ty value that is the least commitment value, 
subject to the constraints. To choose any other value has been 
shown by Shore and Johnson (1080) to be inconsistent, because 

any other choice would imply more information than was given 
in the problem. 

This paper focuses on a type of expert system in which 
all the probabil i ty constraints are in the form of conditional 
probabilities or jo in t probabilit ies (sometimes called marginal 
probabilities because they occur in the margins of contingency 
tables). Such probabil i ty constraints may have come from an 
expert or from an analysis of data that has shown that part icular 
subsets of factors are significantly correlated. The problem of 
making probabilistic predictions in under-constrained probabil­
ity spaces is of sufficient importance that many solutions have 
been tr ied. One method is to acknowledge that the desired 
probabilities are under constrained and return the range of pos­
sible values consistent w i th the known constraints (rather than 
a point value). Such an approach is impl ic i t in the method 
proposed by Shafer (1979). 

Another method is to make the strong assumption of 
conditional independence when combining different evidence. 
This is the assumption behind PROSPECTOR (Duda et al, 
197(5) and Dependence Trees (Chow and L iu 1968) and used 
most recently by Pearl (1982). Use of the conditional indepen­
dence assumption wi th given conditional probabilit ies is usually 
sufficient to constrain the desired probabilit ies to a unique value. 
However, this assumption is not always satisfied by actual data 
and can lead to inconsistent and over-constrained probabil i ty 
values, as pointed out by Konolige (1979). 

The main purpose of this paper is to introduce a new 
method for computing the maximum entropy probabil i ty of a 
predicate of interest, given specific evidence about related predi­
cates, and subject to any linear probabil i ty constraints. This 
method avoids the combinatorial explosion inherent in previous 
methods wi thout imposing strong l imitat ions on the constraints 
that can be used, and it is therefore useful for computer-based 
expert systems. 

§2 The Maximum Entropy Method 

The method of maximum entropy was first applied by 
Jaynes to the statistical mechanics problem of predict ing the 
most likely state of a system given the physical constraints 
(e.g. conservation of energy). In Jaynes (1908), the maximum 
entropy method was used to provide pr ior probabilit ies for a 
Bayesian analysis. Lewis (1959) applied the method of least 
information (an equivalent method) to the problem of f inding 
the best approximation to a given probabi l i ty d is t r ibut ion baaed 
on knowledge of some of the jo in t probabilit ies (i.e., constraints 
on the possible distr ibut ions). 
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These constraints are given explicitly because their values 
differ significantly from their expected ME value. Such 
significant constraints could be specified by experts or found by 
a program that examines data looking for significant combina­
tions. The main reason for calculating ME probabil ity values 
on the basis of the known constraints is to be able to find any 
probabil i ty value without having to store the entire probabil­
ity space. Only linear constraints involving equalities have been 
given above, but the ME method can be extended to include non­
linear constraints as well. Note that (2), for example, is itself 
a set of constraints one for each value of i given. Also it is as­
sumed here that if either the numerator or the denominator of a 
conditional probabil i ty constraint is given separately (as a jo int 
probabil ity constraint), then the conditional probabil i ty con­
straint is replaced by the equivalent jo int probabil i ty (marginal) 
constraints. The last constraint indicates that a probabil i ty as­
signment to any logical formula is equivalent to a probabil i ty 
assignment to a subset of the total probabil i ty space, and so 
forms a simple linear constraint. 

The principle of maximum entropy requires that a unique 
set of values for Pijki be found that satisfies the given constraints 
and at the same time maximizes the value of // given by (1). 
A method for calculating this ME distr ibut ion is discussed in 
the following section. The reasons for accepting ME probabil i ty 
values as the best estimate of the true probabil i ty ane discussed 
in Javnes (1979) and Lewis (1959), and may be summarized as 
follows. In expert system applications, when all the significant 
constraints (e.g., marginals and conditionals) have been found, 
all the information about the domain is contained in these con­
straints. Any ME probabil i ty value calculated w i th these con­
straints has distr ibuted our uncertainty (H) as evenly as pos­
sible over the underlying probabil i ty space in a way consistent 
with the constraints. Returning any non-ME value implies that 
extra information is being assumed because H is no longer a 
maximum. 

