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Abstract

This paper presents a new method for calculating the
conditional probability of any multi-valued predicate given par-
ticular information about the individual case. This calcula-
tion is based on the principle of Maximum Entropy (ME),
sometimes called the principle of least information, and gives
the most unbiased probability estimate given the available
evidence. Previous methods for computing maximum entropy
values shows that they are either very restrictive in the probabil-
istic information (constraints) they can use or combinatorially
explosive. The computational complexity of the new procedure
depends on the inter-connectedness of the constraints, but in
practical cases it is small. In addition, the maximum entropy
method can give a measure of how accurately a calculated con-
ditional probability is known.

§1 Introduction

Recently computer-based expert systems have been de-
veloped that store probabilistic knowledge obtained from ex-
perts and use this knowledge to make probabilistic predictions
in specific cases. Similarly, analysis of data, such as question-
naire results, can reveal dependencies between the variables that
can also be used to make probabilistic predictions. The essen-
tial problem in such systems is how to represent all known de-
pendencies and relationships, and how to use such information
to make specific predictions. For example, knowledge of inter-
relationships between factors such as age, sex, diet, cancer risk
etc. should allow the prediction of say an individual's cancer
risk, given information on the individual. However because of
possible interactions between the factors, it is not sufficient to
combine the effects of each factor separately.

The major problem faced by all such probabilistic in-
ference systems is that the known constraints usually under-
constrain the probability space of the domain. For example, if
the space consists of 20 predicates, then 22° — 1 joint probabil-
ity constraints are needed to fully specify all the probabilities.
When a space is under- constrained, any desired probability
usually has a range of possible values. The problem is to find
a unique probability value within the allowed range that is the
best estimate of the true probability, given the available infor-
mation, and to determine how reliable this estimate is. Such
an estimate is given by the method of maximum entropy (ME),
sometimes called the method of least information. This method
gives a probability value that is the least commitment value,
subject to the constraints. To choose any other value has been
shown by Shore and Johnson (1080) to be inconsistent, because

any other choice would imply more information than was given
in the problem.

This paper focuses on a type of expert system in which
all the probability constraints are in the form of conditional
probabilities or joint probabilities (sometimes called marginal
probabilities because they occur in the margins of contingency
tables). Such probability constraints may have come from an
expert or from an analysis of data that has shown that particular
subsets of factors are significantly correlated. The problem of
making probabilistic predictions in under-constrained probabil-
ity spaces is of sufficient importance that many solutions have
been tried. One method is to acknowledge that the desired
probabilities are under constrained and return the range of pos-
sible values consistent with the known constraints (rather than
a point value). Such an approach is implicit in the method
proposed by Shafer (1979).

Another method is to make the strong assumption of
conditional independence when combining different evidence.
This is the assumption behind PROSPECTOR (Duda et al,
197(5) and Dependence Trees (Chow and Liu 1968) and used
most recently by Pearl (1982). Use of the conditional indepen-
dence assumption with given conditional probabilities is usually
sufficient to constrain the desired probabilities to a unique value.
However, this assumption is not always satisfied by actual data
and can lead to inconsistent and over-constrained probability
values, as pointed out by Konolige (1979).

The main purpose of this paper is to introduce a new
method for computing the maximum entropy probability of a
predicate of interest, given specific evidence about related predi-
cates, and subject to any linear probability constraints. This
method avoids the combinatorial explosion inherent in previous
methods without imposing strong limitations on the constraints
that can be used, and it is therefore useful for computer-based
expert systems.

§2 The Maximum Entropy Method

The method of maximum entropy was first applied by
Jaynes to the statistical mechanics problem of predicting the
most likely state of a system given the physical constraints
(e.g. conservation of energy). In Jaynes (1908), the maximum
entropy method was used to provide prior probabilities for a
Bayesian analysis. Lewis (1959) applied the method of least
information (an equivalent method) to the problem of finding
the best approximation to a given probability distribution baaed
on knowledge of some of the joint probabilities (i.e., constraints
on the possible distributions).



Ireland and Kullback (1988) applied the migimum discrimina-
tion information measure (yet another method equivalent to
maxivium entropy) to find the closest approximating probabilivy
distribution consistent with the known marginals in contingency
table apalysis. Konolige (1979} applied the least information
method to expert systems, and this analysis kas been exteoded
by Lemmar and Barth (1982).

