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ABSTRACT 

This paper describes an approach to knowledge base 
refinement, an important aspect of knowledge acquisition. 
Knowledge base refinement is characterized by the addition, 
deletion, and alteration of rule-components in an existing 
knowledge base, in an attempt to improve an expert system's 
performance. SEEK2 extends the capabilities of its 
predecessor rule refinement system. SEEK [ 1 ] , In this paper 
we describe the progress we have made since developing the 
original SEEK program: (a) SEEK2 works with a more general 
class of knowledge bases than SEEK, (b) SEEK2 has an 
"automatic pilot" capability, i.e., it can, if desired, perform 
all of the basic tasks involved in knowledge base refinement 
without human interaction, (c) a metalanguage for knowledge 
base refinement has been specified which describes both 
domain-independent and domain-specific metaknowledge about 
the refinement process. 

I K N O W L E D G E A C Q U I S I T I O N A N D T H E K N O W L E D G E 
BASE R E F I N E M E N T PROBLEM 

The problem of constructing an efficient and accurate 
formal representation of an expert's domain knowledge, the 
knowledge acquisition problem, is a key problem in AL.* 
As a practical matter, the most d i f f icu l t aspect of expert 
system design is the construction of the knowledge base; the 
rate of progress in developing useful expert systems is directly 
related to the rate at which it is possible to construct good 
knowledge bases. 

The knowledge acquisition problem can be divided into two 
phases. In phase one the knowledge engineer extracts an 
init ial rough knowledge base f rom the expert, "rough" in the 
sense that the overall level of performance of this knowledge 
base is usually not comparable to that of the expert In the 

second phase, the knowledge base refinement phase, the 
init ial knowledge base \s progressively refined into a high 
performance knowledge base. In terms of a rule-based 
knowledge base, phase one involves the acquisition of entire 
rules, indeed entire sets of rules, for concluding various 
hypotheses. The refinement phase, on the other hand, is 
characterized not so much by the acquisition of entire rules 
but by the addition, deletion, and alteration of ru le-
components in certain rules in the existing knowledge base, in 
an attempt to improve the system's performance. Obviously 
the foregoing description of knowledge base construction is an 
idealization. In practice the line between these two phases is 
not as sharply drawn. ** 

A knowledge base refinement problem can be thought of 
as an optimization problem in which we start with a proposed 
general solution to a given set of domain problems and the 
goal is to refine it so that a superior solution is obtained. 
The proposed solution is a working knowledge base that is in 
need of minor adjustments, but not a major overhaul, i.e., one 
assumes that the rules given by the expert are basically 
"sensible" propositions concerning the problem domain. The 
refinements applied to the rules of this knowledge base must 
not only meet the obvious requirements of being syntactically 
and semantically admissible, they must also be conservative, in 
the sense that they tend to preserve, as far as possible, the 
expert's given version of the rules. Employing rule 
refinements that meet these requirements makes it more likely 
that the construction of a refined knowledge base wi l l not 
simply be a matter of "curve f i t t ing." but wi l l result in a 
knowledge base that is more robust yet at the same time 
"close" to the actual knowledge of the expert 

*This research was supported in part by the Division of 
Research Resources, National Institutes of Health. Public 
Health Service, Department of Health, Education, and Welfare, 
Grant P41 RR02230. 

* * In this paper we l imit our concern to knowledge bases 
that are structured collections of production-rules. Unless 
otherwise stated, when we use the term "expert system." we 
mean, properly speaking, "production-rule based expert 
system." Furthermore we confine our attention to refinements 
of production rules that can be achieved as the result of the 
sequential application of certain generic refinement operations 
that are either generalization or specialization operations. 
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I I T H E BASIC A P P R O A C H ; E M P I R I C A L A N A L Y S I S O F 
RULE B E H A V I O R USING CASE K N O W L E D G E 

A. Overview 

In this section we briefly review the basic approach to 
knowledge base refinement taken by SEEK [1] - an approach 
that we have continued to employ in SEEK2. 

A fundamental assumption of this approach is that case 
know/edge can be used to drive a process involving 
empirical analysis of rule behavior in order to generate 
plausible suggestions for rule refinement. Case knowledge is 
given in the form of a data base of cases with known 
conclusions, i.e., each case contains not only a record of the 
case observations but also a record of the experts conclusion 
for the case. Empirical analysis of rule behavior involves 
gathering certain statistics concerning rule behavior with 
respect to the data base of cases: suggestions for rule 
refinements are generated by the application of refinement 
heuristics that relate the statistical behavior and structural 
properties of rules to appropriate classes of rule refinements. 
We wi l l shortly explicate the nature of the statistical evidence 
gathered and give an example of these rules. 

