
DEMONIZING PRODUCTION SYSTEMS

Giuliano Pacini and Franco Tunni

Dipartimento di Informatica
Universita di Pisa

I ta ly

ABSTRACT easily specify typical algorithmic tasks.

The paper describes a language based on the
paradigm of Production Systems. The novel
aspects of the proposal are the possib i l i ty of
augmenting Production Systems with demons able
to monitor the v i s i t of the search space, and
the integration of Production Systems with
Abstract Data Types and t radi t ional functional
programming.

1. Introduction

Traditional algorithm programming languages
have shown inadequate to solve problems which
naturally require a certain amount of reasoning.

Currently two approaches seem to be
promising: Logic Programming / l / and Production
Systems /?. ,3 / . Both of them allow to organize
the solution to a problem as a proof f inding
ac t i v i t y . A problem is essentially specified by
two components: a col lect ion of facts (data
base, data memory) and a col lection of
inference rules (rewrit ing rules, productions).
The solution is a sequence of applications of
inference rules which transforms the data base
in such a way that the goal is sat is f ied.

DPSP allows to add to a set of productions a set
of demons, which watch over the problem space
and control the evolution of the problem solving
process.

The main objective of the design is to map
the problem space into the architecture of
production systems, while preserving their most-
appealing aspect, i .e. their being so close to
the actual nature of the problems they try to
solve. As a consequence any direct annotation of
productions aimed at improving the search of the
solution seems doomed to betray the basic nature
of the approach. The proposed solution is then
to leave productions uncluttered and to add,
possibly la ter , certainly in a separate module,
demons which incorporate the search strategy.

The paper is organized as follows: section
2 discusses the basic ideas of the language.
Section 3 gives a user view description of the
language DPSP while section 4 provides a few
examples. Conclusions are devoted to compare the
authors' proposal with other solutions and to
the analysis of possible developments of the
project.

This paper describes a production system
executor (DPSP for Demonized Production System
Processor) bu i l t upon the following paradigms:

1. Extending production systems to include
modules where search control and conf l ic t
resolution can be programmed.

2. Applying to production systems recent ideas
developed in the realm of algorithmic
languages research, especially the abstract
data type approach.

3. Integrating Production Systems with a
functional programming language in order to

* This work was partly supported by CNR-PFI
under contract N. 81.02053.97.

2. Demons and the problem space: basic ideas

A demonized production system consists of
four principal components:

1. a data base
2. a set of productions <C0NDf,ACTi>
3. a goal condition G
4. a set of demons

By "problem space", associated to a production
system, we mean a tree whose nodes are labelled
by instances of the data base and whose arcs are
labelled by productions. If a is an arc,
labelled by <C0ND,ACT> , going from n l , with
data base d l , to n2, with data base d2, then

G. Pacini and F. Turini 863

COND(dl)=true and d2=ACT(dl). Informally, the
problem space is a, possibly i n f i n i t e , f i n i t e
branching tree recording a l l possible evolutions
of a production system given an i n i t i a l state of
the data base. Dy "search space" we mean a
f i n i t e prefix of the problem space. At any point
of the computation of a production system the
search space records the part of problem space
which has already been explored.

Rephrasing /4 / the process of searching is
described as the repeated execution of the
cycle:

1. Select a node in the search space (search
strategy); select a production applicable
to the corresponding data base state
(conf l ic t resolution);

2. Apply the production to the data base
state; add the new state to the search
space;

3. Decide if the new state is a goal state;
decide to qui t ;

By default, DPSP implements a conf l ic t
resolution based on the declaration order- of
productions and a depth f i r s t search strategy.

The f i r s t three components of a DPS
constitute the classic composition of a
production system /5 ,3 / . The fourth one
specifies the search strategy and the conf l ic t
resolution strategy. Demons are the ent i t ies
authorized t.o browse into the problem space.
Demons can implement conf l ic t resolution
selecting the production to apply or they can
select a node of the search space, thus allowing
to realize a search strategy di f ferent from
depth- f i rs t . As a matter of fact , if productions
are considered to be a set of inference rules,
i .e . a level of reasoning, demons constitute a
level of meta-reasoning, i .e . functions able to
structure the deductive process.

