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ABSTRACT

Computational  Neurolinguisties (CN) inte-
grates artificial intelligence (Al) methods with
concepts of neurally motivated processing to
develop cognitive models of natural language
processing.

HOPE is one example of a model developed to
address issues in CN. The model is parallel, and
exemplifies language as the result of time syn-
chronized processes which are asynchronous in
nature. Furthermore, the model is substantially
validated to include normal behavioral evidence in
its design. In addition, it attends to aspects of
language breakdown which are well documented in
the literature of neurolinguistics or aphasia.

This paper discusses assumptions which un-
derlie the CN approach to model development. It
will describe the neurally motivated or "natural
computational" processes which produce the model's
observable and verifiable behavioral results. The
differences in the CN approach to other models of
parallel memory process and behavior will be
presented. Finally, the contribution of the CN
research approach as a tool for investigating the
breakdown of language performance and its poten-
tial contribution to understanding brain function
will be discussed.

1. INTRODUCTION

Computational Neurolinguistics (CN) was first
described by Arbib and Caplan (1979) as a possible
approach to enhancing studies of aphasia by em-
ploying a HEARSAY-like, interactive processing
paradigm to model aspects of aphasic language
performance.

The HOFE system (Gigley, 1981; 1982a; 1982b;
1982c; 1983a) encompasses a proposed solution to
the issues raised by Arbib and Caplan (1979). CN,
as a research approach has evolved during HOPES
development to include many issues which were not
obvious in that first discussion. HOFE represents
an approach to cognitive modelling which attempts
to develop computational models of process that
are behaviorally relevant on two levels—

(1) at the neural processing level, where the
encoded processing mechanisms are based on

The research described in this paper was sup-
ported through an Alfred P. Sloan Foundation Grant
to the University of Massachusetts in Amherst,
through a Faculty Research Initiation Grant and a
Biomedical Research Support Grant at the Univer-
sity of New Hampshire.

current evidence of neural process, and

(2) at the natural language behavioral level,
where the results of the observable computa-
tions of the model and its final result
states are verifiable with respect to human
language performance, both normal and patho-
logical.

The development of CN models emphasizes
process. A primary assumption of this approach,
which is not an assumption for much of Al, is that
much is gained by including neural-like computa-
tions in models which attempt to "simulate" any
cognitive behavior.

Furthermore, the assumption that time is a
critical factor in neural processing mechanisms
and that it can be a significant factor in lan-
guage behavior in its degraded or "lesioned" state
can only be studied within a computational para-
digm as provided in CN models. The complexity of
the computation that arises in defining the time-
coordination of parallel interactive processes
under both a "normal" state and in the "lesioned"
condition requires an implemented model to keep
track of the process.

The CN methodology as it has developed during
design and implementation of a first example of
such a model, will first be presented within the
scope of its goals in defining such models. Then,
the working implementation of that model, HCFE
will be briefly described to demonstrate the
relevance of the approach and how it meets the
simultation criteria at the neural process or
natural computation level, as well as at the
natural language performance level. The CN ap-
proach will be briefly compared to other neurally
motivated processing models of aspects of sentence
comprehension such as the connectionist models
(Feldman, 1981; Cottrell and Small, 1983), the
parallel interpretation model of Waltz and Pollack
(1985), and the perceptual processing models of
Anderson, Silverstein, Ritz, and Jones (1977),
McClelland and Rumelhart (1981), Wood (1978) and
Gordon (1982), to illustrate how the present
implementation differs from each.

Finally, the potential use of CN models as
investigative tools will be described to illus-
trate the most obvious practical application of
the research and the potential contribution of the
research to understanding brain function.

2 ASSUMPTIONS UNDERLYING THE CN APPROACH TO
———NATURAL LANGUAGE PROCESSNG——+—



One goal in approaching the study of natural
language processing as it can be computed within a
neural-like processing paradigm is to obtain a
better understanding of how brain function can
subserve language behavior.

The first constraint on the design of such
models is the neural-like control paradigm.
Because of its adoption, with the associated
internalized control of the process, the problem
decomposition is different than in the development
of serial-order models of language processing such
as are usually found in linguistic theory and
other Al approaches to language processing.

Developing a CN model requires that evidence
from errorful language performance provide criti-
cal clues that are used to define the interactions
among the defined representations. This data is
available in the behavioral |literature such as
that of slips of the tongue, the literature of
neurolinguistics and even in the descriptions of
the effects of brain stimulation on language per-
formance.

