
Learning Effective Search Heuristics1 

Pat Langley 
The Robotics Institute 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 USA 

ABSTRACT 

SAGE.2 is a production system that improves its search 
strategies with practice. The program incorporates four different 
heuristics for assigning credit and blame, and employs a 
discrimination process to direct its search through the space of 
move-proposing rules. The system has shown its generality by 
learning search heuristics in five different task domains. In 
addition to improving its search behavior on practice problems, 
SAGE.2 was able to transfer its expertise to scaled-up versions 
of a task, and in one case transferred its acquired search 
strategy to problems with different initial and goal states. 

INTRODUCTION 

The ability to search is central to intelligence, and the ability to 
direct search down profitable paths distinguishes the expert 
from the novice. Since all experts begin as novices, the transition 
from one to the other should hold great interest for Artificial 
Intelligence. In this paper we examine SAGE.2. a program that 
implements one approach to learning effective search heuristics. 
Below we present an overview of this system and summarize its 
operation in various domains. However, before turning to these 
matters, let us review the nature of the strategy learning task by 
discussing its components. 

Within any system that improves its strategies as a function of 
experience, we can identify three distinct components. First, 
such a system must be able to search, so that it can generate 
behaviors upon which to base its learning. Second, a strategy 
learning system must be able to assign credit and blame to 
components of the system responsible for good and bad 
behaviors. One approach [1, 2] involves finding a solution to a 
problem, and then using the solution path to distinguish good 
moves from bad moves. An alternative approach, explored by 
Anzai [3] and Ohlsson [4], involves assigning credit while the 
search is in progress. Finally, a strategy learning program must 
be able to use credit information to modify its performance 
component so that behavior improves over time. Such 
modification often involves determining the conditions under 
which various operators should be applied. Given good and bad 
examples of these operators, heuristically useful conditions can 
be determined in three possible ways: through a process of 
generalization; through Mitchell's [1] version space method; or, 
as we shall see shortly, through a process of discrimination. Now 
that we have reviewed the components involved in learning 
search heuristics, let us examine how these components are 
implemented In the present system. 

This research was supported by Contract N00014-83K-0074 
from the Office of Naval Research. I would like to thank 
Stephanie Sage, Steve Smith, and John Laird for comments on 
an earlier version of this paper. 

AN OVERVIEW OF SAGE.2 

Like most other strategy learning programs, SAGE.2 is stated 
as a production system. In other words, it is cast as a set of 
relatively independent condition-action rules or productions, and 
learning occurs through the addition of new productions. Below 
wo discuss the system's search process, its credit assignment 
heuristics, and its mechanisms for altering its search strategy in 
the light of experience. 
The Search Process 

SAGE.2 represents states as elements in working memory and 
operators as productions that match against these states. Each 
production has an associated weight. Move proposing rules with 
the same weight can be applied in parallel, so more than one 
move may be proposed at a time. Initially, these rules contain 
only the legal conditions for applying the associated operators. 
Thus, the system carries out a breadth first search until credit 
can be assigned and improved move-proposing rules can be 
learned to direct the search process. 

When a new rule is first created, it is assigned a low weight. 
Since a rule's weight is increased every time it is relearned, this 
number can be viewed as a measure of each rule's success, with 
preference being given to more successful rules. Search 
becomes much more selective as SAGE.2 begins to prefer 
productions that have been learned many times, and to shun 
those that have led to errors in the past. However, it retains the 
ability to consider multiple paths, as long as those paths are 
proposed by rules with the same weights. 
Assigning Credit and Blame 

SAGE.2 can operate in two modes: it can assign credit based 
only on a complete solution path, or it can do so during the 
search process. In the first method, exhaustive breadth-first 
search continues until one or more solution paths are found. The 
system then marks all moves lying on these paths as good 
instances of the rules that proposed them, and labels all moves 
leading off the paths as bad instances of the responsible rules. 

