
Yes, An S I M D Machine Can Be Used For A I 

Ruven Brooks 
Rosalyn Lum 

Systems Research Division 
ITT - Advanced Technology Center 

1 Research Drive 
Shelton, CT. 06484 

(203) 929-7341 

A b s t r a c t 
Nearly all of the proposed parallel architectures for 

artificial intelligence applications use a multiple instruction, 
multiple data stream (MIMD) approach. While this 
approach offers the greatest opportunity for ultimate 
exploitation of parallelism, it has been difficult to actually 
achieve a high level of parallelism in practice because most 
of the existing algorithms require a higher interprocessor 
communications bandwidth than the hardware can achieve. 

An alternate approach to parallelism is the use of single 
instruction, multiple data stream parallelism (SIMD) 
machines. While SIMD machines do not offer the same 
ultimate exploitation of parallelism as MIMD architectures, 
they may, in fact, provide more useable parallelism. This is 
because they can be treated as serial machines with very 
long data words, so that existing algorithms may be more 
readily adapted in ways which better use available 
parallelism. We illustrate this concept with the Cellular 
Array Processor (CAP) being developed at the ITT 
Advanced Technology Center. This SIMD architecture is 
based on a rectangular processing array which accesses a 
single memory and which has very high speed data paths 
among the processing elements. We discuss the 
implementation and manipulation of data for two 
applications on the CAP; the OPS5 production system 
interpreter and a representation of an associative network. 
The expected performance of the CAP in these applications 
will also be presented. 

I n t r o d u c t i o n 
Recently, work on more powerful hardware and 

architectures for artificial intelligence applications has 
focused on parallelism as a solution to the problem of the 
looming limits to increased circuit speed in monoprocessor 
architectures (Deering, 1984). While there are a great many 
ways in which parallelism as a concept can be applied to 
architectures, the variety of parallelism that has attracted 
the predominant attention of the artificial intelligence 
community has been one in which multiple processors are 
each executing their own instruction stream on their own 

set of data. Among the designs based on this approach are 
C.MMP (Wulf and Bell, 1972) and the DADO architecture 
(Stolfo, 1984). 

The major problem that these designs present is one of 
memory access. Since memory speed is as big a bottleneck 
as processor speed, designs in which all processors share a 
common memory offer little opportunity for parallelism. 
Consequently, current work on parallelism is focusing on 
distributing the computation among processing elements in 
such a way that each processor operates on its own set of 
data. Work on parallel inference systems, for example, has 
attempted to develop algorithms such that all the 
information needed to infer each, single clause is on one 
processor. (This may involve copies of some of the 
information). A conjunction or disjunction is then 
computed by having each processor work separately on one 
of the clauses and combining the results. Such "divide and 
combine" approaches are also the basis for parallelism in 
other paradigms, such as the one used by Stolfo et. al. for 
OPS5 (Stolfo, 1984). 

While such algorithms can achieve a high degree of 
parallelism when they succeed, they do not work 
universally. Frequently, there is a trade-off between 
processor utilisation and communication time. Solutions 
that maximize processor utilization often result in slower 
overall computation time because of the time taken to 
communicate information - both instructions and data -
among processors. In the worst case, the performance is 
inferior to that of single processor systems. Increasing the 
communication bandwidth is rarely cost effective and, 
ultimately, will run up against the same hardware factors 
which limit memory bandwidth in single processor designs. 

While high performance multiple instruction, multiple 
data stream (MIMD) solutions may ultimately be found for 
many significant problems, equally high performance may 
be obtainable from architectures which trade reduced 
information communication requirements against a reduced 
degree of parallelism. We have been working with one such 
architecture, an SIMD (single instruction, multiple data 



74 R. Brooks and R. Lum 

Figure 1. 

stream) machine, which shows considerable potential for 
running some of the algorithms important to work in 
art i f ic ial intelligence. 

T h e Cel lu lar A r r a y Processor 

A r c h i t e c t u r e 
The Cellular Ar ray Processor (CAP) is a general 

purpose SIMD computer. The overall architecture of 
the CAP is shown in Figure 1. Originally, this 
architecture was designed for large scale numerical 
operations, part icularly those involving f loating point 
and vector operations. Adapt ing it to art i f icial 
intelligence algorithms was facil itated by a change to 
the memory access structure. 

