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ABSTRACT 

Most of the data on the relat ive efficiency of 
dif ferent implementations of the alpha-beta a l ­
gorithm is neither readily available nor in a form 
suitable for easy comparisons. In the present 
study four enhancements to the alpha-beta 
algorithm—iterative deepening, aspiration search, 
memory tables and principal variation search—are 
compared separately and in various combinations to 
determine the most effective alpha-beta implemen­
tat ion. The rationale for this work is to ensure 
that new paral le l algorithms incorporate the best 
sequential techniques. Rather than relying on s i ­
mulation or searches of specially constructed 
trees, a simple chess program was used to provide 
a uniform basis for comparisons. 

I INTRODUCTION 

Perhaps the most complete description of the 
alpha-beta algorithm is the paper by Knuth and 
Moore, in which a negamax implementation is des­
cribed [ l ] . That paper also makes a clear 
d ist inct ion between those nodes in the game tree 
where cutoffs may occur, and those which must be 
f u l l y explored, and so are logical candidates for 
the application of multiple processors during 
paral le l searches. One f ie ld where the alpha-beta 
algorithm is universally applied is that of compu­
ter chess. Here the problems are so large that a 
tree of the whole game cannot be bu i l t and so an 
approximate solution is sought, one which involves 
a succession of searches on fixed depth trees. At 
a terminal node (a leaf) an evaluation function is 
invoked to estimate the value of the subtrees d is ­
carded. In chess, non-quiescent moves at the 
terminal nodes are explored more fu l l y , with spe­
c ia l subset searches involving, for example, only 
moves which check or capture (or their forced 
responses). 

The alpha-beta algorithm owes i t s efficiency 
to the employment of two bounds which form a 
window. Typically, a ca l l to the alpha-beta func­
t ion is of the form: 

V := AB(p, alpha, beta, depth); 
where p is a pointer to a structure which repre­
sents a posit ion, alpha and beta are the lower and 
upper bounds on the window, and depth is the spe­
c i f ied length of search. The number returned by 
the function is called the minimax value of the 
tree, and measures the potential success of the 
next player to move. A skeleton for the alphas-beta 
function appears in a recent survey paper [2 ] , 

where more detai ls about certain alpha-beta re­
finements appear. Previous studies of alpha-beta 
efficiency have not considered these refinements, 
or have not been done on a basis which allows for 
simple comparisons. To provide more consistency, 
this new quantitative study presents results from 
a simple working chess program1, and may be com­
pared with those from searches of specially 
constructed trees [3 ] . 

II ALPHA-BETA REFINEMENTS 

An i terat ive deepening mode, in which a se­
quence of successively deeper and deeper searches 
is carried out un t i l some time l im i t is exceeded, 
is a simple way of extending the alpha-beta a l ­
gorithm. A search of depth D ply (moves) is used 
to dynamically reorder (sort) the choices and thus 
prepare the way for a faster search to D+l ply 
than would be possible d i rec t ly . My aim is to de­
termine exactly how much a shallow search may 
improve a deeper one, and to compare the results 
with those for a direct f u l l window search. The 
methods considered are: 

1. Simple i te ra t ion, in which the move l i s t 
at the root node of the tree is sorted after each 
i te ra t ion . By this means the candidate best move 
is t r ied f i r s t during the next i te ra t ion . 

2. Aspiration search, in which the score re­
turned by the best move found so far is used as 
the centre of a narrow window within which the 
score for the next i terat ion is expected to f a l l . 
If the value returned is outside the window, the 
search has fa i led high or low and must be repeated 
with a window which spans the new range of pos­
sible values [2 ] . 

