
Q U A L I T A T I V E M A T H E M A T I C A L R E A S O N I N G

El isha Sacks

Cl in ical Decision M a k i n g Group, Labora to ry for Computer Science
Massachusetts Ins t i tu te of Technology, Cambridge, M A . 02139

ABSTRACT

Qualitative analysis studies the mechanisms with which hu­
mans derive the abstract behavior of a complex system from a
description of its components and their interconnections, while ig­
noring unimportant or unknown low-level details. I present a pro­
gram that analyzes a system by forming and combining mathemat-
ical descriptions of its sub-systems. This approach can overcome
significant shortcomings in the simulation method used by other
qualitative reasoning systems.
1. Motivation

I contend that qualitative reasoners should produce explicit
mathematical descriptions of behavior. I have developed a qual­
itative mathematical rcasoner. QMR, to test my contention. It de­
rives closed-form expressions for each parameter in a system and
determines the behavior of these expressions. This presupposes
that real-world parameters can be modeled by real-valued piecewise
differentiate functions of time, and systems by sets of function-
ally related parameters. Actually, I only discuss systems that can
be solved using Laplace Transforms and other basic techniques.
Extending QMR to cases with unwieldy or open-form solutions is
discussed in the conclusions.
2. An Example

Before delving into the details of QMR, let us consider a simple
example, the behavior of a ball after being thrown straight up from
height 0 with velocity vo- This system can be represented by
the ball's height h[t), velocity v(t) and acceleration a(t). The
constraints

(i)

QMR interprets these results and produces the qualitative descrip­
tion appearing in table 1. This trivial example shows only a small
fraction of QMR's power. My thesis [4] contains more extensive
examples including damped oscillation and heat dissipation.
3. Data Structures

QMR represents a function on by a collection of interval
descriptors, each corresponding to a closed sub-interval of its do­
main. The function is continuous and strictly monotonic or con­
stant within these intervals, whereas the end points mark extrema,
discontinuities or domain boundaries. For example, decreases
on
are domain boundaries, and zero, a minimum Any function on

that has a finite number of discontinuities and turning
points. can be described by a finite number of de­

scriptors.

(2)

hereafter called fun-ints. The set of fun-ints that describes a
function is called a junctional descriptor or FD.

Each fun-int contains the information that high school students
use to sketch functions. It includes the function's direction, sin­
gularities, inflection points, end-point values and limits, convexity.
Values may bo undefined or unknown. The inverse, for instance,
does not exist on constant intervals, and may lack a closed form
on monotone intervals Table 2 shows the fun-ints for the ball's
height h. Convexity is represented as a list of triples
in which sign is the second derivatives sign on '. All other
entries arc self-explanatory.

Constraints and initial values mix numbers and unknown sym­
bols, so QMR implements generic arithmetic operations similar to
those in other symbolic algebra systems. Inequality relations be­
tween arbitrary expressions can be asserted, but inconsistent as­
sertions are rejected. This information is used by generalized in­
equality predicates, for example

(3)

138 E. Sacks

The current algorithms do not derive all valid inequality relations,
but they never derive invalid ones. They have been adequate so far.
If they prove insufficient, more sophisticated algebraic and analytic
techniques can be utilized.
4. Ins tant ia t ion A lgo r i t hms

QMIt derives the behavior of expressions by constructing and
describing their FD's. It matches expressions syntactically with
a large library of basic patterns that includes cubic, exponential,
logarithmic, hyperbolic and trigonometric functions. If a match
succeeds the corresponding instantiation algorithm creates an FD
based on the matched arguments. The qualitative region in which
each argument lies determines the FD's form, whereas the actual
arguments determine its entries. For example, ax2 + bx matches
the quadratic pattern and
?w - 0. The quadratic instantiator chooses a quadratic or a linear
form, depending on whether a is nonzero or zero, and substitutes
a. 6 and 0 into that form.