Our basic control strategy is a combination of "divide and 
conquer*' together with a goal-directed backward chaining 
mechanism. We assume that the expert and knowledge 
engineer can identify a f in i te set of final diagnostic 
conclusions or "endpoints;" these are the conclusions that the 
expert uses to classify the given cases. One can then confine 
one's attention to the refinement of rules that are involved in 
concluding a particular endpoint. e.g., if the domain is 
Rheumatology one may decide to work on refining those rules 
involved in concluding the single f inal diagnosis Systemic 
Lupus. This is the divide and conquer part of the strategy; it 
means that at any given moment the system is applying the 
refinement heuristics only to a proper subset of the rules in 
the domain knowledge base. The goal-directed backward 
chaining mechanism comes into play once an endpoint has 
been chosen. If our chosen endpoint is Systemic Lupus, for 
example, we begin by applying the heuristics to all the rules 
in the knowledge base that directly conclude Systemic 
Lupus, i.e., rules whose right hand side is this conclusion. A 
rule that directly concludes some endpoint w i l l , in general, 
have components on its left hand side that themselves are the 
conclusions of some other rules; such components are called 
intermediate hypotheses. The rules that conclude 

intermediate hypotheses may themselves include components 
that are intermediate hypotheses. Whenever the refinement 
heuristics suggest modifying an intermediate hypothesis I H , 
such as deleting it f rom some rule, the rules that conclude IH 
are thereby implicated as candidates for refinement. 

B. Some Statistics and A Heurist ic 

At the highest level, many refinements of production rules 
may be thought of as fal l ing in one of two possible classes: 
generalizations and specializations. By a rule generalization 
we mean any modification to a rule that makes it "easier" for 
the rule's conclusion to be accepted in any given case. A 
generalization refinement is usually accomplished by deleting 
or altering a component on the left hand side of the rule or 
by raising the confidence factor associated with the rule's 
conclusion. By a rule specialization we mean modifications to 
a rule that make it "harder" for the rule's conclusion to be 
accepted in any given case. A rule specialization is usually 
accomplished by adding or altering a component on the left 
hand side or by lowering the confidence factor associated with 
the rule's conclusion [ 2 ] . 

On the side of evidence for rule generalization, one of the 
concepts we have employed in both SEEK and SEEK2 is a 
statistical property of a rule computed by a function that we 
call Gen(rule). Gen(rule) is the number of cases in which 
(a) this rule's conclusion should have been reached but 
wasn't, (b) had this rule been satisfied the conclusion would 
have been reached, and (c) of all the rules for which the 
preceding clauses hold in the case, this one is the "closest to 
being satisfied." A measure of how close a rule is to being 
satisfied in a case, based on the number of additional findings 
required for the rule to f i re, is easily computed given the 
case data (for details of the algorithm used by SEEK see [ 3 ] ; 
SEEK2's closeness measure is essentially the same). 

On the side of evidence for rule specialization, one of the 
concepts we have defined is a statistical property of a rule 
that is computed by a function we call SpecA(rule). 
SpecA(rule) is the number of cases in which (a) this rule's 
conclusion should not have been reached but was, and (b) 
if this rule had failed to fire the correct conclusion would 
have been reached, i.e., the correct conclusion was the "second 
choice" in the case (due to its having the second highest 
confidence), and the only circumstance preventing its being 
the " f i rs t choice" is the fact that this rule is satisfied. If 
there is more than one satisfied rule that concludes the 
incorrect f irst choice then none of these rules has its SpecA 
measure incremented; instead we have defined an additional 
concept to cover this situation called SpecB(rule): each of 
these rules has its SpecB measure incremented. 

To get a feeling for the sort of heuristics employed by 
these systems, suppose that for a certain rule r it has been 
found that Gen(r) > [SpecA(r) + SpecB(r)], in other words 
the evidence suggests that it is more appropriate to generalize 
than specialize r. Another piece of information would help 
us decide which component of r should be deleted or 
altered, viz.. the most frequently missing component, i.e., 
the component of r that has the lowest frequency of 
satisfaction relative to the cases that contribute to Gen(r). 
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The function that computes this statistic is called Mfmc( ru le ) . 
Mfmc(rule) also tells us the syntactic category of this most 
frequently missing component For example, one sort of 
component often used in medical diagnostic systems is called a 
choice component. These have the form 

where k, the choice number is a positive integer and the C's 
i 

are components (findings or hypotheses, but not choices). A 
choice component is satisfied i f f at least k of its C's are 

satisfied. If we know that the rule r should be generalized 
and that Mfmc( r ) is a particular choice component, then a 
natural thing to do is to decrease the choice number of that 
choice component. Being conservative we decrease the choice 
number by 1. 