The second method does not require knowledge of complete 
solution paths, relying instead on several rules for recognizing 
undesirable moves. One of these notes when the system reaches 
some state that was visited earlier; this rule detects loops as well 
as unnecessarily long paths. Another applies when a state is 
found from which no moves can be made (a deadend). These 
rules are relatively domain-independent, but less general rules 
can be employed as well. For instance, one can write problem-
specific rules for recognizing when an illegal state has been 
reached. When any of these rules labels a move as undesirable, 
SAGE checks to see if it has made any move from the same state 
that is not labeled as bad. If such a move exists, and if both 
moves were proposed by the same rule, SAGE passes them to 
the learning component as good and bad instances of that rule; 
if not, then the learning component cannot be applied. 



420 P. Langley 

L e a r n i n g Cond i t i ons T h r o u g h D i s c r i m i n a t i o n 

As good and bad instances of the move-proposing rules are 
identified, they are passed to SAGE'S discrimination process. 
This mechanism searches for differences between what Bundy 
and Silver [5] have called the selection context (the state of 
memory during the good application) and the refection context 
(the state during the bad application). Differences take the form 
of sets containing one or more working memory elements that 
were present in one context but not the other. For each 
difference that it finds, SAGE creates variants of the overly 
general rule by including these differences (with certain terms 
replaced by variables) as one or more extra positive or negated 
condit ions on that rule. Thus, the system begins with overly 
general rules, and gradually learns more specific versions with 
heunstically useful condit ions that direct search down the 
desired paths. Many spurious variants are created along with 
useful ones, but since useful rules are relearned more often, 
their weights are increased and they come to be preferred. 

The discrimination method has two important advantages over 
other methods. Generalization based systems (including the 
version space technique) find condit ions that are held in 
common by all positive instances, and so are biased toward 
learning conjunctive rules. The approach can be extended to 
handle disjuncts. but this involves expensive backtracking 
through the rule space. In contrast, the discrimination method 
compares a single good instance to a single bad instance, 
enabling it to discover disjunctive rules as easily as conjunctive 
ones In addition, the discrimination method employs the 
weighting method to direct search through the space of rules. 
Thus, SAGE learns more slowly than generalization-based 
systems, since it must gather statistics on the usefulness of 
competing variants. However, this approach makes the system 
quite robust with respect to noise, so that if an occasional error 
in made during credit assignment, the system will still be able to 
learn useful rules. 

EXAMPLES OF SAGE.2 AT WORK 

Our overview of SAGE.2 is now complete, but to gain a better 
understanding of how the system learns search strategies, we 
must examine its workings in specific domains. Below we 
discuss the program's learning sequence on the Tower of Hanoi 
puzzle, both when it uses only complete solution paths to assign 
credit and when it learns during the search process. We also 
summarize the programs behavior in four other task domains. 

SAGE.2 on the T o w e r of Hano i Puzz le 

In the Tower of Hanoi puzzle, N disks of decreasing size are 
placed on one of three pegs. The goal is to move all of them to 
one of the other two pegs. Disks are moved one at a time, with 
two constraints. First, only the smallest disk on a peg can be 
moved. Second, a disk cannot be moved to a peg on which a 
smaller one resides. These constraints limit the set of legal 
moves, so that for the three-disk puzzle, only 27 states are 
possible. However, the number of connections between these 
states is high, making for a challenging problem. 

Using the complete solution path heuristic for credit 
assignment, SAGE learns only after a solution is reached. On its 
first pass through the problem space, SAGE.2 made 56 moves in 
a breadth-first search before it found a solution. At this point, 
the system examined the two (symmetrical) solution paths, 
assigning credit and applying the discrimination mechanism. 
Through this process, five variants on the original operator (let 

us call it MOVE) were created. One variant. MOVE-1, was built 
each time the system looped back to a previous state inn the 
search tree. This rule contained a condit ion that prevented it 
from undoing a move that the system had just made. Other 
variants with useful conditions were learned from other errors. 
However, MOVE-1 emerged as the strongest contender, since 
the looping error that led to its creation was more frequent than 
other errors. 