3. Minimal window search employs a f u l l 
window only on the candidate pr incipal var iat ion. 
A l l the alternate variations are searched with a 
zero window, under the assumption that they w i l l 
fa i l - low in any case. Should one of the moves not 
f a i l this way then it becomes the start of a new 
principal variat ion and the search is repeated for 
this move with a window which covers the correct 
range of possible values. The PVS (principal 
variat ion search) implementation of this algorithm 
is based on Calphabeta [4 ] , which in turn is simi-

1: Tinkerbelle [K. Thompson], a chess program 
which participated at the US Computer Chess 
Championship, San Diego, November, 1974. 
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lar to Scout [5 ] . The algorithm is presented in 
Figure 1, through a Pascal l i ke language extended 
with a return statement. Undefined in the program 
are functions evaluate (to assess the value of a 
lea f ) , and generate (to l i s t the moves for the 
current posi t ion) . For s impl ic i ty, additional fun­
ctions make (to actually play the move considered) 
and undo (to retract the current move) are not 
included. Note that PVS preserves the property of 
Falphabeta [4 ] , in that for f a i l i ng searches the 
bound returned may be better than the alpha l i m i t . 
This means that the re-search of a new principal 
var iat ion normally proceeds with a narrower win­
dow. More importantly, PVS may be easily extended 
to draw on the idea that the correct score for a 
candidate pr incipal variat ion is not needed un t i l 
a potential r i va l arises. This extension to alpha-
beta searching is based on a technique employed by 
K. Thompson at the f i r s t level of the tree search 
in Bel le2 . Note also that zero window searches 
normally cut off quite quickly. If this is not the 
case, then a prof i table heurist ic is to cur ta i l 
the search and repeat immediately with the appro­
priate window. 

Naturally, a l l of these methods may be im­
proved by the inclusion of transposition and 
refutat ion memory tables. 

I l l MEMORY TABLES 

For each i n i t i a l move in the game tree, the 
alpha-beta algorithm determines a sequence of 
moves which is suff ic ient to cut off the search. 
These sequences may be stored in a refutation 
table. After a search to depth D on a tree of con­
stant width W this table w i l l contain W*D entries. 
Thus upon the next i terat ion there exists a set of 
move sequences of length D-ply that are to be 
t r ied f i r s t . The next ply is then added and the 
search continues. The candidate principal varia­
t ion is f u l l y searched, but for the alternate 
variations the moves in the refutat ion table may 
again be suff ic ient to cut off the search, and 
thus save the move generation that would normally 
occur at each node. The storage overhead is very 
small, although a small triangular table is also 
needed to ident i fy the refutations [6 ] . 

A transposition table holds not only refuta­
tions and the main subvariations, but also has the 
capacity for including more information. In p a r t i ­
cular, once a subtree has been searched i t s 
transposition table entry w i l l contain not only 
the length of the search tree and the value of the 
subtree, but also whether that value represents 
the true score or an upper/lower bound on the 
score [2 ] . A typical transposition table might 
contain 100,000 entries, each of 10 bytes, for a 
mi l l ion-byte to ta l storage overhead. In our imple­
mentation, the (position encoding) hash key was 48 
b i ts long, of which 12 bi ts were used to index 
into an 8192-entry table. Various choices for ac­
cessing the transposition table are discussed in a 
recent report [ 7 ] , For this study only a single 
probe of the table was made for each posit ion. 

2: BELLE, the current world champion chess pro­
gram, developed by K. Thompson, Bell Laboratories. 

IV RESULTS 

Minimax tree searches generally involve s ign i ­
f icant ly more calculation at a leaf than at an 
in ter ior node. For example, chess programs carry 
out a check and capture analysis in the form of an 
extended tree search. Therefore the following re­
sults are based on the number of terminal nodes 
examined. It is reasonable to assume that the 
various heuristics in the evaluation function are 
equally effective across a l l alpha-beta ref ine­
ments, and so we have a machine-independent 
measure for future comparisons. 