To summarize the discussion in this section we now display 
in fu l l the particular heuristic we have described. 
I f : G e n ( r u l e ) > [ S p e c A ( r u l e ) + S p e c B ( r u l e ) ] & 

M f m c ( r u l e ) is CHOICE-COMPONENT C 

Then: Decrease the cho ice -number o f 
CHOICE-COMPONENT C in r u l e . 

Reason: T h i s wou ld g e n e r a l i z e the r u l e s o t h a t i t 
w i l l b e e a s i e r t o s a t i s f y . 

I l l T H E SEEK EXPERIENCE 

A salient feature of the original SEEK program [1] is that 
it was not designed to solve the entire knowledge base 
refinement problem on its own, rather it was intended to 
help, interactively, an expert or knowledge engineer solve the 
overall problem by offer ing potential solutions to various sub-
problems that arise along the way. SEEK helps its user in 
the fol lowing ways: (a) it provides a performance evaluation 
of the knowledge base relative to the case data base, (b) using 
its statistical concepts and heuristics it identifies rules that are 
plausible candidates for refinement and suggests appropriate 
refinements, (c) a user can instruct SEEK to calculate what 
the actual performance results of a particular refinement to 
the knowledge base would be. and if the user desires. SEEK 
wi l l incorporate the change in the knowledge base. 

A. Basic Cycle of Operat ion 

Although control in SEEK always resides with the user, 
and there are a number of paths and facilities available to the 
user at almost every point, SEEK can be thought of as having 
a basic cycle of operation. The system is given an initial 
knowledge base and the case knowledge data base. SEEK 
first obtains a performance evaluation of the init ial knowledge 
base on the data base of cases. This is done by "running" 
the ini t ial knowledge base on each of the cases in the data 
base, and then comparing the knowledge base's conclusion with 
the stored expert's conclusion. The performance evaluation 
consists primari ly of an overall score, e.g. 75% of cases 
diagnosed correctly, as well as a breakdown by f inal diagnostic 

category of the number of cases in which the system agrees 
with the expert in reaching a particular diagnosis. i.e., "true 
positives." and the number of cases in which the system 
reaches that diagnosis but the expert does not, i.e.. "false 
positives." 

The user must decide on a diagnosis for which he would 
l ike to see refinements in the knowledge base in order to 
obtain better performance, e.g.. if the domain is 
Rheumatology the user may decide to try to upgrade the 
system's performance in diagnosing Systemic Lupus. For the 
sake of brevity, we call this user-specified diagnosis the GDX 
for the current cycle of operation, where the " G " stands for 
"given," since this is a directive that the user must give the 
system. The next part of the cycle involves computing 
statistical properties concerning the rules of the knowledge 
base that conclude the GDX. Plausible refinements are then 
generated by evaluating a set of heuristics similar to the one 
presented above for each of these rules, as well as any rule 
that becomes implicated via an intermediate hypothesis (see 
section II .A above). 

Once SEEK has given its advice - we think of eacn piece 
of advice as a possible "experiment" to improve the knowledge 
base - the user wi l l initiate an exper imentat ion phase. This 
is a sub-cycle in which the user, interacting with SEEK, 
determines the exact effect of incorporating any one of the 
proposed experiments. The user wil l then decide which, if 
any, of these refinements should be accepted, and instructs 
SEEK accordingly. This ends the basic cycle, which can now 
be repeated starting wi th the modified knowledge base. This 
process continues until the user is satisfied with the overall 
performance evaluation. 

B. L im i ta t ions 

One of SEEK's limitations has already been mentioned: it 
does not have the capability to attempt to solve a refinement 
problem on its own. We discuss how SEEK2 removes this 
l imitation in section IV.A below. 

Another important l imitation of SEEK is that it does not 
work with a general production rule system, rather it expects 
that the domain knowledge base wi l l be written in a form 
known as the c r i t e r i a table representation. This mode of 
representation requires the knowledge engineer to specify a list 
of "Major " observations and a list of "Minor" observations 
for each possible (diagnostic) conclusion in the knowledge 
base. Rules for reaching particular conclusions are then stated 
in terms of the number of Majors and Minors for the 
conclusion, "Requirements" and "Exclusions." The latter are 
additional observations or conclusions, or conjunctions of such, 
that are relevant to the diagnosis: a Requirement is some 
condition that must be satisfied to reach the conclusion; an 
Exclusion is some condition that "rules out" the conclusion. 
Furthermore, any rule can reach its conclusion at one of only 
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three possible confidence levels, viz. possible, probable, 
definite. As an example, assuming that a list of majors and 
minors for the conclusion Systemic Lupus has been specified, 
a rule for concluding the latter might state that if (at least) 
two of the majors and two of the minors are present then 
the conclusion is warranted at the "definite" level. 

