RELATIVE EFFICIENCY OF ALPHABETA IMPLEMENTATIONS

T.A. Marsland

Computing Science Department
University of Alberta
EOMONION T6G 2H1

ABSTRACT

Most of the data on the relative efficiency of
different implementations of the alpha-beta al-
gorithm is neither readily available nor in a form
suitable for easy comparisons. In the present
study four enhancements to the alpha-beta
algorithm—iterative deepening, aspiration search,
memary tables and principal variation search—are
compared separately and in various combinations to
determine the most effective alpha-beta implemen-
tation. The rationale for this work is to ensure
that new parallel algorithms incorporate the best
sequential techniques. Rather than relying on si-
mulation or searches of specially constructed
trees, a simple chess program was used to provide
a uniform basis for comparisons.

I INTRODUCTION

Perhaps the most complete description of the
alpha-beta algorithm is the paper by Knuth and
Moore, in which a negamax implementation is des-
cribed [I]. That paper also makes a clear
distinction between those nodes in the game tree
where cutoffs may occur, and those which must be
fully explored, and so are logical candidates for
the application of multiple processors during
parallel searches. One field where the alpha-beta
algorithm is universally applied is that of compu-
ter chess. Here the problems are so large that a
tree of the whole game cannot be built and so an
approximate solution is sought, one which involves
a succession of searches on fixed depth trees. At
@ terminal node (a leaf) an evaluation function is
invoked to estimate the value of the subtrees dis-
carded. In chess, non-quiescent moves at the
terminal nodes are explored more fully, with spe-
cial subset searches involving, for example, only
moves which check or capture (or their forced
responses).

The alpha-beta algorithm owes its efficiency
to the employment of two bounds which form a
window. Typically, a call to the alpha-beta func-
tion is of the form:

V := AB(p, alpha, beta, depth);

where p is a pointer to a structure which repre-
sents a position, alpha and beta are the lower and
upper bounds on the window, and depth is the spe-
cified length of search. The number returned by
the function is called the minimax value of the
tree, and measures the potential success of the
next player to move. A skeleton for the alphas-beta
function appears in a recent survey paper [2],

Canada

where more details about certain alpha-beta re-
finements appear. Previous studies of alpha-beta
efficiency have not considered these refinements,
or have not been done on a basis which allows for
simple comparisons. To provide more consistency,
this new quantitative study presents results from
a simple working chess program’, and may be com-
pared with those from searches of specially
constructed trees [3].

I APHABETA REFINEVENTS

An iterative deepening mode, in which a se-
quence of successively deeper and deeper searches
is carried out until some time limit is exceeded,
is a simple way of extending the alpha-beta al-
gorithm. A search of depth D ply (moves) is used
to dynamically reorder (sort) the choices and thus
prepare the way for a faster search to D+l ply
than would be possible directly. My aim is to de-
termine exactly how much a shallow search may
improve a deeper one, and to compare the results
with those for a direct full window search. The
methods considered are:

1. Simple iteration, in which the mowe list
at the root node of the tree is sorted after each
iteration. By this means the candidate best mowe
is tried first during the next iteration.

2. Aspiration search, in which the score re-
turned by the best move found so far is used as
the centre of a narrow window within which the
score for the next iteration is expected to fall.
If the value returned is outside the window, the
search has failed high or low and must be repeated
with a window which spans the new range of pos-
sible values [2].

3. Minimal window search employs a full
window only on the candidate principal variation.
All the alternate variations are searched with a
zero window, under the assumption that they will
fail-low in any case. Should one of the moves not
fail this way then it becomes the start of a new
principal variation and the search is repeated for
this move with a window which covers the correct
range of possible values. The PVS (principal
variation search) implementation of this algorithm
is based on Calphabeta [4], which in turn is simi-

1: Tinkerbelle [K. Thompson], a chess program
which participated at the US Computer Chess
Championship, San Diego, November, 1974.