The mathematical framework used in this paper is defined
below.  Although the definitions are given for a space of four
parametcrized predicates, the framework applies to any number
of predicates. The predicates are A, B,C, and D where:

A has possible values A; 1=!1le!;
B kas possible values B;  f=11lo J;
€' has possible values Cy k=1 to K ;
) haw possible values D, =110 L,

and £’y is the probability that A bas value i, B has value 7,
(" has value k, and 2 has value L

For example, A might be the predicate “soil-type™ where A; has
the value “clay,” Az is “silt” and so on. Each value {category) of
a predicate is assumed to be muteally exclusive and exhaustive
of the other categories. Any predicate that is oot currently
exhaustive can be made so by adding an extra category “other”
for auything that dees not fit the existing categories. In terms
of these predicates, the eotropy function (H) 13 defined below:

I ==Y Pyju Log(Pyjn) (1)

ki

H s o measure of the uncertainty inherent in the component
probxbilities. For example, if one of the Py values is I (and so
all the rest are zero), then H is zero—i.e., there ia no uncertainty,
as expected. Conversely, H can be shown to be a maximum
when all the Fijp; values are equal (if there are no constraints)—
this represents a state of maximum uncertainty.

Beeause the Fyjpg values are probabilities, they must obey
the follawing constraint:

EPUN =1

Y

In addition. any subset of Lhe lollowing constraints may be
asserted:

Joints; such as

E Pijui = P} (2)
T
3 Piju = PGP (3)
11
Z Pijni = PRSP (4)

Pijur = apecific  value;

ete.,
conditional probabilities, such aa:

P TuPu
P(Ag|By) mm T35 e ki M
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and probability assignment to arbitrary logical funetions, e.g.
P{A;=28;) == 2z (logical implication)
iwplying E P';JB =1—-z (f5£3)
J
IS

ZP'.'JM=1—I

Jkt

implying

These constraints are given explicitly because their values
differ significantly from their expected ME value. Such
significant constraints could be specified by experts or found by
a program that examines data looking for significant combina-
tions. The main reason for calculating ME probability values
on the basis of the known constraints is to be able to find any
probability value without having to store the entire probabil-
ity space. Only linear constraints involving equalities have been
given above, but the ME method can be extended to include non-
linear constraints as well. Note that (2), for example, is itself
a set of constraints one for each value of i given. Also it is as-
sumed here that if either the numerator or the denominator of a
conditional probability constraint is given separately (as a joint
probability constraint), then the conditional probability con-
straint is replaced by the equivalent joint probability (marginal)
constraints. The last constraint indicates that a probability as-
signment to any logical formula is equivalent to a probability
assignment to a subset of the total probability space, and so
forms a simple linear constraint.

The principle of maximum entropy requires that a unique
set of values for Pj,; be found that satisfies the given constraints
and at the same time maximizes the value of // given by (1).
A method for calculating this ME distribution is discussed in
the following section. The reasons for accepting ME probability
values as the best estimate of the true probability ane discussed
in Javnes (1979) and Lewis (1959), and may be summarized as
follows. In expert system applications, when all the significant
constraints (e.g., marginals and conditionals) have been found,
all the information about the domain is contained in these con-
straints. Any ME probability value calculated with these con-
straints has distributed our uncertainty (H) as evenly as pos-
sible over the underlying probability space in a way consistent
with the constraints. Returning any non-ME value implies that
extra information is being assumed because H is no longer a
maximum.

The shape of a particular H distribution around the ME
value indicates how well the particular calculated probability
is constrained by the available information. A strongly peaked
curve indicates that the value is highly localized around the
ME value, whereas a relatively flat curve indicates that very
little information about the calculated probability is available—
i.e., it is essentially unknown. The difference between H for an
assumed probability and H maximum (which occurs for the ME
probability value) gives the amount of information assumed by
choosing a non-ME probability value.

§3 A New Method of Calculating Maximum Entropy
Distributions

The first use of maximum entropy (least information) for
estimating probability distributions in computer science is due
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to Lewis (1959). He showed that if the given probabilities are
conditionally independent then the underlying probability space
can be represented by simple product formulas and that this is
the maximum entropy distribution. This product form is the
basis of Dependence Trees (Chow and Liu 1968) and the tree
based Bayesian update method of Pearl (1982). An iterative
techinique for computing the ME distribution given some of the
joint probabilities without requiring conditional independence
was developed by Brown (1959). This method was extended by
Ku and Kullback (1969), but both authors put strong restric-
tions on the constrints that must be given, and their method
combinatorially explodes if the space of predicates is large. The
new method of computing ME distributions presented in this
section avoids these difficulties.