The shape of a particular H distr ibut ion around the ME 
value indicates how well the particular calculated probabil i ty 
is constrained by the available information. A strongly peaked 
curve indicates that the value is highly localized around the 
ME value, whereas a relatively flat curve indicates that very 
l i t t le information about the calculated probabil i ty is available— 
i.e., it is essentially unknown. The difference between H for an 
assumed probabil i ty and H maximum (which occurs for the ME 
probabil i ty value) gives the amount of information assumed by 
choosing a non-ME probabi l i ty value. 

§3 A New Method of Calculating Maximum Entropy 
Distributions 

The first use of maximum entropy (least information) for 
estimating probabi l i ty distr ibut ions in computer science is due 
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to Lewis (1959). He showed that if the given probabilit ies are 
conditionally independent then the underlying probabil i ty space 
can be represented by simple product formulas and that this is 
the maximum entropy dist r ibut ion. This product form is the 
basis of Dependence Trees (Chow and L iu 1968) and the tree 
based Bayesian update method of Pearl (1982). An iterative 
techinique for computing the ME distr ibut ion given some of the 
jo int probabilit ies wi thout requiring conditional independence 
was developed by Brown (1959). This method was extended by 
Ku and Kul lback (1969), but both authors put strong restric­
tions on the constrints that must be given, and their method 
combinatorial ly explodes if the space of predicates is large. The 
new method of computing ME distr ibutions presented in this 
section avoids these difficulties. 

The problem of opt imizing a continuous function subject 
to constraints is a well-known one in applied mathematics and 
a general solution is the method of Lagrange mult ipl iers. The 
specific problem of maximizing the entropy function (1) sub­
ject to constraints was first applied to the domain of statistical 
mechanics, and specifically to jo in t (marginal) constraints by 
Gokhale and Kul lback (1978). This section derives the neces­
sary formulae in a form suitable for efficient computat ion. 

The first step is to form a new entropy function as defined 
below: 

Equation (7) gives the ME distr ibut ion in terms of the Xs, 
so if the values of all Xs can be found, the ME space is known 
impl ic i t ly . Note that equation (6) is the so-called loglinear form, 
but here this form is a direct consequence of the maximization 
of // rather than an ad hoc assumption. From (5) it is clear 
that there is only one X per constraint and that these are the 
only unknowns. If equation (7) is substituted into (8-9) etc., 
(i.e., into each of the given constraints), then the resulting a set 
of simultaneous equations can be solved for the Xs. It is more 
convenient first to apply the fol lowing transformations: 

i.e., the basic distr ibut ion Pijki is given impl ic i t ly as a product of 
as. Equation (10) is the key to the new ME calculation method, 
as it impl ic i t ly gives the underlying probabi l i ty space in terms of 
a product of parameters (the as), and there are only as many aS 
as there are constraints. Note that for any part icular P i jki, only 
those aS wi th the corresponding indices appear in the product. 
W i th these substitutions, equation (8) becomes: 

and so on (one equation for each constraint). 

This set of simultaneous equations can be solved by any 
standard numerical techniques. However, in practice it is more 
common to need to update an existing solution by adding a 
new constraint. Such an update introduces a new corresponding 
(nonunity) a, and causes adjustments to some of the existing as. 
Even when a set of constraints is to be added, they can be intro­
duced sequentially, thus an update method is always sufficient 
to compute the as. A suitable update method is to assume ini­
t ial ly that all the as have their old value, then calculate a value 
for the new a f rom the new constraint equation. This new value 
is inserted into each of existing constraint equations in t u rn , and 
revised a values are calculated for the a corresponding to each 
constraint. This process is repeated unt i l all the a values have 
converged on their new values. Current investigations are t ry ing 
to determine which as change dur ing update, the convergence 
of the method, and its computational cost. 