764 T. Marsland

lar to Scout [5]. The algorithm is presented in
Figure 1, through a Pascal like language extended
with a return statement. Undefined in the program
are functions evaluate (to assess the value of a
leaf), and generate (to list the moves for the
current position). For simplicity, additional fun-
ctions make (to actually play the move considered)
and undo (to retract the current move) are not
included. Note that PVS preserves the property of
Falphabeta [4], in that for failing searches the
bound returned may be better than the alpha limit.
This means that the re-search of a new principal
variation normally proceeds with a narrower win-
dow. More importantly, PVS may be easily extended
to draw on the idea that the correct score for a
candidate principal variation is not needed until
a potential rival arises. This extension to alpha-
beta searching is based on a technique employed by
K. Thompson at the first level of the tree search
in Belle’. Note also that zero window searches
normally cut off quite quickly. If this is not the
case, then a profitable heuristic is to curtail
the search and repeat immediately with the appro-
priate window.

Naturally, all of these methods may be im-
proved by the inclusion of transposition and
refutation memory tables.

I MMRY TABLES

For each initial mowe in the game tree, the
alpha-beta algorithm determines a sequence of
moves which is sufficient to cut off the search.
These sequences may be stored in a refutation
table. After a search to depth D on a tree of con-
stant width W this table will contain WD entries.
Thus upon the next iteration there exists a set of
move sequences of length D-ply that are to be
tried first. The next ply is then added and the
search continues. The candidate principal varia-
tion is fully searched, but for the alternate
variations the moves in the refutation table may
again be sufficient to cut off the search, and
thus save the move generation that would normally
occur at each node. The storage overhead is very
small, although a small triangular table is also
needed to identify the refutations [6].

A transposition table holds not only refuta-
tions and the main subvariations, but also has the
capacity for including more information. In parti-
cular, once a subtree has been searched its
transposition table entry will contain not only
the length of the search tree and the value of the
subtree, but also whether that value represents
the true score or an upper/lower bound on the
score [2]. A typical transposition table might
contain 100,000 entries, each of 10 bytes, for a
million-byte total storage overhead. In our imple-
mentation, the (position encoding) hash key was 48
bits long, of which 12 bits were used to index
into an 8192-entry table. Various choices for ac-
cessing the transposition table are discussed in a
recent report [7], For this study only a single
probe of the table was made for each position.

2: BELLE, the current world champion chess pro-
gram, developed by K. Thompson, Bell Laboratories.

IV RESUTS

Minimax tree searches generally involve signi-
ficantly more calculation at a leaf than at an
interior node. For example, chess programs carry
out a check and capture analysis in the form of an
extended tree search. Therefore the following re-
sults are based on the number of terminal nodes
examined. It is reasonable to assume that the
various heuristics in the evaluation function are
equally effective across all alpha-beta refine-
ments, and so we have a machine-independent
measure for future comparisons.

The algorithms were tested on a data set which
was used to assess the performance of computer
chess programs and human players [8]. That data
set contains 24 chess positions (labelled A..X in
Table 1), but A was deleted from our study since
it involved a simple sequence of forcing checks.
All the remaining positions were searched with 3,
4 and 5-ply trees, using a combination of alpha-
beta refinements, and a 6-ply search was done with
the best method. The raw results have been con-
densed into Figure 2, which shows the ratio of the
number of terminal nodes searched relative to a
direct search. In order to see how much improve-
ment is possible in the alpha-beta algorithm, the
formula

W**|D/2| + W**|D/2| - 1 nodes,
where |x| and Ixl represent upper/lower integer

bounds on x, is plotted in Figure 2 as the minimum
tree size [9]. Here the value for W is estimated
as the average width of the nodes in the trees
being studied. The zig-zag appearance of Figure 2
is normal for alpha-beta searches [10], and .occurs
because for an even-ply search a larger fraction
of the terminal nodes must be fully evaluated.

From Table 1 we see that one of the positions
influences the final results strongly. For
example, in the case of board W a change occurred
in the principal variation, thus the 4-ply search
was not a good predictor of the 5-ply result. Just
how serious this can be is clear from Table 1,
which shows that for board w all the iterative
searches are more expensive than a direct search.
This is reinforced in the 6-ply results when, for
the case PVS with transposition table, 2% of the
effort was expended on board W [7], Same effective
heuristics for partial re-ordering of the move
list between iterations can be developed to cor-
rect this problem. Even so, iterative searches may
be at a disadvantage whenever the principal varia-
tion changes. For problems of this type we are
designing parallel versions of PVS.