The problem of optimizing a continuous function subject
to constraints is a well-known one in applied mathematics and
a general solution is the method of Lagrange multipliers. The
specific problem of maximizing the entropy function (1) sub-
ject to constraints was first applied to the domain of statistical
mechanics, and specifically to joint (marginal) constraints by
Gokhale and Kullback (1978). This section derives the neces-
sary formulae in a form suitable for efficient computation.

The first step is to form a new entropy function as defined
below:

H = =3 Piyu LogPiju + '\(l -y P-’,‘u)+

1kt it
J\.'(P':l -y Pijt:)+>~?f(P{Alea)z Piam — Z Pzah:)+- -
JAt Y] Y
(8}

The next. step is to equate the derivative of (5) {with respect 1o
each variable) to zero, giving:

_____ =‘—'—LOFP-‘ju—l—l—li—---—ksj—---—kgs R}

implying  LogPijur == —[Ag + M+ -+ Mg+ +ME +--]
where (kg =X+ 1)

(6)

of Pyymezp—(ho+Xi+-+r5+-+ T+ (7)

oH’
and - =0 = Prjpg =1 ®
dho %
oH'
'5: o= ) = EP““ -— P“‘ (9)
il
an’

g =0 = %:PN - P(Aﬂws)%':f’m {9}

ele.

Equation (7) gives the ME distribution in terms of the Xs,
so if the values of all Xs can be found, the ME space is known
implicitly. Note that equation (6) is the so-called loglinear form,
but here this form is a direct consequence of the maximization
of // rather than an ad hoc assumption. From (5) it is clear
that there is only one X per constraint and that these are the
only unknowns. If equation (7) is substituted into (8-9) etc.,
(i.e., into each of the given constraints), then the resulting a set
of simultaneous equations can be solved for the Xs. It is more
convenient first to apply the following transformations:

1)

oy o= e ete.

= FPijel = aporg- - -0y _agss_ . (10)

i.e., the basic distribution Py, is given implicitly as a product of
as. Equation (10) is the key to the new ME calculation method,
as it implicitly gives the underlying probability space in terms of
a product of parameters (the as), and there are only as many aS
as there are constraints. Note that for any particular Pjy, only
those aS with the corresponding indices appear in the product.
With these substitutions, equation (8) becomes:

a0 Z @@y @i ik =]
ijkl

and (9) becomes:

A_AB AC BC
afagjy E okoiopag, - = P(Az|B;) E OO OOk Gy
] ikt

and so on (one equation for each constraint).

This set of simultaneous equations can be solved by any
standard numerical techniques. However, in practice it is more
common to need to update an existing solution by adding a
new constraint. Such an update introduces a new corresponding
(nonunity) a, and causes adjustments to some of the existing as.
Even when a set of constraints is to be added, they can be intro-
duced sequentially, thus an update method is always sufficient
to compute the as. A suitable update method is to assume ini-
tially that all the as have their old value, then calculate a value
for the new a from the new constraint equation. This new value
is inserted into each of existing constraint equations in turn, and
revised a values are calculated for the a corresponding to each
constraint. This process is repeated until all the a values have
converged on their new values. Current investigations are trying
to determine which as change during update, the convergence
of the method, and its computational cost.

§4 Probabilistic Inference

The previous section describes a method for representing
(implicitly) the underlying ME probability distribution. This
section describes how to use such a representation to calculate
the conditional probability of any desired predicate, given in-
formation about a specific case. Such a computation requires



summing over the probability space without ereating a com-
binstorial explosion, as shown below.

Consider a hypothetical example with predicates
A 3. Cy, Dy and Fy, where each A; for example, could repre-
sent. different age categories. If prior probabilities (constraints)
are given for some of the predicate values and prior joint and
conditional probabilities for combinations of values of different
predicates, then the corresponding @ values can be computed
as explained in the previous section. The resulling probability
space for a particular combination of given prior probabilities
might be:

Fijrim = 0000704610000 4 010 imOrmEimjim
If the prior probability of say a particular A; is required (ie., it

i» oot one of the given priora) then the value is given by:

FLA;) = ooy Z OO O Oy O Ok @ 10 O o O [ &
jkim

o S St Eore( S

k !