§4 Probabilistic Inference 

The previous section describes a method for representing 
( impl ic i t ly) the underlying ME probabi l i ty d is t r ibut ion. This 
section describes how to use such a representation to calculate 
the condit ional probabi l i ty of any desired predicate, given in­
format ion about a specific case. Such a computat ion requires 
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resulting . Abo , the conditional probabi l i ty evaluation proce-
dure is nondirectional because, unlike other expert systems, this 
procedure allows the conditional probabi l i ty of any predicate to 
be found for any combination of evidence. Tha t is, it has no 
specially designated evidence and hypothesis predicates. 

The above probabil i ty evaluation method can be extented 
to include the case where the evidence in a part icular case is 
in the form of a probabil i ty d istr ibut ion over the values of a 
predicate that is different from the prior d ist r ibut ion, rather 
than being informed that a part icular value is true. In this 
case, it is necessary to compute new as that correspond to the 
given distr ibut ion and use these new as in place of the prior 
corresponding as in probabil i ty evaluations such as those above. 
For instance, if a new distr ibut ion is given for P(Ai), then the 
new as are given by: 

Note that the revised a values used in the above method are just 
mult ipl icative factors whose value is identical to the correction 
factors of Lemmar and Barth (1982), and so the methods are 
equivalent in this case. The major difference is that here the 
probabil i ty space is represented impl ic i t ly by the as, and the 
corresponding summation procedure wi l l work even when the 
space cannot be part i t ioned. 

The above conditional probabil i ty evaluation procedure (a 
type of expert system inference engine) has been implemented 
in LISP and has been tested on many well known ME examples. 
In ME conditional probabil i ty calculations when given specific 
evidence, it has been found that only short strong chains of 
prior jo int or conditional probabilit ies can significantly change 
the probabil i ty of a predicate of interest f rom its prior value. 

When a point probabil i ty value is computed by the 
proposed method, it is useful to also estimate its accuracy as 
well. There are two sources of uncertainty in a computed ME 
value. One is the possibility that the known constraints used 
are not the only ones operating in the domain. This type of 
uncertainty is hard to quantify and depends on the methods 
used to Dud the known constraints. If a constraint search is sys­
tematic (over the known data), then we can be confident that 
we know all the dependencies that can contribute to a specific 
ME value. If a constraint search is ad hoc, it is always possible 
that a major contr ibut ing factor has been overlooked. If any 
important factors are missing, the calculated ME probabil i ty 
values wil l differ significantly f rom the observed values. If such 
deviations are found, it indicates that factors are missing, and 
an analysis of the deviations often gives a clue to these missing 
factors. 

The other source of uncertainty is the accuracy wi th which 
the constraints are known. This accuracy depends on the size 
of the sample from which the constraints were extracted or the 
accuracy of the expert's estimates. This uncertainty is also hard 
to quantify, but it provides a lower l imi t on the accuracy of any 
calculated value. In the analysis given here, the constraints were 
assumed to be known w i th complete accuracy. 
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§5 Summary 

This paper presents a new method of computing maxi­
mum entropy distr ibutions and shows how to use these distr ibu­
tions and some specific evidence to calculate the conditional 
probabil ity of a predicate of interest. Previous methods of com­
puting maximum entropy distr ibutions are either too restrictive 
IN the constraints allowed, or too computationally costly in non-
tr iv ia l cases. The new method avoids both these difficulties. 
Justifications for preferring maximum entropy values are given, 
as are ways of estimating their certainty. 

Further research is necessary to further improve the 
efficiency of this method, part icularly by automatically finding 
the opt imal ∑ evaluation order and discovery of approxima­
tions that would allow the exclusion from the summation of 
any predicates that could not significantly effect the final result. 
Such improvements should increase the usefulness of this ME 
computat ion technique as an expert system inference engine. 
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