Instantiation algorithms use three transformations: restriction,
linear substitution and linear composition, to produce a wide range
of FD's from a few basic ones. All quadratics, for instance, come
from the x2 FD. Linear substitution produces an FD for f(ax + b)
from that of f(x) by mapping each fun-int [lb, ub\ onto

(4)

and appropriately scaling the derivatives, singularities and con­
vexities. The first and second derivatives are af'(ax + b) and
a2f"(ax + b) by the chain rule. Singular points are scaled and
their values multiplied by a, but convexity regions are just scaled
since multiplying by a2 leaves their qualitative values unchanged.
The case a = 0 yields a constant function, y = f(b). Linear
composition produces a fun-int for a • f(x) + b from that of f(x)
without changing the existing lb and ub values The new direction
is the same as the old when a > 0 and the opposite when a < 0.
The function is scaled by a and shifted by b, the derivatives and
singularities are scaled by a and the inverse is transformed appro­
priately. Once again, a = 0 yields a simple special case, f(x) = 6.
Finally, the restriction operator derives an FD for f(x) restricted
to a sub-interval of its original domain.

All three instantiation functions perform perfectly when certain
qualitative information is available, for example a's sign for sub­
stitution and composition. If ambiguity exists, e.g. they
create an FD for every possible case and record the appropriate
assumption in each one. The next section describes combination
algorithms that are more powerful and general than the instantia­
tion algorithms. However, unlike the instantiation functions, they
do not always produce complete FD's due to the limitations of their
current methods. As with symbolic arithmetic, more sophisticated
methods arc unnecessary at the moment.
5. Combina t ion A lgo r i thms

Combination algorithms implement functional composition, ad­
dition and multiplication of arbitrary FD's. They build other opera­
tors, such as exponentiation, division and subtraction, from these
three. They enable QMR to decompose complicated expressions
that do not match any stored pattern into sums, products, ex­
ponentiations or compositions of two or more sub-expressions, to

analyze recursively the sub-expressions and to combine the results.

E. Sacks 139

Higher-level descriptions can be constructed from the basic queries.
One program summarizes an FD's mathematical behavior by list­
ing directionality, discontinuities, convexity, singularities and turn­
ing points. Another generates the joint qualitative behavior of an
FD set demonstrated in table 1. A graphics program that draws
qualitative sketches of FD's also exists.
7 . Compar ison w i t h Other Work

This section compares QMR with the qualitative simulation
(QS) approach taken by Forbus [2], de Kleer and Brown [1], Kuipers
[3] and Williams [5]. In QS. each parameter's instantaneous state
consists of its qualitative value and the qualitative value of its
derivative: increasing, constant or decreasing. A system's state, in
turn, consists of the states of its parameters. QS derives a system's
behavior from its constraints and initial values by determining the
successive qualitative states which it might enter. States end when
parameters reach boundary points, so QS must derive which, if
any, do so from the constraints and initial values. It summarizes
these results in a history, a graph whose nodes represent states
and links, transitions. Periodic behavior shows up as cycles and
ambiguity as multiple out-links.

Simulation offers insight into naive reasoning but ignores sev­
eral aspects of expert behavior: large bodies of compiled knowl­
edge, hierarchical abstraction and sophisticated mathematical mod­
els. Experts summarize important recurrent systems as cliches,

concise descriptions of their behavior and appearance. Future prob­
lems that match cliches need not be analyzed since the expert re­
members how they behave. Experts decompose a large system
into a few sub-systems and treat them as black boxes that imple­
ment specified input/output behavior. These sub-systems, in turn,
may be recognized as cliches or decomposed further, leading to a
hierarchy of abstractions. In order to treat sub-systems abstractly,
QS must replace each one by a high-level constraint that relates
its inputs and outputs but ignores internal structure. However,
sub-system behavior is described by histories, so QS must deduce
constraints from histories. That difficult learning problem has not
been mentioned—much less solved—by current QS researchers, so
they must always use combinatorially explosive linear simulation.
QS systems could learn and record cliches—though none actually
do—but only as histories, not as constraints. Once again, these
would not be very useful in problem decomposition.

