
RELATIVE EFFICIENCY OF ALPHA-BETA IMPLEMENTATIONS

T.A. Marsland

Computing Science Department
University of Alberta

EDMONTON T6G 2H1
Canada

ABSTRACT

Most of the data on the relat ive efficiency of
dif ferent implementations of the alpha-beta a l ­
gorithm is neither readily available nor in a form
suitable for easy comparisons. In the present
study four enhancements to the alpha-beta
algorithm—iterative deepening, aspiration search,
memory tables and principal variation search—are
compared separately and in various combinations to
determine the most effective alpha-beta implemen­
tat ion. The rationale for this work is to ensure
that new paral le l algorithms incorporate the best
sequential techniques. Rather than relying on s i ­
mulation or searches of specially constructed
trees, a simple chess program was used to provide
a uniform basis for comparisons.

I INTRODUCTION

Perhaps the most complete description of the
alpha-beta algorithm is the paper by Knuth and
Moore, in which a negamax implementation is des­
cribed [l] . That paper also makes a clear
d ist inct ion between those nodes in the game tree
where cutoffs may occur, and those which must be
f u l l y explored, and so are logical candidates for
the application of multiple processors during
paral le l searches. One f ie ld where the alpha-beta
algorithm is universally applied is that of compu­
ter chess. Here the problems are so large that a
tree of the whole game cannot be bu i l t and so an
approximate solution is sought, one which involves
a succession of searches on fixed depth trees. At
a terminal node (a leaf) an evaluation function is
invoked to estimate the value of the subtrees d is ­
carded. In chess, non-quiescent moves at the
terminal nodes are explored more fu l l y , with spe­
c ia l subset searches involving, for example, only
moves which check or capture (or their forced
responses).

The alpha-beta algorithm owes i t s efficiency
to the employment of two bounds which form a
window. Typically, a ca l l to the alpha-beta func­
t ion is of the form:

V := AB(p, alpha, beta, depth);
where p is a pointer to a structure which repre­
sents a posit ion, alpha and beta are the lower and
upper bounds on the window, and depth is the spe­
c i f ied length of search. The number returned by
the function is called the minimax value of the
tree, and measures the potential success of the
next player to move. A skeleton for the alphas-beta
function appears in a recent survey paper [2] ,

where more detai ls about certain alpha-beta re­
finements appear. Previous studies of alpha-beta
efficiency have not considered these refinements,
or have not been done on a basis which allows for
simple comparisons. To provide more consistency,
this new quantitative study presents results from
a simple working chess program1, and may be com­
pared with those from searches of specially
constructed trees [3] .

II ALPHA-BETA REFINEMENTS

An i terat ive deepening mode, in which a se­
quence of successively deeper and deeper searches
is carried out un t i l some time l im i t is exceeded,
is a simple way of extending the alpha-beta a l ­
gorithm. A search of depth D ply (moves) is used
to dynamically reorder (sort) the choices and thus
prepare the way for a faster search to D+l ply
than would be possible d i rec t ly . My aim is to de­
termine exactly how much a shallow search may
improve a deeper one, and to compare the results
with those for a direct f u l l window search. The
methods considered are:

1. Simple i te ra t ion, in which the move l i s t
at the root node of the tree is sorted after each
i te ra t ion . By this means the candidate best move
is t r ied f i r s t during the next i te ra t ion .

2. Aspiration search, in which the score re­
turned by the best move found so far is used as
the centre of a narrow window within which the
score for the next i terat ion is expected to f a l l .
If the value returned is outside the window, the
search has fa i led high or low and must be repeated
with a window which spans the new range of pos­
sible values [2] .

3. Minimal window search employs a f u l l
window only on the candidate pr incipal var iat ion.
A l l the alternate variations are searched with a
zero window, under the assumption that they w i l l
fa i l - low in any case. Should one of the moves not
f a i l this way then it becomes the start of a new
principal variat ion and the search is repeated for
this move with a window which covers the correct
range of possible values. The PVS (principal
variat ion search) implementation of this algorithm
is based on Calphabeta [4] , which in turn is simi-

1: Tinkerbelle [K. Thompson], a chess program
which participated at the US Computer Chess
Championship, San Diego, November, 1974.

