
Building Libraries in Prolog
Alan Feuer

Bell Laboratories
Murray Hi l l , New Jersey 07974

ABSTRACT

While Prolog has proven useful for writing programs in a variety of
domains, it suffers from its lack of support for modularity,
particularly for building libraries of routines and data. This paper
points out some problems with standard Prolog that make libraries
inconvenient. It then describes a solution to those problems based on
the concepts of modules and database views.

1. INTRODUCTION

Conceptually, Prolog is a simple, but powerful, language. We have
found it useful for representing small databases and for parsing rich
languages. However, one place we find Prolog lacking is in its
support for modularity; there is no fully satisfactory way to implement
libraries of routines or data.

There are two places where we find libraries convenient: to implement
common data types and to store domain-dependent data. The
common data types are things like lists, sets, and queues. It seems
that every program of moderate size reimplements append and
member on lists, and half the programs reimplement union and subset
on sets.

We have encountered domain-dependent data in the course of
building grammars for limited-domains of English. While writing an
English front-end to a calendar service, for example, parsers for two
or three domains might be implemented: dates, places, people; as well
as for the operations on the calendar itself. It is convenient to use the
same parts of speech for each of the domains, yet to keep some of the
vocabulary distinct. Thus week may be a fine noun in the domain of
dates, but not for the domain of places. That is,

noun (week)

may be true in one domain but not another.

In this paper we will present some of the difficulties in building
libraries of Prolog statements. The example of building libraries for
common data types will be used because it is easier to illustrate, but
the problems and solution are valid for domain-dependent data as
well.

2. THE PROBLEMS

This section points out three problems encountered when building
libraries of Prolog statements. In what follows, when we speak of
standard Prolog, we mean Prolog as defined in Clocksin and Mellish's
Programming in Prolog (CL081].

2.1 No Local Routines

Occasionally in the process of writing a routine, an auxiliary routine is
needed. Consider, as an example, the fast reverse routine from
Clocksin and Mellish (p. 141):

The sole purpose of revzap is to assist reverse; it should never be
called except from reverse. Unfortunately, in standard Prolog all
routine names are global, so revzap takes its place in the database
alongside reverse. This is especially a problem for library routines as
it means that a user of the library must know the names of auxiliary
routines so as not to inadvertently reuse them.

A common approach taken in standard Prolog is to use strange names
for local routines, sometimes created by including some nonalphabetic
character in the name. While this convention works to keep names in
libraries separate from those in application programs, it does not
prevent name collisions between different library files.

Another approach taken to solve the problem of hiding auxiliary
routines is to add the concept of a module to Prolog. Routines are
then packaged in a module and those names that should be visible
outside the module are exported [EGG82, JON80, PER781 Using
this implementation, the definition of reverse might be surrounded by

module list
:— export (reverse).
definition of reverse and revzap

end list

2.2 Consulting Twice Defines Twice

Introducing modules goes a long way towards making libraries usable.
Yet, Prolog's weak naming structure is still a problem. Consider an
example of building a set using lists. Assume that the module list is
available with the routines append and i

To suggest that ssnset CAN be implemented without using member it to miss the
point. Duplicating code if an always available, though not always attractive,
alternative to using a common subroutine.

A. Feuer 551

While one wouldn't wish to prohibit using both sets and queues in the
same program, consulting both set and queue will result in defining
the routines of list twice. The result of this for most Prolog
implementations is to double the length of each routine, since the new
clauses would be appended to the old ones.

2.3 Cannot Overload Routine Names

Notice also in the example that delete is defined for both sets and
queues.2 Since delete is a global name, if both set and queue are
consulted in the same program, the clauses for the two deletes would
be chained together possibly resulting in one of the implementations
being hidden.

Even if it were desirable for the clauses defined in two different files
to be chained together, in standard Prolog the clauses cannot be
updated selectively; the standard update routine recousult replaces all
the clauses in a routine, without regard for where the clauses were
defined. This is a handicap particularly in the case where a routine is
defined partially by a general rule and partially by context-specific
facts.

As an example, consider a general rule about families:

For a specific family, there may be some people, i.e., the earliest
known ancestors, who are known to be siblings but whose parents are
unknown. To capture sibling completely, facts of the form

sibling(sibl,sib2).

are needed. In order to keep things straight, general rules are kept in
a file rules and specific facts are kept in the files fam1 and fam2 for
two different families. Then

sets the context to answer questions about the first family. But there
is no easy way to change the context to answer questions about the
second family, since

:— reconsult(fam2).

will retract the general rule about siblings.

3. OUR SOLUTION

We propose a solution to the problems presented in the last section
based on two concepts: modules and views.