Experts often derive and analyze mathematical models such
as exponential decay, linear growth, and damped oscillation. QS
lacks the necessary details for this analysis. For example, it cannot
represent the functions

(5)

or deduce that Similarly, asymptotic
behavior lies outside QS's ken. since it assumes, simplemindedly,
that quantities eventually reach the boundaries that they approach.
This heuristic can predict qualitatively incorrect behavior since
it confuses bounds with limits. In general, QS cannot incorpo­
rate qualitative mathematical information into the existing con­
straint/simulation formalism without a detailed model of contin­
uous functions. De Kleer and Brown point out that many expert
systems fail when given simplified versions of problems which they
have already solved. QS suffers from the dual of this weakness; it
cannot produce better solutions from more precise problem speci­
fications.

QMR's functional model removes the limitations that prevent

QS from becoming an expert network analyst, without sacrificing
its flexibility and generality, by stressing the aspects of expertise
that it ignores: compiled knowledge, hierarchical abstraction and
mathematical models. QMR encodes common functions as FD's,
and families of functions as instantiation algorithms, such as the
exponential model aebx + c of decay and growth. It divides a net­
work into sub-systems, connected by functional composition, addi­
tion or multiplication links, creates an FD for each sub-system, and
uses composition algorithms to derive an overall FD. Sub-systems
can be analyzed by recursive decomposition or by instantiation al­
gorithms. Unlike QS. this algorithm is fully hierarchical, since it
uses a uniform representation, the FD, for all inputs and outputs.
Finally, the FD model can record a wide range of information: nu­
merical functions such as logx, parameterized ones such as sin ax.
and purely qualitative ones such as "an increasing function." This
allows QMR to apply numerical techniques to the first type, sym­
bolic ones to the second, and general functional ones to the third.
It takes advantage of powerful calculus methods whenever possible,
but uses general ones when all else fails.
8. Conclusions

I have described a qualitative mathematical reasoner. QMR. and
compared it with existing QS reasoners. QMR consists of a well-
developed qualitative mathematics system that manipulates piece-
wise continuous parameterized functions, and a rudimentary qual­
itative reasoner that deduces the behavior of functional networks.
Its mathematical sophistication allows expert reasoning about sys­
tems of known functional form, while its uniform representation,
the FD. facilitates hierarchical decomposition of compound sys­
tems. In contrast, the QS paradigm attempts to build a sophis­
ticated qualitative reasoner while relying on an extremely simple
uniform model of functions. Existing QS programs use qualitative
simulation as their reasoning algorithm. This leads to combina­
torial explosion in complex networks since components cannot be
treated as compound quantities; the former have history descrip­
tions and the latter, constraints. Even if this limitation could be
surmounted, the QS functional model would remain too weak for
sophisticated mathematical reasoning techniques.

Though QMR solves many interesting problems quickly and
precisely, its current capabilities are inadequate for expert reason­
ing about realistic systems. Experts reason about large systems
whose closed-form solutions are nonexistent, or unwieldy, or where
the exact functional relation between nodes is unknown. Extend­
ing QMR to complex and partially-specified networks is a goal for
future research. One possible approach would use approximation
techniques, such as power series expansions, when closed-form so­
lutions fail. It would apply theorems about differential equations
to analyze partially-specified systems. A second goal is to prove
QMR's worth by solving significant problems, not just simple ex­
amples. This goal will also guide QMR's development by setting a
standard that it must meet.
9. References
[1] J. De Kleer, J. Brown, "A Qualitative Physics Based on
Confluences." Artificial Intelligence 24(1-3). December 1984.
[2] K. Forbus. "Qualitative Process Theory."
A.I. TR 789, M.I.T., July 1984.

|3] B. Kuipers. "Commonsense Reasoning about Causality,"
Artificial Intelligence 24(1-3). December 1984.
[4] E. Sacks. "Qualitative Mathematical Reasoning."
LCS/TR-329. M.I.T.. 1985.