Here, 1he 3 has been recursively decomposed into its com-
ponept. partial sums allowing each partial sum Lo be computed
av seob us possible and the resulting matrix then becoming a
term in Lhe next outer-most .. In the above example, this
sumniation method reduces the cost of evaluating Ejﬂm from
O[J*K*L*M) (where J,.,M are the ranges of 3, .., ¥ respectively)
to O{I*1.*M) ie., the cost of evaluating the inmermost 5.
Note that a different order of decomposition can produce higher
costs i, the cost of 3 evaluation is dependent on the evalua-
tiot order, wndd is a minimum when sum of the sizes of the inter-
mediate matrices is a minimum. When there are a large number
of predicates, the total computational cost of evaluating a } is
ususlly dominated by the largest intermediate matrix, whose
size v partly dependent on the degree of interconnectedness of
the predicate being summed over and the order of evaluation,
The above summation procedure is also useful in updating the
previous as when given pew prior probabilities. In the above,
ap 18 a normalization tonstani that ¢an be determined, once all
vatues of P[A;) have been evaluated, from the requirement that
3 P{A;) = 1. This pormalization makes prior evaluation of
g UDHecessary.

To finc the conditional probability of a predicate (or joint
conditional probability of a set of predicates), all that is needed
is to drep those predicates whose values are given from the total
3. For example, to find the conditienal probability of A; given
that [}y and F3 are true, the correct formula is:

P(AifDg, E3) = ﬂﬂiz a;manafapfolfalRE
El

*
= ﬁa.-(z “-f‘-‘fzpﬂfaz"?egﬂ)(z mmmf—"s)
§ [

where @ is a normalization constapt. Note that the more
evidence Lhere is copeerning a particular case, the smaller the
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resulting . Abo, the conditional probability evaluation proce-
dure is nondirectional because, unlike other expert systems, this
procedure allows the conditional probability of any predicate to
be found for any combination of evidence. That is, it has no
specially designated evidence and hypothesis predicates.

The above probability evaluation method can be extented
to include the case where the evidence in a particular case is
in the form of a probability distribution over the values of a
predicate that is different from the prior distribution, rather
than being informed that a particular value is true. In this
case, it is necessary to compute new as that correspond to the
given distribution and use these new as in place of the prior
corresponding as in probability evaluations such as those above.
For instance, if a new distribution is given for P(A), then the
new as are given by:

P:-‘(ncw)

atluew) = allold) Pa(old)

Note that the revised a values used in the above method are just
multiplicative factors whose value is identical to the correction
factors of Lemmar and Barth (1982), and so the methods are
equivalent in this case. The major difference is that here the
probability space is represented implicitly by the as, and the
corresponding summation procedure will work even when the
space cannot be partitioned.

The above conditional probability evaluation procedure (a
type of expert system inference engine) has been implemented
in LISP and has been tested on many well known ME examples.
In ME conditional probability calculations when given specific
evidence, it has been found that only short strong chains of
prior joint or conditional probabilities can significantly change
the probability of a predicate of interest from its prior value.

When a point probability value is computed by the
proposed method, it is useful to also estimate its accuracy as
well. There are two sources of uncertainty in a computed ME
value. One is the possibility that the known constraints used
are not the only ones operating in the domain. This type of
uncertainty is hard to quantify and depends on the methods
used to Dud the known constraints. If a constraint search is sys-
tematic (over the known data), then we can be confident that
we know all the dependencies that can contribute to a specific
ME value. If a constraint search is ad hoc, it is always possible
that a major contributing factor has been overlooked. If any
important factors are missing, the calculated ME probability
values will differ significantly from the observed values. If such
deviations are found, it indicates that factors are missing, and
an analysis of the deviations often gives a clue to these missing
factors.

The other source of uncertainty is the accuracy with which
the constraints are known. This accuracy depends on the size
of the sample from which the constraints were extracted or the
accuracy of the expert's estimates. This uncertainty is also hard
to quantify, but it provides a lower limit on the accuracy of any
calculated value. In the analysis given here, the constraints were
assumed to be known with complete accuracy.
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§5 Summary

This paper presents a new method of computing maxi-
mum entropy distributions and shows how to use these distribu-
tions and some specific evidence to calculate the conditional
probability of a predicate of interest. Previous methods of com-
puting maximum entropy distributions are either too restrictive
IN the constraints allowed, or too computationally costly in non-
trivial cases. The new method avoids both these difficulties.
Justifications for preferring maximum entropy values are given,
as are ways of estimating their certainty.

Further research is necessary to further improve the
efficiency of this method, particularly by automatically finding
the optimal Y evaluation order and discovery of approxima-
tions that would allow the exclusion from the summation of
any predicates that could not significantly effect the final result.
Such improvements should increase the usefulness of this ME
computation technique as an expert system inference engine.
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