VvV ASSESSVENT OF SEQUENTIAL METHODS

These results confirm that iterative deepening
is an effective enhancement to the alpha-beta al-
gorithm, provided it is used in conjunction with
some form of aspiration or memory table search.
For relatively shallow trees (depth < 5) there is
not much to choose between refutation and transpo-
sition memory tables. By its very nature, a
transposition table is continually being filled

with new positions, some of which may destroy en-
tries that have not yet been reused. Thus it is
not possible to guarantee that all the primary
refutations will be retained. This problem can be
overcome through the inclusion of a small and easy
to maintain refutation table. To support this com-
bination, we observed that for the 5-ply P/S case
an average 2 percentage point improvement oc-
curred, while in the 6-ply case a more dramatic 31
percentage point improvement was seen, Figure 2.
From this second result we conclude that a trans-
position table of 8192 entries is too small for 6-
ply searches of complex positions, since it be-
comes seriously overcommitted and cannot perform
as well as the simpler refutation table. On the
other hand, the true power of a transposition
table was not brought out by our data set, since
there were only two endgames, boards F and H
(Table 1).

VI CONCLUSIONS

Of the two principal refinements, narrow
window aspiration search and use of memory tables,
it was found that preservation and use of the re-
futations from a previous iteration was more
important than aspiration searching. This point is
clearly illustrated in Table 1, where a full
window search with refutation table support is
superior to a narrow window aspiration search wi-
thout a memory table.

Based on our experiments, as summarized by
results presented in Figure 2, it is clear that
PVS is potentially superior to narrow window as-
piration searching, since it avoids the need to
determine an acceptable window. Note that these
results reverse an earlier conclusion for the game
of checkers, where Calphabeta was described as
being "disappointing" and "probably not to be
recommended" [4]. Thus for two different games

T. Marsland 765

only how game-dependent these methods may be, but
also the influence of strong move ordering [2] on
the efficiency of tree search algorithms.

REFERENCES

[1] Knuth, D. and R. Moore, "An Analysis of
Alpha-beta Pruning". Artificial Intelligence
6 (1975) 293-326.

[2] Marsland, T.A. and M. Campbell, "Parallel
Search of Strongly Ordered Gare Trees". AOM
Computing Surveys 14:4 (1982) 533-551.

[3] Campbell, M.S. and T.A. Marsland, "A
Comparison of Minimax Tree Search
Algorithms". Artificial Intelligence (1983).

[4] Fishburn, J. "Analysis of Speedup in
Distributed Algorithms", Ph.D. thesis,

TR #431, Computer Sciences Dept., Univ. of
Wisconsin, Madison, May 1981.

[6] Pearl, J. "Asymptotic properties of minimax
trees and game searching procedures".
Artificial Intelligence 14 (1980) 113-138.

[6] Akl, S.G. and MM. Newborn, "The Principal
Continuation and the Killer Heuristic". In
Proc. AOM National Conf., Seattle, October,
1977, pp. 466-473.

[7] Marsland, T.A. "A Quantitative Study of
Refinements to the Alpha-beta Algorithm",
TR82-6, Comp. Sci. Dept., Univ. of Alberta,
Edmonton, August, 1982.

[8] Bratko, I. and D. Kopec, "A Test for
Comparison of Human and Computer Performance
in Chess". Advances in Computer Chess 3,
M.R.B. Clarke (editor), Pergamon Press, 1982,
pp. 57-69.

[9] Slagle, J.R. and J.K. Dixon, "Experiments
with some Programs which Search Game Trees".
Journal AOM 16:2 (1969) 189-207.