The system has been designed and
implemented to allow incremental programming in
the following sense: a production system may be
prepared and run without any demonization. in
this case DPSP executes it using the default
control strategy. The f i r s t runs can then be
used to acquire knowledge about better
strategies. Demons embodying more accurate
strategies can then be added without disturbing
the or ig inal production system and the process
can obviously be i terated.

3. The language DPSP

DPSP embeds production systems into a
programming language suitable for defining data
types and operations on them. The programming
style is functional and the specific syntax
resembles LISP.
A DPS has the following components:

1. type def in i t ions;
2. function def in i t ions;
3. data base def in i t ion ;
4. goal def in i t ion ;
5. a set of productions;
6. a set of demons.

The following subsections describe each of the
components separately.

3 .1 . Type def ini t ions

Type defini t ions introduce new abstract
data types into the system. As in a l l other
languages equipped with abstract data types
mechanisms /6,7,8/ type modules export a set, of
operations which characterize the data type. The
remaining part of the data type module contains
the implementation.

In practice, since DPSP is bu i l t upon
Magmalisp /9 / which is a dialect of Lisp, the
internal representation is a l i s t structure and
the operations are functions operating on i t .

3.2. Function Definit ions

Function defini t ions are basically Lisp
functions which implement either more complex
operations on the data types or operations on
the data base.

3.3. Data base def in i t ion

The data base def in i t ion is simply a
collection of declarations of variables.

3.4. Productions

A production has the- form L- COND,ACT . The
label L ident i f ies uniquely the production and
it is used in the tr iggering mechanism of demons
as well as for interaction with the user, i .e .
tracing, recording of the history the solution
and so on.

The condition COND is a predicate on the
state of the data base. The action ACT is a
transformation of the data base state. More

864 G. Pacini and F. Turini

precisely it is a set of assignments on the
variables of the data base.

3.5. The search space

before discussing demons it is necessary to
define the search space as it is in DPSP.

The search space is a pair: a f i n i t e tree
and a node. Each node of the tree is in turn a
pair: a data base instance and a set. of
production names, i .e. the productions which are
applicable to the data base instance of the node
but which have not been yet applied.

Each arc of the tree is labelled by a
production label, i .e . the production which
caused the transit ion from the father to the
son. The node associated to the tree is a handle
to the tree i t se l f and it is the "current node".

Furthermore, each node of the search tree
can be associated with control variables.
Control variables can be inspected ana updated
only by demons and they serve to maintain state
information of the node in order to implement
sophisticated search strategies.

Demons can inspect the search space via
operations on trees, i . e . :

sons : node — > l ist-of-nodes
father : node — > node
leaves : — > l ist-of-nodes
nodes : — > list-of-nodes
root?: node — > bool
prods: node —>l is t -o f -product ion label
inprod: node — >production label

A l l the previous operations have the search
space as an impl ic i t parameter. If no argument
is specified for the operations expecting a node
the current one is assumed. Prods returns the
l i s t of s t i l l applicable productions associated
to a node. Inprod returns the label of the
production which caused the transi t ion to the
node.

The addition of nodes to the tree occurs on
applying a production to a node. A new node is
created as a son and it becomes the current one.
Nodes may be dropped via command " k i l l " . K i l l
returns the father of the k i l l ed node.

Demons can evaluate expressions in a
part icular node with the form " in < node-
returning-expr> value-of <expr>".

3.6. demons

Demons are similar to productions in that
they are pairs <TRIGGER,CH01CEFUNCTI0N>.

Triggers are boolean expressions. They may
involve functions which inspect the search tree
looking at data base states, production labels
and control information. If a production label
occurs in a trigger it evaluates true or false
if it does or does not occur in the applicable
production l i s t of the current node.

The choice function of a demon may return
either a node or a production label. In the
former case the demon chooses the node to be
expanded next (search strategy). In the la t ter
one, the demon suggests a conf l ict resolution
strategy.

A "demonization" is a l i s t of control
variable declarations and a l i s t of demons. When
the demonization is invoked by the interpreter,
triggers are evaluated in a sequential order. If
a trigger is ver i f ied the associated function is
computed and i ts result is returned to the
interpreter. If no trigger is ver i f ied , a
default demon (see next section) is applied.