The heart of the CAP is the associative array, 
composed of a square array of processing elements. 
Each element is a one-bit "bit-sl ice* processor. The 
number of elements in the array can be optimized for 
particular applications in multiples of 16x16; thus, 
arrays can be bui l t which are 16x32, 32x32 or larger. 

W i th in the array, the processing elements are 
conceptually organized into rows; each row behaves 
like a conventional processor w i th three exceptions: 
First, all rows execute the same instruction at the 
same time; this is accomplished by keeping all of the 
instructions in a single program memory and sending 
the instruction to all processors at once. A masking 
mechanism can be used to disable some of the rows or 
parts of the rows. 

Second, there are instructions for data transfer 
between processors; for example, it is possible to 
instruct all processors to transfer the contents of one 
of their registers into a register of the row next to 
them. It is also possible to broadcast the contents of a 
register in one row to all of the other rows. 

Th i rd , operations can be performed in parallel on 
parts of a row. For example, a 32 bi t row can perform 
two, simultaneous 16 bi t integer adds on each half of a 
row. Moreover, by setting most-significant and least-
significant bits at different points in the row, it is 
possible to work w i th arbitrary row partit ions. Thus, 
a 32 bit row could be partit ioned into two 10 bit 
pieces, and a 12 bi t piece. (There are some 
restrictions on part i t ioning across rows and on 
min imum part i t ion sizes.) 

As w i th conventional processors, each row has its 
own memory. Thus, there is effectively a stack of 
memory planes beneath the plane of processors. The 
amount of memory addressable by each plane is 
implementation dependent; the in i t ia l version, w i th 32 

bit rows, wi l l allow for 256K bytes per row, for an 
overall memory of 8M bytes. 

C o m p a r i s i o n t o O t h e r S I M D A r c h i t e c t u r e s 
Other SIMD machines (Kuhn & Padua, 1081) have been 

typically composed of complete processor units with small 
amounts of primary memory. Communication among 
processors is via a common bus of limited bandwidth. The 
problem is partitioned so that each processor executes the 
same instruction stream but on different parts of the 



R. Brooks and R. Lum 75 

problem (or in the case of production systems, different 
rules). 

If the problem is not partit ioned properly or if only 
part of the problem is executable at any one time, 
then some of the processors wi l l have to wait unt i l 
other processors have finished execution. This 
frequently prevents ful ly uti l izing the speed gained in 
the parallel implementation of instructions. 

The CAP, on the other hand, has a large primary 
memory for each processing row. Broadcast of data to 
the rows takes place at instruction execution speed. 
Since the data is organized along rows rather than into 
the depth of the memory, it is easier to allocate the 
data more evenly among the processors. Further, 
since instruction decoding is done once for the entire 
array, there is no need to replicate instruction 
memories. This combination increases the likelihood 
that the processing array can be kept fully occupied 
more of the t ime than has been the case wi th past 
SIMD architectures. 

I m p l e m e n t a t i o n 
The current implementation of the CAP 

architecture is a VLSI chip set consisting of a 
processor chip, a controller chip, a barrel-shifter chip, 
a communications processor chip and an input /output 
processor chip. Each array chip contains 16 one-bit 
cells. The chip is a custom design currently fabricated 
in 3-micron, N-well, double metal CMOS. It contains 
approximately 117,000 transistors, and has an 
estimated die size of 500x650 mi l . die, w i th 132 I /O 
pins. 

The array chip has been designed to have the 
fol lowing attributes: 

• Highly regular structure 

• Fixed and floating point arithmetic 

• Logic, branching and masking instructions 

• 10 MHz sixteen bit addition 

• 20 MHz input /output shift rate 

In addit ion, each cell has it own control logic, 
A L U , a set of single bi t registers, and simple I /O 
processor for external device D M A to off-chip R A M . 
The amount of off-chip R A M is abo variable w i th 
typical sizes being 16K, 64K, and 256K. The total 
available pr imary memory for the array is then n x 16 
X m; where n is the number of chips times 16 (the 
number of cells on each chip) times m, the amount of 
memory attached to each cell. 

App l i ca t ions 
To il lustrate how the CAP architecture can be 

used for art i f icial intelligence applications, we show 
how the CAP can be used to implement some typical 
algorithms used in arti f icial intelligence work: the 
OPS5/RETE algorithm and association network 
algorithms. These wi l l be discussed in terms of 
implementation and performance on the CAP. 