The critical emphasis in the CN approach is
that language behavior is defined within both the
"normal"” state and within the "lesioned" condition
using evidence from psycholingustic studies and
neurolinguistic studies of aphasia. When there is
insufficient evidence within the literature,
linguistic theory provides the basis for design
decisions which are consistent with the processing
paradigm. The role of the grammar in the approach
is presented in Gigley (1985) and will not be
further described here. What should be noted is
that all representations that are independently
specifiable in the model find support in the
literature mentioned above. This is documented in
Gigley (1982b) and will not be repeated here.

The primary use of the model in its simula-
tion state is to determine what the effects of
specifiable, interpretable processing "1esions"
are on the overt behavior of the model and whether
the performance finds any clinical support.

2.1 An Overview of the Neural Processes in
HOPE'S Design

HOPE is a neurolinguistically constrained
processing model of natural language comprehen-
sion. It is implemented at the single sentence
comprehension level. Although there is substan-
tial evidence that comprehension occurs within
context, the test paradigm most often used in
studying aphasic patients comprehension abilities
is within a task that precludes any preset con-
text. For this reason, the single sentence level
was considered sufficient in the first Ilevel
implementation.

Neural-like representations and functions
that are encoded in the processing paradigm and
that effect the control include:

(1) nodes interpreted as representations of
information that are threshold mechanisms,
and are ambiguous in their interpretation,

(2) automatic meaning access that includes a
fixed-time spreading activation scheme,

(3) an automatic decay scheme that affects all
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active information if it does not receive any
subsequent input or change state, and

(4) node state changes that are automatic and
related to the threshold firing of a node.

Models of neural-based computations that
existed prior to the development of HOPE discussed
some of these aspects of neural behavior and
applied them to psychologically defined models
(Baron, 1974a; 1974b; Cunningham and Gray, 1974),
or applied a systems analytic approach to the
analysis of aphasic behavior (Lavorel, 1982;
Lecours and Lhermitte, 1969; Marcus, 1982).
However, in the case of the latter models, they do
not meet the requirement of the CN approach that
neither redesign nor reprogramming be requisite to
defining "lesion" performance of the model.

2.2 Behavioral Constraints Underlying HOPE'S

Design

As briefly mentioned above, the representa-
tions that are included in the design of CN models
are required to be supported by adequate evidence.
Evidence from the psycholinguistic and neurolin-
guistic literature supported the inclusion of
knowledge structures that represent a PHONETIC
representation, a representation of morphological
relationships, case-control information for verbs,
a representation of a GRAMMAR  word-meaning
representations and a contextually determined
memory representation that is distinct from world
knowledge called a PRAGMATIC representation.

Additional behaviorally motivated constraints
were included in the design of HOPE to provide a
parameterized processing ability to satisfy the
"lesionability" «criterion of the CN approach.
Specific "lesion" conditions that are possible
within the design are not claimed to be the only
relevant lesion conditions that need study. Those
included are based on clinical observation and
hypothesized causes of the observed Ilanguage
degradations in the aphasic populations.

One hypothesized cause of performance
degradation available in HOPE and in no other
approaches is that time-coordination of serial-
order processing is a critical part of the neural
processing mechanims"of brain function and may be
affected under "lesion" conditions. Its inclusion
is further supported by clinical studies that
indicate that the time course of input presenta-
tion to aphasic patients affects their processing
ability (Brookshire, 1971; Laskey, Weidner, and
Johnson, 1976). Prior to HOPE'S definition, there
was no suitable way to include such a dynamic
factor as a suggested cause of the behavior defi-
cit.

Other specific clinically defined "lesion"
conditions addressed in the design Include:

(1) degradation of  knowledge representations
within the different structures,

(2) inability to access knowledge representa-
tions, and

(3) short-term memory capacity problems.

Having presented HOPE as an example of one
model which meets the behavioral and processing
criterion of the CN approach, the next sections
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will describe the serial-order processing oom
putations and how they effectively compute in a
"natural" sense to produce results which can be
compared with normal and pathological language
behavior.

3 FOOUS ON PROCESS

This section will describe what the serial
order processes included in HOPES design repre-
sent. For complete detail of the model with
examples of simulations in both "normal" and
"lesion" states, the interested reader is referred
to Gigley (1982a; 1982b; 1983a). Furthermore, as
the processes are defined at a meta-level in HOPE,
the implementation permits definition of a set of
specific instantiated models within the overall
processing paradigm. It is due to the meta-level
implementation of the neural processing algor-
ithms, that the resultant model is more general in
its overall processing paradigm than the paradigm
that 1s found in other parallel approaches to
cognitive modelling. This will be further elab-
orated in the subsequent section.