3.7. The execution cycle

The execution cycle of DPSP is the
following:

a: compute the goal condition for the current
node. I f i t is sat isf ied hal t .

b: compute the applicable production l i s t for
the current node and bind it to the node.

c: apply the demonization. Let r be the
resul t .

d: if r is a node, set r as the current node
and repeat step c.
if r is a production label, delete the
production label from the current applicable
production l i s t , apply the production, i .e .
generate a son of the current node, label
the arc with r, set the newly created node
as the current one, and repeat step a.

The default demonization implements a conf l ic t
resolution based on the declaration order of
productions and a depth f irst-backtracking
search strategy. More precisely the default
demonization is defined as:

(NOT (NULL PRODS)) (FIRST PRODS);
(NULL PRODS) (KILL);

G. Pacini and F. Turini 865

4. Examples

The following examples aim at offering the
flavor of the construction of DPSP programs.

4 . 1 . Computing the change

The problem is to form the change for a
customer paying a b i l l . The i n i t i a l data base
contains information about the b i l l , the amount
handed by the customer and the amount of
available coins. The syntax is , hopefully, self
explanatory. Where comments are needed they are
enclosed in curly brackets.

type C01N=(CENT,NICKEL, DIME.QUARTER.DOLLAR);
{COIN is an enumerated type; the syntax is
Pascal-like}

type COUNTER = (0 .. MAXINTEGER);
type DECMONEY = (0 .. MAXINTEGER);
type MONEY-

exports
ZERO: MONEY;
ADDC0IN(C01N,MONEY): MONEY;
DEC(MONEY): DECMONEY;
READ: MONEY

(READ reads values of type money as a l i s t of
integer-coin pairs}

implementation

{the implementation section contains Lisp
functions implementing the exported operations};
(the following section declares the data base}

var CENTS,NICKELS,DIMES,
QUARTERS,DOLLARS: C0UNTER=(READ);

var BILL: DECM0NEY=(READ);
var CASH: MONEY=(READ);
var CHANGE: M0NEY=(ZER0);

{follows the goal declaration}
goal (EQ(DEC CASH) (PLUS(DEC CHANGE)BILL))

productions
PI -

(AND
(GREATER (DIFFERENCE

(DEC CASH)
(PLUS(DEC CHANGE)BILL)

100)
(GREATER DOLLARS 0))

((ASSIGN DOLLARS (SUB1 DOLLARS))
(ASSIGN CHANGE (ADDCOIN CHANGE' DOLLAR)));

P2 - . . .
{P2 etc. are similar to PI , with P2 label l ing
the production for quarters, P3 the production
for dimes and so for th}

{A simple demonization may be added in order to
maintain a comparable number of dimes and

quarters}
demonization

(AND (NOT P1)P2 P3)
(C0ND((GREATER DIMES QUARTERS) 'P3)

('TRUE 'P2))

4.2. A general bes t - f i rs t strategy

The second example is a possible
demonization which realizes a best - f i rs t
strategy. Suppose you have a function which
evaluates the likelyhood of success given a data
base state. A possible strategy is implemented
by the following cycle:

1- when in a node, apply a l l applicable
productions generating new sons;

2- select the best of the sons;
3- move to the selected son.

This strategy is implemented by the following
demonization:

demonization
var ACTIVE: B00L='FALSE;

{variable ACTIVE is a control variable; when a
new node is created, ACTIVE with i t s i n i t i a l
value is associated to i t }

(NOT ACTIVE) ((ASSIGN ACTIVE 'TRUE)
(FATHER));

{upon creation a node sets i t s e l f active and
lets the father continue the generation of sons}

(AND ACTIVE(NOT(NULL (PRODS))))
(FIRST(PRODS));

{continuing the generation of sons}
(AND ACTIVE(NULL PRODS)(NOT(NULL(SONS))))

(. . . returns the best son . . .) ;

It is worth noting that if a fa i lure occurs,
i .e . no productions are applicable in a selected
node, the default demon implies a backtracking
to the father and the demonization implies the
selection of the second best son and so on.

5. Conclusions

Computing in a production system
environment produces a sequence of search
spaces. Then a possible general def in i t ion is
that control l ing Production Systems means
l im i t ing the possible produced sequences of
search spaces. In this l i gh t it is evident that
control decision must in general rely on the
examination of the actual search space, in order
to decide what kind of evolution the search
space i t s e l f can undergo.

This approach, which is not exp l ic i t l y
present in other proposals /3,10,11,1/ is the

866 G. Pacini and F. Turini

most characterizing aspect of our work. Indeed
demons can operate examining the search space in
order to control both conf l ic t resolution and
search strategy.