On the second run, the system's performance improved 
considerably, since MOVE 1's weight had come to exceed that 
of MOVE. In this case, 38 moves were made before the solutions 
were reached. MOVE 1 prevented backing up, but other errors 
still occurred, leading to the construction of three variants on 
this rule. Of these, MOVE 2, which included a condit ion to 
prevent moving the same disk twice in a row, was learned most 
often. Thus, on the third run, the system neither made looping 
errors, nor moved the same disk twice in a row. The few 
remaining errors led to the creation of MOVE-3, which prevented 
moving a disk back to the position it had occupied two moves 
earlier. This heuristic was sufficient to eliminate search on the 
Tower of Hanoi task, and when the problem was presented a 
fourth time, SAGE reached the solutions without taking any false 
steps. After mastering this simple version of the problem, the 
system was able to solve the scaled-up four-disk task as well. 
However, SAGE.2 is not at present able to transfer its learning to 
versions of Tower of Hanoi with different initial and goal states. 

In learning while doing, SAGE followed a very similar learning 
sequence. During the initial breadth-first search, the revisited 
state heuristic noted a number of loops in the search tree, and 
labeled the responsible moves as undesirable. As before, these 
led to the creation of the variant MOVE-1, which proposes only 
non looping moves. In later runs, the variants MOVE 2 (based on 
unnecessarily long paths) and MOVE-3 (based on dead-ends) 
were created, with the latter eventually eliminating search. 

A p p l y i n g SAGE.2 to O ther Doma ins 

One important dimension on which Al systems are judged is 
their generality, and the most obvious test of a program's 
generality is to apply it to a number of different domains. 
Accordingly, we have tested SAGE in four additional task 
domains, which we discuss below. 

In the Slide-Jump puzzle, one is presented with N quarters and 
N nickels placed in a row and separated by a blank space. Legal 
moves include sliding into a blank space or jumping over one 
other coin into a blank space, while the goal is to exchange the 
positions of the quarters and nickels. SAGE.2 was given two 
initial move-proposing rules - one for suggesting slide moves 
and the other for suggesting jumps. The system learned a search 
heuristic that proposed sliding a coin into a blank space only if 
another coin of the same type had just been jumped from that 
space. In addit ion, this rule never exceeded the original jump 
rule in weight, so jumps were made whenever possible. In the 
learning while doing runs, the system proceeded in a very similar 
manner, learning from both revisited states and dead ends. 

Ohlsson [4] has described the Tiles and Squares puzzle, 
which involves N numbered tiles and N + 1 squares on which 
they are placed. Only one legal move is possible: moving a tile 
from its current position to the blank square. The goal is simple: 
get all of the tiles from their initial positions to some explicitly 
specified goal positions. On this task, SAGE.2 acquired two 
simple heuristics for directing search. The first of these states 
that if possible, one should move a tile into its goal position; the 



P. Lang ley 421 

other states that one should never move a tile out of its goal 
position once it has been placed there. Note that these rules are 
disjunctive; neither heuristic is sufficient to completely direct the 
search process by itself, but taken together they eliminate 
search. Thus, the ability of the discrimination process to 
consider disjunctive heuristics shows its potential in this puzzle. 
Another interesting characteristic of this problem is that SAGE.2 
incorporated information about the goal state in the condit ions it 
discovered. As a result, the heuristics the system learned could 
be applied not only to more complex problems, but to problems 
with differing initial and goal states. In learning while doing on 
this task, SAGE learned from both loops and unnecessarily long 
paths. 

In the Mattress Factory puzzle, the goal is to fire all N 
employees at a factory, using two operators. The least senior 
worker may be hired or fired at any time. However, other workers 
may only be hired or fired if the person directly below them in 
seniority is currently employed, and provided that no other 
person below them is also employed. SAGE.2 was given rules 
for proposing both types of moves. After finding the single 
solution path, it arrived at variants of both rules that avoided 
simple loops. In addition, the variant of the first rule achieved a 
greater weight, so that it was preferred. In learning while doing, 
the system learned mainly from loops in its search tree, though 
one dead end also occurred. 

In Piaget's length seriation task, the child is presented with a 
set of blocks in a pile, and is asked to line them up in order of 
ascending height. For this problem, SAGE.2 was given a single 
operator for moving a block from the pile to the end of the 
current line. Also, the program was given a domain-specific rule 
for determining illegal states. This stated that if a taller block had 
been set to the right of a shorter block, the resulting state was 
undesirable. In learning from complete solution paths, the 
system generated one useful heuristic, which proposed moving a 
block only if there was no other block in the pile that was taller 
than that piece. In learning while doing, both the rule for noting 
illegal states and the dead-end heuristic came into play, 
generating the same variant move-proposing rule. 