[10] Gillogly, J.J. "The Technology Chess
Program". Artificial Intelligence 3 (1972)

contradictory results appear, illustrating not 145-163.
Number of lerminal Nodes Evaluated (5-ply) -
bonrd Full window no tabies refutation table tranapasttion table
direct Ptarative ARD PYS full Anp PVY ASD VS

[{forced mate)
B 81772 [kL] 46732 SG25 69198 464R5 48196 440532 45810
[SOAR 1 B7535 34332 41019 34208 2ARI2T 0484 27300 3215
2] S8622 59437 55549 54284 50398 49370 48410 47226 ati1s51
E 180659 196349 94730 97074 11148% ARBOT 8R125 B4G15 8406hA
F 24645 27364 20385 14151t 2167 19472 14020 12578 12413
G 118333 136416 84855 TSR0 94982 65194 GOR17 62586 51342
H TR12 2116 8253 6124 5481 5108 4706 40R6G 4107
1 132306 144505 86565 A0833 B1554 66A57 &7B822 £2556 ET 150
J 1818812 192533 112337 104027 127312 BOD331 BOST4 pd774 3273
M 108271 119427 56635 62999 65380 52342 519%4 ABY&ER 48712
L 78580 B2392 - 43260 S5351a 53708 el-1c10 0] 44420 asas3 JB6E 1
M 143048 153922 139816 92164 11316 157046 85779 Ra234 B2529
M 31812 31701 atatg 79875 30573 0273 29834 70694 729664
] 34092 27048 25084 23459 22188 2222% 21550 21652 21528
P 75841 56372 w1801 42800 50007 48073 40102 40518 9647
o A5844 91284 72159 62378 51742 41842 37859 33933 33924
R 188877 201361 188009 128565 1421848 134292 97eE1 94138 B1243
5 6R3ITO Ba235! 47504 52128 71536 43645 43762 41187 418512
T 264078 287118 224568 171356 9TI8S TESA2 74026 130266 a27z8
u 257810 223869 122228 124901 {38113 107773 96104 99303 94603
v 54032 64938 51318 45695 497056 4388 41810 aA5644 39178
w 142147 IOTROS 275530 212299 222935 12615 186438 179855 159550
x 68567 13174 28008 71768 69627 ETHIG &7a0i 67514 67515

Total 2414763 2683821 1970876 16980459 17781E3 1453574 1362856 1361443 1305743

Haan 104990 117122 B5690 73828 T332 63459 59254 60062 BETTH
% 100 111 A2 o T4 &0 36 57 LT

Tablw 1 S-ply terminal node count for alpha-beta variations.

766 T. Marsland

FUNCTION PVS Ip :

VAR width, score, i,
BEGIN {
IF (depth = 0] THEN {
returnievaluatel(pl}; {
width := generatelp): %
IF {width = 0] THEN {

returnlevaluate(pl);

scoreg .=
IF [score ¢ beta} THEN

FOR 4 := 2 TO width DO BEGIN
bound := MAX(score, alphal;
value :s -PV5{(p.i, -bound-1
1F {vaiue > score! THEN

score [%

{score 2 betal

returniscorel;
END {forloop};
return{score!;

END {PVS}:

1F THEN

position; alpha,beta,depth :
value, bound :

integer| integer;
integer;
assert depth positive }

leaf, maximum depth? }

determine successcrs p.! to p.w }
return number of successors }
as the function value }
leaf, no moves? }

-PYSip.1, -beta, -alpha, depth-1);

{ no cutoff }

-bound, depth-1};

-PV¥Sip.i, -beta, -value, depth-1};

{ cutoff? |}

Figure 1: Depth-Limited Principal Variation Search.

[7] [w
(=] [=] [=]
[y Ip—— --—L.E','.—-—-..L_. -
¥
,

Normalized performance relative to direct search

[
L=
a

10

A 1101 -
b1
100 pr——====% + . +
o
o0 4
n
@
80 P\
\‘E O
" /,,//”/’,
I n/
604

KEY

oL
Simple iteration, full window.

Direct saarch, full window.

Rarrow window, no tables.

Full window, refutation table.

PVYS, transposition table.

PVS, transposition and refutation tables.
Estimated minimal tree.

¥Oex o p+ D

T T T
2 3 [5
Search depth in ply

6
>

Figure 2: Performance Comparison ¢of Alphabeta Enhancaments.