The algorithms were tested on a data set which 
was used to assess the performance of computer 
chess programs and human players [8 ] . That data 
set contains 24 chess positions (labelled A..X in 
Table 1), but A was deleted from our study since 
it involved a simple sequence of forcing checks. 
A l l the remaining positions were searched with 3, 
4 and 5-ply trees, using a combination of alpha-
beta refinements, and a 6-ply search was done with 
the best method. The raw results have been con­
densed into Figure 2, which shows the ra t io of the 
number of terminal nodes searched relat ive to a 
direct search. In order to see how much improve­
ment is possible in the alpha-beta algorithm, the 
formula 

W**|D/2| + W**|D/2I - 1 nodes, 

where |x| and Ixl represent upper/lower integer 

bounds on x, is plotted in Figure 2 as the minimum 
tree size [9 ] . Here the value for W is estimated 
as the average width of the nodes in the trees 
being studied. The zig-zag appearance of Figure 2 
is normal for alpha-beta searches [10], and .occurs 
because for an even-ply search a larger fract ion 
of the terminal nodes must be f u l l y evaluated. 

From Table 1 we see that one of the positions 
influences the f ina l results strongly. For 
example, in the case of board W a change occurred 
in the principal var iat ion, thus the 4-ply search 
was not a good predictor of the 5-ply resul t . Just 
how serious this can be is clear from Table 1, 
which shows that for board w a l l the i te ra t ive 
searches are more expensive than a direct search. 
This is reinforced in the 6-ply results when, for 
the case PVS with transposition table, 28% of the 
ef for t was expended on board W [7 ] , Some effective 
heurist ics for par t ia l re-ordering of the move 
l i s t between i terat ions can be developed to cor­
rect th is problem. Even so, i tera t ive searches may 
be at a disadvantage whenever the pr incipal var ia­
t ion changes. For problems of this type we are 
designing paral le l versions of PVS. 

V ASSESSMENT OF SEQUENTIAL METHODS 

These results confirm that i te ra t ive deepening 
is an effect ive enhancement to the alpha-beta a l ­
gorithm, provided it is used in conjunction with 
some form of aspiration or memory table search. 
For re la t ive ly shallow trees (depth < 5) there is 
not much to choose between refutat ion and transpo­
s i t ion memory tables. By i t s very nature, a 
transposition table is continually being f i l l e d 
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with new posit ions, some of which may destroy en­
t r ies that have not yet been reused. Thus it is 
not possible to guarantee that a l l the primary 
refutations w i l l be retained. This problem can be 
overcome through the inclusion of a small and easy 
to maintain refutat ion table. To support this com­
bination, we observed that for the 5-ply PVS case 
an average 2 percentage point improvement oc­
curred, while in the 6-ply case a more dramatic 31 
percentage point improvement was seen, Figure 2. 
From this second result we conclude that a trans­
position table of 8192 entries is too small for 6-
ply searches of complex positions, since it be­
comes seriously overcommitted and cannot perform 
as well as the simpler refutat ion table. On the 
other hand, the true power of a transposition 
table was not brought out by our data set, since 
there were only two endgames, boards F and H 
(Table 1). 

VI CONCLUSIONS 

Of the two principal refinements, narrow 
window aspiration search and use of memory tables, 
it was found that preservation and use of the re­
futations from a previous i terat ion was more 
important than aspiration searching. This point is 
clearly i l lus t ra ted in Table 1, where a f u l l 
window search with refutat ion table support is 
superior to a narrow window aspiration search wi­
thout a memory table. 

Based on our experiments, as summarized by 
results presented in Figure 2, it is clear that 
PVS is potent ia l ly superior to narrow window as­
pi rat ion searching, since it avoids the need to 
determine an acceptable window. Note that these 
results reverse an earl ier conclusion for the game 
of checkers, where Calphabeta was described as 
being "disappointing" and "probably not to be 
recommended" [4 ] . Thus for two di f ferent games 
contradictory results appear, i l l us t ra t i ng not 

only how game-dependent these methods may be, but 
also the influence of strong move ordering [2] on 
the eff iciency of tree search algorithms. 
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