Gene ra l i t y o f the H e u r i s t i c s 

As we have seen, SAGE.2 has learned rules for directing 
search in five different domains, suggesting that the system is a 
relatively general one. However, each of the learning heuristics 
can be examined on this dimension as well. Since the 
discrimination strategy played a central role in each of the runs 
described above, we can safely infer the generality of this 
method. However, the situation with respect to the credit 
assignment heuristics is somewhat more complex. The complete 
solution path heuristic is very general, and was applied on each 
of the tasks. The other heuristics were less useful, but still 
showed evidence of generality. Both the revisited state rule and 
the dead-end rule led to learning in four of the five domains. The 
Illegal state detector was stated in a domain-specific manner and 
was used only in the seriation task. However, one can imagine 
versions of the Tower of Hanoi, Mattress Factory, and Slide-
Jump puzzles in which the condit ions for legal moves must be 
learned along with the conditions for good moves. Thus, we can 
conclude that SAGE's various learning heuristics are general 
ones, and should prove useful in domains other than those 
examined here. 

CONCLUSIONS 

Before closing, let us consider SAGE.2's relation to other 
systems, and whether it has advanced our understanding of the 
strategy acquisition process. The system shares Anzai's [3] 
revisited state heuristic for assigning credit, but it is considerably 
more general than the earlier system, which was tested in a 
single domain. Like Brazdil's ELM [6] and Mitchell , Utgoff, 
Nudel, and Banerji's LEX [1], our system can also assign credit 
based on complete solution paths. However, ELM and LEX had 
access to only this heuristic, while SAGE.2 incorporates a 
number of interacting credit assignment methods. Also, these 
systems focused on transfer between problems of similar 
complexity, while SAGE is also able to transfer to scaled-up 
problems. The discrimination technique used by SAGE bears a 
strong resemblance to ELM's learning method, but SAGE has 
shown how this approach can be applied to learn disjunctive 
heuristics. In summary, SAGE has addressed a number of issues 
that have been overlooked in the earlier work. 

Although progress has been made, our understanding of the 
strategy learning process is far from complete. For example, 
SAGE.2 was not in general able to transfer its acquired expertise 
to problems with different initial and goal states from those on 
which it practiced. However, the system was able to make such a 
transfer on the Tiles and Squares puzzle by explicitly 
representing the condit ions for goal satisfaction in working 
memory. Hopefully, by augmenting SAGE's representation for 
other tasks, it will be able to make similar transfers. A second 
extension should enable the system to learn in much more 
complex domains such as chess. If SAGE.2s search control 
were altered to allow the setting of subgoals, then the heuristic 
for assigning credit based on complete solution paths could be 
applied whenever a particular subgoal had been achieved. 
Variants learned from this path would be specific to that subgoal; 
that is, they would include a description of the current subgoal 
as an extra condit ion, in addition to the other condit ions found 
through discrimination. Thus, while more research remains to be 
done, the results we have obtained so far are encouraging, 
indicating that effective search strategies can indeed be learned 
using simple and general mechanisms. 

REFERENCES 

[1] Mitchell, T. M., Utgoff, P., Nudel, B., and Banerji, R. B. 
Learning problem solving heuristics through practice. 
Proceedings of the Seventh International Joint Conference 
on Artificial Intelligence, 1981, 127-134. 

[2] Langley, P. Strategy acquisit ion governed by 
experimentation. Proceedings of the European Conference 
on Artificial Intelligence, 1982, 171-176. 

[3] Anzai, Y. Learning strategies by computer. Proceedings of 
the Second National Conference of the Canadian Society for 
Computational Studies of Intelligence, 1978,181-190. 

[4] Ohisson, S. On the automated learning of problem solving 
rules. Proceedings of the Sixth European Meeting on 
Cybernetics and Systems Research, 1982. 

[5] Bundy, A. and Silver, B. A crit ical survey of rule learning 
programs. Proceedings of the European Conference on 
Artificial Intelligence, 1982, 151-157. 

[6] Brazdil, P. Experimental learning model. Proceedings of the 
Third AISB/GI Conference, 1978, 46-50. 