HCPE stresses the process of natural language
by incorporating a neurally plausible control that
is internal to the processing mechanism. There is
no external process that decides which path or
process to execute next based on the current state
of the solution space. It is a time-locked pro-
cess. At each process time interval, six types of
serial-order computations occur. Each of these
computations can be interpreted to represent an
aspect of "natural computation" (Lavorel and
Gigley, 1984).

Information in HOPE is encoded at a phono-
logical level as phonetic representations of words
(a stub for a similar interactive process under-
lying word recognition), at a word meaning level
as multiple representations each of which has a
designated syntactic category type and ortho-
graphic spelling associate to represent the word's
meaning (also a stub), within a grammar, and as a
pragmatic interpretation.

Each piece of information is a thresholding
device with memory. It has an activity value,
initially at a resting state, that is modified
over time depending on the input. Interconnec-
tions are of two types. Associational inter-
connections permit multiple interpretations for
any active information in the process. Using this
concept, an active node can represent information
that is shared among many interpretations. Other
interconnections are defined across representa-
tional levels and are asynchronously traversed.
They are not defined between specific instances of
the encoded representations, but are defined to
affect any information within a specific level of
representation.  (Cf Gigley and Boulicant, 1985
for an elaboration of the Inherent ambiguity in
the representation and its role 1n cognitive
modelling.) There 1s an automatic activity decay
scheme whose magnitude is affected by the state of
the information, whether it has reached threshold
and fired or not.

Activity is propagated in a fixed sense to
all aspects of the meaning of words that are
"connected" by spreading activation (Collins and

Loftus, 1975; Fahlman, 1981; Hinton, 1981; Quil-
lian  1968/1980). Simultaneously, information
interacts asynchronously due to threshold firing.
This is achieved by the time-coordination of six
serial order processes. The exact serial-order
processes that occur at any time-slice of the
process depend on the "current state" of the
global information; they are context dependent.

The independent serial-order processes "com-
puted" at each update include:

(1)  NEWAWORD-RECOGNITION: Introduction of the
next phonetically recognized word in the
sentence.

(2) MEANINGPROPAGATION: Fixed-time spreading
activation to the distributed parts of
recognized words' meanings.

(3) DECAY: Automatic memory decay exponentially
reduces the activity of all active informa-
tion that does not receive additional input.
It is an important part of the neural pro-
cesses that occur during memory processing.

(4) FIRINGINFORMATION-PROPAGATION:  Asynchronous
activation propagation that occurs when
information reaches threshold and fires. It
can be INHIBITORY and EXCITATORY in its
effect. INTERPRETATION is a result of acti-
vation of a pragmatic representation of a
disambiguated word meaning.

(5) REFRACTORY-STATE-ACTIVATION: An automatic
change 0?7 state that occurs after active
information has reached threshold and fired.
In this state, the information can not affect
or be affected by other information in the
system.

(6) POST-REFRACTORY-STATE-ACTIVATION:  An auto-
matic change of state which all fired in-
formation enters after it has existed in the
REFRACTORY-STATE.  The decay rate is dif-
ferent than before firing, although still
exponential.

The computations are defined over the repre-
sentation types: PHONETIC, PHON-CAT-MEAN, GRAVMARR
and PRAGMATIC. Each is referred to in the HOFE
representation as a space. Algorithmically, the
above processes are computed in order and applied
to all active information at time, t-1, to produce
a current state at time, t.

FIRINGPROPAGATION requires different pro-
cedures for each representation type. Firing can
excite and inhibit other types of representations
in both a bottom-up and top-down manner. It
occurs asynchronously as a result of "accumulated"
activity. This is in contrast to the fixed-time
spreading activation which occurs across the
"meaning representations” due to the lexical
access. These processes are mutually affective.

Figure 1 contains snapshots of three con-
secutive intervals during the "normal" simulation
run for the sentence, "The boys ran." It illus-
trates how different "actual" computations can
occur with these processes depending on the con-
text of the information.

The state of the "global" representation at
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time t-1 determines the exact instantiations of
information which are affected during the pro-
cesses. The effect is shown at time t. Time
intervals, t3 and t4 will be discussed in the
context of the relevant computations which occur
and result in the states represented in t4.