The language for describing demons is
essentially a conventional functional
programming language enriched by primit ive
operations for inspecting the search space. The
choice of a conventional programming language is
primarily motivated by the fact that the search
space is a complex data structure and,
consequently, only a f u l l blown programming
language seems to be adequate for coding the
inspection process.

As it is for the logic and the control part
of algorithms in / l / the dist inct ion between
productions on one hand and demons on the other
is somewhat ambiguous. Indeed, one analysis of
the problem might include in productions what
another analysis include in demons. For
instance, in the example 4.1 the demoruzation
rel ies only on the data base current state. As
such it could be embedded in productions.

Anyway, it is rather clear what cannot be
included in productions. Productions cannot
include control decisions which effect ively rely
on inspecting the search space. This is due to
the fact that conditions in productions can deal
only with the current data base state. This
impossibil i ty is not def in i t i ve , because data
base states could be enriched by adding
components for hiding some information about
search spaces. However this method can lead to
modify the data base nature betraying the sp i r i t
of the solution i n i t i a l l y given to the problem.

Currently an experimental version of DPSP
is implemented as an embedded language in
Magmalisp, which in turn runs under VM-CMS. This
way DPSP inherits the most interesting feature
of the implementation of Magmalisp, i .e . the
incremental state saving mechanism based on the
notion of contexts /12/ .

Planned developments for the system are a
larger experimentation via the construction of
simple expert systems to be used in an off ice
automation project on one hand, and the study of
the possib i l i ty of enriching the language with
paral le l features on the other hand. Parallelism
can be added at least in two dif ferent ways:

- One is to allow paral le l inspection of the
problem space under control of demons.

- The other one is to have concurrent

communicating production systems. Indeed
guarded commands used in Communicating
Sequential Processes /13/ share several
interesting aspects with production systems,
including the nondeterministic one.

REFERENCES

/ l / Kowalski H., "Algorithm = Logic + Control",
Comm. ACM Vol. 22(7) pp. 424-436 (July
1979).

/2 / Davis R. and J .J . King, "An overview of
Production systems", in Machine
Intelligence 8: Machine Representation of
Knowledge, ed. Elcock & Michie, Wiley &
Sons, New York (1977).

/3 / Forgy C. and McDermott J . , "OPS, a domain-
independent production system language",
pp. 933-939 in Proc. F i f th In t . J. Conf. on
A . I . , (1977).

/4 / Newell A., "Heasoning, Problem Solving, and
Decision Processes: The Problem Space as a
Fundamental Category", in Attention and
Performance V I I I , ed. Nickerson, R,
Lawrence Erlbaum Associates, Hi l lsdale, NJ
(1980).

/5 / Nillson N., Principles of A r t i f i c i a l
Intel l igence, TIOGA Books (I960).

/6 / Wulf W.A., L.R. London, and M. Shaw, "An
introduction to the construction and
ver i f icat ion of Alphard programs", IEEE
Trans. on Soft. Eng. Vol. SE-2(4) pp. 252-
256 (1976).

/7/ Liskov B., A. Snyder, R. Atkinson, and C.
Shaffert, "Abstraction mechanisms in CLU",
Comm. ACM Vol. 21(B) pp. 564-576 (1977).

/8 / Wegner P., "Programming with ADA: an
introduction by means of graduate
examples", SICPLAN Notices Vol. 14(12) pp.
1-47 (1979).

/9 / Montangero C., G. Pacini, and F. Tur in i ,
"Magmalisp: a Machine Language for
A r t i f i c i a l Intel l igence", pp. 5bb-561 in
Proc. 4th In t . Joint Conf on A . I . , (1975).

/10/ Georgeff M. , "A Framework for Control in
Production systems", pp. 328-334 in Proc.
IJCAI-81, (1981).

/ l l / Clark K.L. and F.G. McCabe, "IC-PR0L0G-
language features", in Proc. of Logic
Programming Workshop, (14-16 July 1980).

/12/ Montangero C., G. Pacini, M. Simi, and F.
Tur in i , "Information management in context
trees", Acta Informatica Vol. 10 pp. 85-94
(1978).

/13/ Hoare C.A.R., "Communicating Sequential
Processes", Comm. ACM Vol. 21(8) pp. 666-
677 (1978).