• The Prolog database is partitioned into modules; each module is a
collection of routines. A routine is a sequence of clauses, where
each clause has the same principal functor in its head.3 Every
routine is contained in some module. A routine may be tagged as
private, in which case it is not visible outside the current module.

• Each module sees the database through its view. A view is a
sequence of modules; each module sees only those routines that are
contained in the modules of its view and it sees them in the order
in which they occur in the view.

2. The same definit ion of delete could be used for both sets and queues by not taking
advantage of the knowledge that element! only occur once in a aet. But, again, this
it besides the point.

A module can be represented as a list of routines and a routine as a
list of clauses. The view for a module is a list of module references.
When considering any goal, the view for the module containing the
goal is searched top-down, just like the database is searched in
standard Prolog. Thus, a view behaves like a dynamic context.

Figure 1 shows the definition and representation of a module list, with
the two routines reverse and revzap. reverse contains one clause and
revzap contains two. The view for list is list followed by builtin. In
the program, rather than explicitly declaring routines public, we use
the operator " $ " to hide a routine name. Thus, "Srevzap" is a routine
that is private to list.

When a module is created it is given a view of the database that
includes itself plus the builtin routines (in the module builtin). In our
Prolog, builtins are those routines coded inside the interpreter itself.
Another module, called standard, contains many of the routines
commonly thought of as builtin but actually coded in Prolog, such as
atomic and not.

The directive

use(X)

adds the module associated with the file X to the view of the current
module. There is a one-to-one correspondence between modules and
files. A file contains Prolog source text and a module contains Prolog
objects; modules exist only within the interpreter. The file-name and
the module-name are the same. If X is not yet in the database, the
file X is read from the file system and the module X is built. Here is
how set might be implemented given modules, view, and use:

The modules in the view for set are set, builtin, and list, in that order.
Notice that where the previous implementation of set implicitly relied
upon member for list, this implementation does so explicitly. The " $ "
in "list$member" constructs an absolute reference to the routine
member in the module list.4 Queue is defined similarly to set,
beginning with a use directive.

Next, consider a program, p, that uses both sets and queues. It might
begin with two use directives:

In p, member would refer to the routine member defined in the module
set. delete, unadorned, likewise refers to delete in set. queueSdelete
refers to delete in queue, append would be an error, as would be
listSappend, since these routines are defined in list, which is not visible
to p.

Finally, the case of selective reconsulting is easily handled. Using the
modules rules, faml , and fam2 with sibling being defined in each, the
context for the first family is established similarly to before:

3. Routine* are not demarcated syntactically in Prolog. Since, by definit ion, a routine
is the sequence of clauses w i th a given principal functor in their head, it is
impossible to have two routines wi th the tame name (i.e., the same principal
functor) in the same module.

4. The expression ' ' S X " used to reference an X that is private can be viewed as an
absolute reference to A' in the current module.

552 A. Feuer

To change the context to reflect the second family, we introduce the
directive remove which removes all of the clauses associated with a
given module:

:— remove (fami).
: - use(fam2).

Since clauses are associated with a module, the general rule for
sibling that resides in rules is untouched.

4. SUMMARY

Prolog is increasing in popularity because it embeds the elegance and
power of logic in an easy to use language. Unfortunately, libraries of
Prolog routines are not easy to build because the naming structure of
Prolog is too simple. In particular, we have identified three problems:
absence of local routines, consulting a file more than once, and
overloading routine names.

Our solution to these problems rests on the ideas of modules and
views. A local routine is a routine visible only within the module in
which it is defined. Instead of consulting files, we use modules; use
may consult a file if it isn't already in the database. Finally, a routine
is accessed by its name and by its module, thus there is no conflict
when two routines have the same name in different modules—since a
view is an ordered list of modules, the routine occurring first in the
view is the one referenced. The other may be accessed by using an
absolute reference.

ACKNOWLEDGEMENT

I am grateful to Shamim Naqvi and Claude Sammut for their
comments on a draft of this paper.

REFERENCES

CL081 W.F. Clocksin and C.S. Mellish,
Programming in Prolog, Springer-Verlag,
1981.

EGG82 P.R. Eggert and D.V. Schorre, "Logic
enhancement: a method for extending logic
programming languages", Conference
Record of the 1982 A C M Symposium on
Lisp and Functional Programming, August
1982.

JON 80 S.B. Jones, "Structured programming
techniques in Prolog*', Proceedings fo the
Logic Programming Workshop, July 1980.

PER78 L.M. Pereira, F.C.N Pereira, and D.H.D.
Warren, User's Guide to DECsystem-10
Prolog, Dept of Artificial Intelligence,
University of Edinburgh, September 1978.