O P S 5 / R E T E A l g o r i t h m 
The R E T E algorithm for matching the left-hand 

sides of rules in the OPS5 forward-chaining production 
system language is one of the few, well analyzed 
computations in arti f icial intelligence (Forgy, Gupta, 
Newell & Wedig, 1984). Forgy et. al. describe this 
algorithm as follows: 

■The Rete interpreter processes the left-hand sides 
of the productions prior to executing the system. It 
compiles the left-hand sides into a network that 
specifies the computations that the matcher has to 
perform in order to affect the mapping f rom changes 
in working memory to changes in the conflict set. The 
network is a dataflow graph. The input network 
consists of changes to working memory encoded in 
data structures called tokens. Other tokens output 
f rom the network specify changes that must be made 
to the conflict set. As the tokens flow through the 
network, they activate the nodes, causing them to 
perform the necessary operations, creating new tokens 
that pass on to subsequent nodes in the network. The 
network contains essentially four kinds of nodes: 

• C o n s t a n t - t e s t nodes: These nodes test 
constant features of working memory elements. 
They effectively implement a sorting network 
and process each element added to or deleted 
from working memory to determine which 
conditions the element matches. 

• M e m o r y nodes: These nodes maintain the 
matcher's state. They store lists of tokens that 
match individual conditions or groups of 
conditions. 

• T w o - i n p u t nodes: These nodes access 
the information stored by the memory nodes to 
determine whether groups of conditions are 
satisfied. For example, a two input node might 
access the lists of tokens that have been 
determined to match two conditions of some 
production individually and determine whether 
there are any pairs of tokens that match the two 
conditions together. In general, not all pairs wi l l 
match because the left-hand side may specify 
constraints such as consistancy of variable 
bindings that have to hold between the two 



76 R. Brooks and R. Lum 

conditions. When a two-input node finds two 
tokens that match simultaneously, it builds a 
larger token that indicates that fact and passes it 
to subsequent nodes in the network. 

• T e r m i n a l nodes. Terminal nodes are 
concerned wi th changes to the conflict set. 
When one of these nodes is activated, it adds a 
production to or removes a production f rom the 
conflict set. The processing performed by the 
other nodes insures that these nodes are 
activated only when conflict set changes are 
required. ■ 

In their analysis of several, large OPS5 systems, 
Forgy and his colleagues conclude that the match 
process is the biggest component of OPS5 run times, 
since it occurs every t ime a rule action takes place. 
Further, processing the memory nodes and the two-
input nodes takes the largest portion of match t ime. 
They also point out that most changes are localized, 
wi th only a small proportion of nodes being activated 
for any rule action. 

C A P I m p l e m e n t a t i o n o f t h e Re te A l g o r i t h m . 
The R E T E algorithm can be implemented on the 

CAP in a form which utilizes the CAP parallelism 
effectively. For purposes of describing this 
implementation, we wi l l assume a 32x32 CAP array, 
although the approach wi l l work the same way for 
other array sizes. 

C o n s t a n t - t e s t nodes. 
These can be handled in two different ways, 

depending on the characteristics of the tests that are 
needed. 

Many values for a single attribute. 

Here, the situation is one in which many rules test 
the same attr ibute of a particular working memory 
element, but where each rule matches a different 
value, or, alternately, there are many different classes 
of working memory element and different rules match 
different classes. In the CAP, this is handled by 
testing the incoming token against many possible 
alternatives simultaneously. Assuming that all of the 
alternative values are stored in one or more planes of 
the CAP memory, the operations are as follows: 

1. Broadcast the value from the incoming 
token to all rows of the CAP and store it in a 
register. 

2. Load the plane of constants into a CAP 
register in each row. 

If there are 32 or fewer alternatives to be tested, 
then all of the tests can be made in one pass through 
these steps. If there are more, then steps 2 and 3 can 
be repeated for additional planes of alternatives. 

Many constant values in a single LHS pattern. 

Sometimes there wi l l be many constant tests to be 
made on a single working memory element; this would 
occur if the working memory elements were very long 
wi th many attributes. In this situation, there is an 
alternative set of CAP operations. To use them, all of 
the attr ibute values that belong to one left-hand side 
element are placed in the same planes of CAP 
memory. The operations are then the same as those 
given above. 

Both of these methods can be combined in a single 
search tree. Thus, it may be desirable to test the 
classes of all of the elements at the top of the tree but 
then switch to testing mult iple attributes wi th in an 
element further down in the tree. 