Parenthesized labels within the text refer to
Figure 1. The Figure is a variation of one found
in Gigley (1983a) where a more detailed explana-
tion of the dynamics of the simulations is pro-
vided. The actual implemented algorithm is pre-
sented in Gigley (1982a; 1982b).

In Figure 1, the size of the circles or nodes
represents the relative activity value of the
information; larger means more active. The thres-
hold value is a user defined parameter. Any
information HE Figure that is at threshold is
indicated as The RERACTORY state is de-
noted{” =, , while the POSTREFRACTORY state is
denoted C— D The lengths of time (number of
intervals) for each state and for automatic decay
are user parameters, set at 2. Information
"knows" its own state. Changes of state and decay
computations occur when the information "knows"
that they should. To achieve this, all informa-
tion includes time interval counters, its activity
value, and its appropriate rate of decay.

Each of the above listed independent com-
putations are applied at time interval, t-1. Any
results that arrive simultaneously are summed,
except for NBAMCRD introduction which presently
initializes all meanings for a word as if it were
the word's first occurrence in the sentence, even
though it may not be.

The context at t3:

The state at t3 contains previously computed
states from t2 as follows: the word, "the," is in
the RERACTORY state in the PHONETIC space (a).
Its meaning, shown in PHONCATMMEAN has just
decayed (b). The grammatical aspect of the mean-
ing of the determiner, "the," the noun prediction
is shown at its initial activity level in GRAVMR
(c). It is ready to decay because of length of
time without input.
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Computations at t3:

1)  NBMWACRD introduction: second word of sen-
tence, "boys" enters PHONETIC (d).

2) Spreading activation of meaning(s): one

meaning for boys activated at a subthreshold
value.
Spreading activation from GRAVMAR All noun
meanings are excited from t2. Noun meaning
for "boys" is at threshold (e) in PHONCAT-
MEAN.

3) Nothing is ready to DECAY: None computed.

4) FIRE all information at threshold: PHONETIC
representation of boys (d) and disambiguated
meaning (e) in PHON-CATHVEAN, produces noun
INTERPRETATION (f) at t4 and inhibitory
feedback (g) in GRAVMAR

5) FIRING change of state: Firing information,
(d) and (e) change to RERACIORY state (h)
and (i), respectively.

6) RERACIORY change of state: PHONETIC repre-
sentation of "the" in REFRACTORY STATE (a) is
ready to enter POSTREFRACTORY state (j) in
t4.

This example illustrates how the design of
HOPE differs from the other models especially in
the "meta-level" specification of the computa-
tions, which depend on the interconnections of the
information to be fully specified. As the affects
of the processes are context dependent, there is a
variability in the performance that does not occur
in other neurally motivated approaches to language
behavior.

Due to the various combinations of computa-
tions which can occur, simulations of the model
often produce surprising, but behaviorally inter-
pretable results. Ore example which occurred
during a "lesion" simulation of slowed propagation
for the sentence "The boy saw the buildings." is:
"saw" is interpreted as a noun and "building," as
the verb of the sentence. A possible interpreta-
tion relating a saw with building is suggested for
the "simulated patient." While plausible, this is
unlikely to be included in a clinical study. A
contribution of the CN approach may be to provide
a mechanism for predicting "possible" foils that
provide insights about incorrect processing
(Gigley and Duffy, 1982).

During processing, change of state over time
as well as the cause of the change can be ob-
served. Analyzing both aspects of the process
provides the information that is useful in com-
paring the "normal" and "lesion" simulations of
the model. In this way, the effects of a given
"lesion" can suggest hypotheses in a well defined
linguistic context. Because each simulation must
be run on a complete cover set of sentences that
are specified for any specific model, there is a
unique hypothesized patient profile defined that
can be clinically verified (Gigley, 1982b; 1983a;
1983b). A cover set of sentences is the mathe-
matical cover of all valid syntactic sentences
possible for the defined model.

The next section will briefly describe other
neurally based processing approaches to cognitive
modelling at several levels to illustrate how HOPE
differs from each. The chief difference is in the
inclusion of "lesionability" as a dynamic aspect
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of the processing definition in the CN approach
which is not present in any of the other model
designs.

4. PARALLFL MODHS OF BEHAVIOR

Recently, the concepts of neural processing
have been incorporated into Al models of cognitive
process. Models which incorporate neural-like
processing mechanisms exist at several levels and
are mainly intended to model normal behavior. A
few have addressed the "lesion"' evidence.