764 T. Marsland

lar to Scout [5] . The algorithm is presented in
Figure 1, through a Pascal l i ke language extended
with a return statement. Undefined in the program
are functions evaluate (to assess the value of a
lea f) , and generate (to l i s t the moves for the
current posi t ion) . For s impl ic i ty, additional fun­
ctions make (to actually play the move considered)
and undo (to retract the current move) are not
included. Note that PVS preserves the property of
Falphabeta [4] , in that for f a i l i ng searches the
bound returned may be better than the alpha l i m i t .
This means that the re-search of a new principal
var iat ion normally proceeds with a narrower win­
dow. More importantly, PVS may be easily extended
to draw on the idea that the correct score for a
candidate pr incipal variat ion is not needed un t i l
a potential r i va l arises. This extension to alpha-
beta searching is based on a technique employed by
K. Thompson at the f i r s t level of the tree search
in Bel le2 . Note also that zero window searches
normally cut off quite quickly. If this is not the
case, then a prof i table heurist ic is to cur ta i l
the search and repeat immediately with the appro­
priate window.

Naturally, a l l of these methods may be im­
proved by the inclusion of transposition and
refutat ion memory tables.

I l l MEMORY TABLES

For each i n i t i a l move in the game tree, the
alpha-beta algorithm determines a sequence of
moves which is suff ic ient to cut off the search.
These sequences may be stored in a refutation
table. After a search to depth D on a tree of con­
stant width W this table w i l l contain W*D entries.
Thus upon the next i terat ion there exists a set of
move sequences of length D-ply that are to be
t r ied f i r s t . The next ply is then added and the
search continues. The candidate principal varia­
t ion is f u l l y searched, but for the alternate
variations the moves in the refutat ion table may
again be suff ic ient to cut off the search, and
thus save the move generation that would normally
occur at each node. The storage overhead is very
small, although a small triangular table is also
needed to ident i fy the refutations [6] .

A transposition table holds not only refuta­
tions and the main subvariations, but also has the
capacity for including more information. In p a r t i ­
cular, once a subtree has been searched i t s
transposition table entry w i l l contain not only
the length of the search tree and the value of the
subtree, but also whether that value represents
the true score or an upper/lower bound on the
score [2] . A typical transposition table might
contain 100,000 entries, each of 10 bytes, for a
mi l l ion-byte to ta l storage overhead. In our imple­
mentation, the (position encoding) hash key was 48
b i ts long, of which 12 bi ts were used to index
into an 8192-entry table. Various choices for ac­
cessing the transposition table are discussed in a
recent report [7] , For this study only a single
probe of the table was made for each posit ion.

2: BELLE, the current world champion chess pro­
gram, developed by K. Thompson, Bell Laboratories.

IV RESULTS

Minimax tree searches generally involve s ign i ­
f icant ly more calculation at a leaf than at an
in ter ior node. For example, chess programs carry
out a check and capture analysis in the form of an
extended tree search. Therefore the following re­
sults are based on the number of terminal nodes
examined. It is reasonable to assume that the
various heuristics in the evaluation function are
equally effective across a l l alpha-beta ref ine­
ments, and so we have a machine-independent
measure for future comparisons.

The algorithms were tested on a data set which
was used to assess the performance of computer
chess programs and human players [8] . That data
set contains 24 chess positions (labelled A..X in
Table 1), but A was deleted from our study since
it involved a simple sequence of forcing checks.
A l l the remaining positions were searched with 3,
4 and 5-ply trees, using a combination of alpha-
beta refinements, and a 6-ply search was done with
the best method. The raw results have been con­
densed into Figure 2, which shows the ra t io of the
number of terminal nodes searched relat ive to a
direct search. In order to see how much improve­
ment is possible in the alpha-beta algorithm, the
formula

W**|D/2| + W**|D/2I - 1 nodes,

where |x| and Ixl represent upper/lower integer

bounds on x, is plotted in Figure 2 as the minimum
tree size [9] . Here the value for W is estimated
as the average width of the nodes in the trees
being studied. The zig-zag appearance of Figure 2
is normal for alpha-beta searches [10], and .occurs
because for an even-ply search a larger fract ion
of the terminal nodes must be f u l l y evaluated.