M e m o r y a n d t w o - w a y nodes. 
In these nodes, the problem is one of testing an 

incoming token against the set of tokens that have 
arrived at the node earlier and are being stored there. 
In the CAP implementation, the node memory wi l l be 
set up in the fol lowing manner: 

1. If the tokens are smaller than the row 
length of the CAP array, they wi l l be placed 
contiguously wi th in a plane of CAP memory. If 
the memory is large, then mult iple planes of 
memory may be used, but the planes need not be 
contiguous. 

2. If the tokens are larger than a row of CAP 
array, the tokens wi l l be split across mult iple 
planes of memory, but each part of a token wi l l 
occupy the same relative position wi th in its 
plane. 

W i t h this arrangement, the following sequence of 
CAP operations can be used to test an incoming token 
against the tokens which are already in a node 
memory: 

1. Load the first part of the incoming token 
into the vertical data register. 

2. Broadcast this value to all rows of the 
CAP and store it in a register. 

3. Load the plane containing the first part of 
the tokens stored at the node into a CAP 
register in each row. 

3. Compare the two registers in each row. 4. Compare the two registers in each row. 



R. Brooks and R. Lum 77 

5. If there are no more parts, the matching 
rows are the memory tokens which match. 

6. If there are more parts, mask out the rows 
which did not match in the previous steps, and 
repeat the load and compare operations wi th 
successive parts. 

7. Repeat steps 2 through 5 for all of the 
planes containing additional stored tokens. 

E x p e c t e d P e r f o r m a n c e 
The CAP implementation wi l l affect the 

performance of the R E T E match algorithm in two 
ways: First, it wi l l effectively reduce the number of 
constant nodes in the tree. Currently, the number of 
constant nodes in the tree is proportionate to the 
product of the number of different attributes and the 
number of different values those attributes can take 
on. In the CAP implementation, it w i l l be 
proportionate only to the number of different 
attributes, provided the number of attributes is less 
than the row size of the CAP. 

Second, and, perhaps, most importantly, there wi l l 
be a speed up in the performance of two-input nodes. 
Since the time in processing these nodes is spent 
comparing an incoming token to the tokens already 
stored at the node, the abil ity of the CAP to do 
mult iple comparisons simultaneously could 
significantly improve performance. The amount of 
performance improvement wi l l depend on the average 
number of tokens being stored in the node memories 
and wi l l increase as the number increases. A factor 
equal to the number of rows of the CAP wi l l be the 
upper bound; thus, a 32 row CAP wi l l yield a 
maximum of a 32 fold improvement. 

Overall, maximum parallelism wi l l be achieved 
when the number of memory nodes is large and these 
nodes are filled much of the time and when the 
number of one-input (constant) nodes is large. Worst 
case performance wi l l occur when the number of one-
input nodes is small and there are many two-input 
nodes wi th no memories. This would be the situation 
if no variables were used on the left-hand sides of 
rules, but the left-hand sides had a large number of 
conditions. 

C o m p a r i s i o n t o O t h e r O P S 5 A r c h i t e c t u r e s 
At least two other architectures have been 

proposed for forward production systems, particularly 
OPS5. (The PSM group (Forgy et. al., 1984) 
architecture is sti l l in the the design analysis stage, so 
that no figures on the implementation are yet 
available.) The DADO architecture has been well 
described and several different algorithms have been 

proposed for i t , so that a preliminary comparision is 
possible. 

The D A D O architecture is based on a relatively 
large number of processors, such as 1023, connected in 
a binary tree architecture (Stolfo, 1984). Each 
processor is currently implemented using a 
commercially available processor, a modest amount of 
local memory (16K bytes) and a semi-custom I /O 
switch. Since each of the processors operates in a 
conventional, serial manner, the system relies for speed 
improvement on distr ibuting the computation out 
among the processors. 

If each of the 1023 processors has an 8 bit word 
width, and if maximum parallelism is achieved, then 
the maximum processing capacity wi l l be 1024 bytes 
at the instruction execution rate of the individual 
processors. A 64 row by 64 bit CAP array, running at 
higher clock rate, offers equivalent maximum 
processing capability wi th many fewer components. 
One important issue, then, is the extent to which the 
parallelism is useable. 