4.1 Perceptual Recognition Models

These models represent the earliest attempts
to integrate the behavior of neural-like computa-
tion devices with observable, verifiable behavior.
They all utilize the basic model of Anderson,
Silverstein, Ritz, and Jones (1977).

The Anderson, et al model represents a
neural-like convergent approach to learning pat-
tern discrimination. The model is comprised of
threshold mechanisms which are mutually intercon-
nected. There is a vector of inputs, each of
which is transmitted using weights to each of the
cells which make up the recognition device. Given
a suitable training set of inputs, the inter-
connection vectors of weights can be suitably
tuned to produce pattern discrimination of input
patterns, even under noisy conditions.

"Lesion" experiments on versions of this
model have been studied and interpreted with
respect to understanding phonemic misperceptions
by aphasic patients (Wood, 1978) and for anomia
(Gordon, 1982).

4.2 Associative Models of Memory Processing

Two recent models of associative memory
processing are relevant to understanding HOPES
"memory" processing scheme, Fahlman's NETL (1981)
and HINTON's model (1981). Both assume spreading
activation. However, Fahlman's marker passing
schema is able to include information in the acti-
vation. HOPES spreading activation is more
similar to the original Quillian model (1968/1980)
and Hinton's (1981) in that only activity is
propagated. There is no contained "meaning."
Activation can only be interpreted within the
global context of the memory in this latter case.
This introduces more ambiquity throughout into the
process. Memory process is only one aspect of the
HOPE model. It plays an important role in the
sentence comprehension process.

4.3 Connectionist Approaches to Sentence
Processing

One of the most developed approaches to
parallel, neurally-movivated process models is the
connectionist approach (Feldman, 1981; Cottrell
and Small, 1983). This approach concentrates on
specifying networks of cells to represent per-
cepts, or concepts, depending on the level of
application.

While the CN approach assumes that there are
networks of cells to effect the neural-like com-
putations, the explicit definition of such net-
works is not the goal of the work. There is an
emphasis in the CN approach to define processing

interconnections at a meta-level, such as between
meaning representations and pragmatic interpreta-
tions of them; between phonetic representations
and the associated meanings. The interconnections
in HOFE are defined as suggested from the aphasic
literature.

The CN approach does not include mutual
inhibitory factors to the extent that the con-
nectionist models do. In connectionism, the
inputs to nodes are constrained to act in an OR of
AND condition. While the spreading activation
schema is similar to that in HOFE and in the CN
approach, the use of vector inputs to each node is
not. The CN approach assumes that time will
affect the computation in a manner that eliminates
the need for many of the above connectionist
constraints.

Finally, the parallel model of sentence
parsing that has recently been developed by Waltz
and Pollack assumes similar constraints to the
connectionist approach. While the interactions
that can be observed during the time-course pro-
cess of their model are similar to those obtain-
able in the "normal" process of HOPE, the parallel
algorithm is not, as it relies heavily on mutually
exclusive connections at different levels of the
process.

4.4 A Cognitive Model for Letter Perception in
Context

McClelland and Rumelhart (1981) implemented
and have validated a parallel model of letter per-
ception in context. Of all the models discussed,
their implementation is the closest in design to
that of HOPE There are three main differences.
Their input is in parallel, while HOPFE input is
time sequenced. Secondly, their memory decay, is
fixed rate across the computation without change
of state. And finally, they include a binary
feature detection, mutual inhibition schema, to
recognize the input. While this assumption is
neurophysiologically  supported for perceptual
visual processing, it is not for auditory. When
one hears a sound such as "ah" what is its binary
counterpart — "not ah?". Because of this, in the
CN approach, only the recognized input is acti-
vated. There is no explicit inhibition of any
information at the perceptual level; it is just
not activated.

The CN approach assumes that each entity in
the model is defined in a local context. There is
no built-in knowledge about the global intercon-
nectivity patterns that exist in the model.
Therefore, there is no way of explicitly defining
the mutual inhibition that is a critical part of
the convergence in all of the above mentioned
models.

4.5 The HOFE System

The system design in HOFE includes two sub-
systems. Ore subsystem allows an experimenter to
define the representations that are relevant to
the sentence comprehension tasks that are being
studied. It permits definition of the appropriate
vocabulary, the related grammar, and interpreta-
tion functions that define the compositional
aspects that occur when words are disambiguated in
the course of understanding the sentence.