From Table 1 we see that one of the positions
influences the f ina l results strongly. For
example, in the case of board W a change occurred
in the principal var iat ion, thus the 4-ply search
was not a good predictor of the 5-ply resul t . Just
how serious this can be is clear from Table 1,
which shows that for board w a l l the i te ra t ive
searches are more expensive than a direct search.
This is reinforced in the 6-ply results when, for
the case PVS with transposition table, 28% of the
ef for t was expended on board W [7] , Some effective
heurist ics for par t ia l re-ordering of the move
l i s t between i terat ions can be developed to cor­
rect th is problem. Even so, i tera t ive searches may
be at a disadvantage whenever the pr incipal var ia­
t ion changes. For problems of this type we are
designing paral le l versions of PVS.

V ASSESSMENT OF SEQUENTIAL METHODS

These results confirm that i te ra t ive deepening
is an effect ive enhancement to the alpha-beta a l ­
gorithm, provided it is used in conjunction with
some form of aspiration or memory table search.
For re la t ive ly shallow trees (depth < 5) there is
not much to choose between refutat ion and transpo­
s i t ion memory tables. By i t s very nature, a
transposition table is continually being f i l l e d

T. Marsland 765

with new posit ions, some of which may destroy en­
t r ies that have not yet been reused. Thus it is
not possible to guarantee that a l l the primary
refutations w i l l be retained. This problem can be
overcome through the inclusion of a small and easy
to maintain refutat ion table. To support this com­
bination, we observed that for the 5-ply PVS case
an average 2 percentage point improvement oc­
curred, while in the 6-ply case a more dramatic 31
percentage point improvement was seen, Figure 2.
From this second result we conclude that a trans­
position table of 8192 entries is too small for 6-
ply searches of complex positions, since it be­
comes seriously overcommitted and cannot perform
as well as the simpler refutat ion table. On the
other hand, the true power of a transposition
table was not brought out by our data set, since
there were only two endgames, boards F and H
(Table 1).

VI CONCLUSIONS

Of the two principal refinements, narrow
window aspiration search and use of memory tables,
it was found that preservation and use of the re­
futations from a previous i terat ion was more
important than aspiration searching. This point is
clearly i l lus t ra ted in Table 1, where a f u l l
window search with refutat ion table support is
superior to a narrow window aspiration search wi­
thout a memory table.

Based on our experiments, as summarized by
results presented in Figure 2, it is clear that
PVS is potent ia l ly superior to narrow window as­
pi rat ion searching, since it avoids the need to
determine an acceptable window. Note that these
results reverse an earl ier conclusion for the game
of checkers, where Calphabeta was described as
being "disappointing" and "probably not to be
recommended" [4] . Thus for two di f ferent games
contradictory results appear, i l l us t ra t i ng not

only how game-dependent these methods may be, but
also the influence of strong move ordering [2] on
the eff iciency of tree search algorithms.

[1]

REFERENCES

Knuth, D. and R. Moore, "An Analysis of
Alpha-beta Pruning". A r t i f i c i a l Intell igence
6 (1975) 293-326.

[2] Marsland, T.A. and M. Campbell, "Parallel
Search of Strongly Ordered Game Trees". ACM
Computing Surveys 14:4 (1982) 533-551.

[3] Campbell, M.S. and T.A. Marsland, "A
Comparison of Minimax Tree Search
Algorithms". A r t i f i c i a l Intell igence (1983).

[4] Fishburn, J. "Analysis of Speedup in
Distributed Algorithms", Ph.D. thesis,
TR #431, Computer Sciences Dept., Univ. of
Wisconsin, Madison, May 1981.

[5] Pearl, J. "Asymptotic properties of minimax
trees and game searching procedures".
A r t i f i c i a l Intell igence 14 (1980) 113-138.

[6] Akl, S.G. and M.M. Newborn, "The Principal
Continuation and the K i l le r Heurist ic". In
Proc. ACM National Conf., Seattle, October,
1977, pp. 466-473.

[7] Marsland, T.A. "A Quantitative Study of
Refinements to the Alpha-beta Algorithm",
TR82-6, Comp. Sci. Dept., Univ. of Alberta,
Edmonton, August, 1982.

[8] Bratko, I. and D. Kopec, "A Test for
Comparison of Human and Computer Performance
in Chess". Advances in Computer Chess 3,
M.R.B. Clarke (edi tor) , Pergamon Press, 1982,
pp. 57-69.

[9] Slagle, J.R. and J.K. Dixon, "Experiments
with some Programs which Search Game Trees".
Journal ACM 16:2 (1969) 189-207.

[10] Gi l logly, J .J . "The Technology Chess
Program". A r t i f i c i a l Intell igence 3 (1972)
145-163.

766 T. Marsland