As was noted earlier, the CAP wi l l achieve best 
performance wi th large average node memory sizes. 
Forgy et. al. (1984) point out that this is the situation 
in the large OPS5 systems they analyzed. The DADO 
algorithm that most closely corresponds to this 
situation is algorithm 4, in which leaves of the tree 
contain one input tests, and the results of the test are 
broadcast up the tree. This means that, in general, 
fewer than 256 processors wi l l be available for 
simultaneous work on two input nodes, that is, on any 
instruction cycle, only 256 bytes of data bandwidth 
wi l l be available. In contrast, the ful l 512 bytes of 
CAP bandwidth w i l l be useable on these tests. Hence, 
the CAP should achieve roughly twice the 
performance of the DADO machine. 

Another difference wi l l be in the memory available 
for large working memories or numbers of rules. The 
current D A D O design partit ions the memory into 
relatively small units of 16K per processor. If a single 
node memory becomes very large, it may exceed the 
storage capacity of an individual processor, while st i l l 
using only a small fraction of the overall memory of 
the machine. In the CAP, in contrast, the memory 
behind each row is relatively large - 256K for the 
ini t ia l implementation • and it can be dynamically 
allocated among the different node memories. Thus, 
the CAP is less likely to run into memory allocation 
problems on large OPS5 systems. 

A s s o c i a t i o n N e t w o r k s 
Association networks, also called semantic 

networks, are one of the most widely investigated 



78 R. Brooks and R. Lum 

approaches to knowledge representation in art i f icial 
intelligence. A wide diversity of approaches and 
systems exist (Findler, 1979); in some, for example, 
links between nodes indicate relationships among 
nodes; in others, links indicate positions in logical 
predicates. At the implementation level, though, 
nearly all of the formalisms use the following 
operations: 

1. Find all of the node(s) reacheable from a 
given node using a specified set of links or l ink 
types. 

2. Find a path between a pair of nodes. 

There may be restrictions on the length of the 
paths and/or on the types of links used. 

In general, the links are stored as lists of pointers 
such as LISP property lists. Consequently, the time to 
perform the operations tends to be heavily dependent 
of the total number of links emanating from a node 
since it may be necessary to traverse the entire list to 
f ind a link of a particular type. 

The CAP can also be used to process association 
networks much faster than can be done wi th 
conventional serial processors. The approach that is 
used is to take advantage of the CAP's abil i ty to 
simultaneously perform operations on individual bits. 
Instead of representing the links in the network as 
pointers, they are stored as bi t matrices, one matrix 
for each type of l ink. Each node in the network is 
represented by a row and a column in each matr ix, 
and a 1 in a row-column intersection indicates that a 
l ink of the given type exists for the two corresponding 
objects. 

Figure 2 gives an example of such a matrix. The 
relationships are predefined in the vertical and 
horizontal directions and the axis in the x and y 
directions represent the nodes of the list. In this 
example, the vertical or columnwise relationship 
represent the children of the member in the horizontal 
axis. A 1 in the searched column wi l l yield all children 
of a certain parent. This axis can also be discriminated 
further by male/female categories whereby 
son/daughter information can be ascertained. The 
horizontal or row-wise relationship was defined as the 
parents of the searched person whose identity belongs 
to that row. 

From this simple example, it can be seen that this 
type of representation also commends itself to depth 
or iterative searches. By recursively tracing links of 
previous links, ancestral information for x number of 
generations can be found. Family trees or paths may 
be traced and on either parent's lineage. In addit ion, 

the search space for any row or column is restricted to 
only the pages which fall in the row or column of the 
searched individual. For example, if the query is to 
find all the children of namex and namex is on the 
fourth page, 10th column (Figure 3), then only the 
pages in the shaded area need be searched. Because 
the matrices are sparse, it is important to be able to 
determine quickly if a column is blank. 

Expec ted P e r f o r m a n c e . 
Assuming a 32x32 CAP configuration, the CAP 

wi l l be able to simultaneously search 32 elements of a 
row or column in a single instruction sequence. Thus, 
it wi l l offer a substantial performance improvement 
over uniprocessor architectures that test one element 
per instruction sequence. 

C o m p a r i s i o n t o O t h e r A r c h i t e c t u r e s . 
At least two other architectures have been 

proposed for similar tasks, the Connection Machine 
(Hillis, 1981) and SNAP (Dixi t & Moldovan, 1984). 
Both of these are VLSI implementations of associative 
memory architectures in which there is a very large 
array of processing elements wi th nearest neighbor 
interconnections. In both designs, the array is driven 
by an external processor which uses the array for data 
storage and retrieval. 