The second subsystem allows the experimenter
to tune the model so that it exhibits "norma’
performance. This must be done on a complete
cover set of sentences to assure that the base-
line performance of the model is intact. After
tuning the model, this second subsystem permits
the experimenter to simulate lesion conditions by
modifying the parameters in interpretable ways to
depict a "lesion." As when the model is tuned,
each "lesion" simululation must be run on every
sentence of the given cover set of sentences to
fully define the patient profile for subsequent
validation.

4.6 Summarizing the CN Approach

The main aspects of the CN approach to neural
control that differ from the above described
models and which provide a more general framework
for studying natural language processing can be
summarized as follows:

(1) CN knowledge representations are ambiguous
without assessment in a global context.

(2) Interconnections among representations are
implicitly encoded rather than being ex-
plicitly defined, as in the connectionist
models.

(3) Control is encoded independently of what is
specifically represented in any defined model
and is defined at a meta-level with respect
to the kinds of knowledge representations
used.

(4) Model design permits the definition of a set
of problem models such that for any expli-
citly "tuned" control simultation, one can
modify the "tuned" parameters in ways that
can be interpreted to reflect hypothesized
causes of deviation in performnce and observe
the results on the control simulation without
any necessary redesign or re-implementation.

The next section will assess the contribution
of CN models to our understandings of brain func-
tion within language processing, especially in
regard to hypothesizing behavior degradations
under "lesion" conditions.

5. INVESTIGATING BRAIN FUNCTION USING CN

Development of CN models does not assume any
direct correlation with explicit physical areas of
the human brain. Instead, it provides a dynamic,
interactive, parallel processing paradigm in which
to formulate hypotheses about degradations in
processing ability. Questions raised within the
approach concern interactions that can become
desynchronized. This can be as much a problem
with a process, as elimination of information.
However, it is much more difficult to study when
there is no means available to trace the dynamics.

The CN approach provides this facility.
Researchers can now raise questions concerning the
effect that an aspect of processing such as of
slowing propagation has on the overall perform-
ance. Furthermore, the results which have been
produced under such conditions, indicate that
behavior that was previously only attributed to a
degradation in representation, could be explained
by the processing degradation and that further-
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more, because the processing degradation is the
cause, the observed behavior is not always com-
pletely affected. The resultant behavior is
variable, but perhaps affects only one type of
information.

Under a "lesion" condition of slowed propa-

gation, the model produces the following "patient
profile":

The "model" patient should be able to repeat
correctly all sentences up to five words in
length. The "model" patient recognizes that a
complete sentence has been heard, although it
often is not understood correctly. Proper nouns
are always understood, while referential nouns
with an appropriate determiner are not. Sentence
comprehension for the "model" patient is sometimes
correct. When a sentence contains only proper
nouns then there is correct understanding. How-
ever, when either noun is a referential noun, the
agent or the direct object in the sentences being
studied, the comprehension is affected to the
extent that a noun interpretation for the intended
verb of the sentence occurs. The above result is
described and documented in Gigley (1982b; 1983a;
1983b).

The importance of the above profile is that
it is mathematically defined and covers an entire
set of possible inputs within a computationally
well-defined model of performance. Other neuro-
linguistic studies do not require such explicit
definition.

What is hoped in developing models which can
exhibit the above qualities is that greater in-
sights can be developed about the role of aspects
of processing in the brain and how they work in an
integrated fashion to produce cognitive behavior.
The HOFE model represents a beginning.

6 WHERE WE ARE AND WHERE ARE WE GOING?

Current work is underway to develop valida-
tion techniques to adequately study the results of
the model. There are extensive sets of studies
which must be done on a single patient populations
to provide information on the model's validity.
It is hoped that results of such carefully coor-
dinated studies will provide information that will
lead to better model definition (Gigley and Duffy,
1982).

Planned system development includes a repre-
sentation for meaning and assessment of the
representations for production wunder the same
processing control as is used in comprehension.
In both cases, there is extensive behavioral
evidence to assimilate to define sufficient
representations with their interconnections. In
addition, an initial attempt has been made to
specify a model of HOFE for processing French.
This has raised some interesting cross-linguistic
issues (Gigley, 1984).

The CN approach provides a first attempt to
implement models of natural language performance
that addresses how language might be processed in
a neural mechanism, such as the human brain. It
is the first model that integrates behavior evi-
dence at two levels in its design, at the neural-
computation level and at the human performance
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level. Furthermore, CN provides researchers with
a facility to consider behavior as the result of a
time-dependent, interactive, parallel process that
is dynamic and can produce variable results in a
manner that is consistent with human performance.
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