In these designs, there is a mapping from nodes in 
the association network to individual processing 
elements. In the Connection Machine, in which 
processing elements have 14 connections to their 
neighbors, a node is represented by a tree of 
processing elements in which the links in the tree are 
implemented as addresses stored in state vector of the 
processing element. In SNAP, the cells have a four-
way connection and a content addressable memory 
that is used to store links; each processing element 
represents one node. 

The Connection Machine is partial ly an SIMD 
design, since all cells share the same rule table. 
Though it is not as clear f rom the published 
descriptions, it appears that all SNAP cells also 
execute the same instructions. In contrast to the CAP 



R. Brooks and R. Lum 79 

though, the individual cells may operate 
asynchonously in both designs. Thus, they may be 
simultaneously operating on different parts of an 
association network. 

The performance of these designs relative to the 
CAP wi l l depend on several factors: The first is 
overall array size. Since these machines are driven by 
external processors, loading the arrays wi l l depend on 
the speed of these processors. If the size of the 
network exceeds the size of the array, the effective 
processing speed may be considerably reduced. The 
cost effectiveness of array size wi l l , in turn, depend on 
the effectiveness of the VLSI implementation. Since 
the CAP architecture uses conventional R A M , the 
abil ity to directly access large networks may 
compensate for the reduced number of active 
processing elements. 

A second important factor wi l l be the structure of 
the particular network and its effect on array 
congestion. If the network is partit ioned into largely 
independent graphs wi th only a few nodes connecting 
the areas, then these connecting nodes can effectively 
be a bottleneck to many processing array operations 
and greatly reduce the effective parallelism. 

Th i rd , the Connection Machine and SNAP designs 
are only intended to search and manipulate links 
among nodes. Any processing done on the nodes 
themselves are, again, handled by an external 
processor. In contrast, the CAP is capable of a wide 
variety of arithmetic and logical operations, so that no 
interaction w i th an external processor is needed. 

C o n c l u s i o n s 
The previous analyses have been intended to show 

that the CAP is, at least, a competitive architecture 
for two, important art i f icial intelligence algorithms. 
Other architectures for the same algorithms all have 
significantly more processing power when measured in 
terms of overall processing bandwidth, but potentially 
suffer f rom problems of bandwidth uti l ization caused 
by restrictions on common access to data. In contrast, 

the large memory of the CAP and the large bandwidth 
of access to this memory may more than compensate 
for the reduced opportunities for parallelism. 
O h , yes, i t does d o f l o a t i n g p o i n t . 

Finally, in making these analyses, we have 
deliberately understressed the CAP's abil i ty to do high 
speed arithmetic processing. For byte-wise integer 
operations, such as might be involved in picture 
processing, a 32x32 array could achieve a speed of 
over 1,200 MOPS. For floating point operations, the 
speed approaches 10 Mflops. The abil i ty to perform 
these operations on the same processor w i th high 
speed rule f i r ing or fast association network searching 
might be very valuable in intelligent signal processing 
tasks such as scene analysis or speech recognition. 

References 

Deering, Michael. Hardware and software architectures for 
efficient AI . Proceedings, National Conference on 
Artificial Intelligence, American Artificial Intelligence 
Association, 1084. 

Dixit, V. and Moldovan, D. I. Discrete relaxation on SNAP. 
Proceeding; The First Conference on Artificial 
Inteligence Applications I.E.E.E. Computer Society, 
1084. 

Findler, N. V. (Ed.) Associative Networks: The 
representation and use of knowledge by computers. 
Academic Press, New York, 1979. 

Forgy, C; Gupta, A.; Newell, A.; and Wedig, R. Initial 
assessment of architectures for production systems. 
Proceedings, National Conference on Artificial 
Intelligence, American Artificial Intelligence Association, 
1984. 

Hillis, W. Daniel. The Connection Machine. A.I . Memo 648. 
Artificial Intelligence Laboratory, Massachusetts 
Institute of Technology, 1981. 

Kuhn, R. H. and Padua, D. A. Tutorial on Parallel 
Processing, I.E.E.E. Computer Society, 1981. 

Stolfo, S. Five parallel algorithms for production system 
execution on the DADO machine. Proceedings, 
National Conference on Artificial Intelligence, 
American Artificial Intelligence Association, 1984. 

Wulf, W. A. & Bell, C. G. C.mmp - a multi-mini-processor. 
AFIPS Conference Proceedings, Vol. 41, part I I , FJCC, 
1972, 765-777. 