While this mode of representation has proven to be useful 
in the Rheumatology domain [4] and other medical 
applications, it is in fact not as powerful a representation 
language as that of EXPERT [5] or similar production rule 
systems, in the sense that one can write knowledge bases in 
general production rule languages that are not translatable into 
the criteria table format. However, any criteria table can be 
translated into production rule syntax. Thus the set of 
criteria table knowledge bases is a proper subset of the 
set of production'rule knowledge bases. 

SEEKs knowledge engineering knowledge, i.e., its statistics 
and heuristics, was formulated with reference to the criteria 
table representation scheme, and criteria table concepts also 
were embedded in the control structure of the program. As a 
consequence, certain forms of rule refinement were not 
available or were restricted in SEEK, e.g., changing a rule's 
confidence factor was limited to making "jumps" from one 
level to another, such as probable to possible. In general, 
SEEK could do very little with a knowledge base that was not 
written in a criteria table format. 

SEEK2, on the other hand, is a refinement system that will 
work with any knowledge base written in EXPERT'S rule 
representation language. In designing SEEK2, we found it was 
possible to decouple SEEKs knowledge engineering concepts 
from the criteria table representation; we were able to apply 
many of these concepts in relation to features of more 
general types of production-rules. For example, criteria table 
rule-components using the notion of Majors and Minors are 
special cases of rule-components using choice-functions. 
Decreasing or increasing the number of Majors or Minors 
required by a rule, is a special case of decreasing or 
increasing the choice-number of a choice-function. Thus the 
example heuristic given above in section II.B is a 
generalization in SEEK2 of two separate similar heuristics 
originally stated in SEEK, one for Majors, one for Minors. 

In moving to a more general representation language as the 
target language for knowledge base refinement, we broadened 
the scope of the set of generic refinement operations available 
to the system. For example, confidence factors for 
generalization experiments may be increased based on an 
average of the highest-weighted (erroneous) conclusion for a 
set of misclassified cases. 

From the programmer's point of view, SEEK's own 
know/edge base, the representation of its knowledge 
engineering statistics and heuristics, was strictly separate from 

its control structure. However, this was not the case from 
the point of view of the user, since there was no facility by 
which the user, qua user and not qua programmer, could 
access and modify SEEK's own knowledge base, in the way 
that a user can modify the domain knowledge base. Our 
approach to this issue forms part of a broader project which 
we describe in section IV.B.1 below. 

IV SEEK2: AN EXPERT SYSTEM FOR KNOWLEDGE 
BASE REFINEMENT 

A. Automatic Pilot Capability 

Unlike SEEK. SEEK2 is a system that can present plausible 
solutions to the overall refinement problem without the need 
for interaction with an expert. The output of SEEK2 running 
in automatic pilot mode is not a list of suggested rule 
refinements for a particular GDX ("given" dx), rather it is a 
refined version of the entire knowledge base, i.e., a set of 
rule refinements to the initial knowledge base which yield an 
improvement in overall performance. In this section we 
describe SEEK2's current Automatic Pilot capability. 

The attempt to find a sequence of refinements that 
optimizes performance is a search problem. Where there is a 
search problem of sufficient complexity, good heuristics must 
be found to guide the search. As we will see, SEEK2's 
current automatic pilot algorithm is a heuristic search 
algorithm, in the sense that it uses a classic "weak method," 
hill-climbing. 

When running in automatic pilot mode SEEK2 makes three 
types of decisions that were previously made by the user of 
SEEK: (a) choice of GDX for the current cycle, (b) which 
rule refinement experiments to try, (c) which refinements to 
incorporate in the knowledge base given the results of the 
experiments (see figure IV-1). Additionally SEEK2 has to 
know when to stop. 

In the current implementation, SEEK2 orders the potential 
GDX's in descending order according to a simple measure on 
the number of "false negatives" and "false positives." 
information that is given by the performance evaluation phase. 
Potential rule refinement experiments for a GDX are ordered 
by simple measures on the statistics used in generating the 
refinement, eg., if the generalization heuristic given in section 
II.B fires, the quantity Gen(rule) - [SpecA(rule) + 
SpecB(rule)] is used as an estimate of the expected net gain 
to be derived by performing the experiment 

Information of this sort could be used to limit the 
number of experiments performed in a cycle. However, in the 
current implementation, the information is used only to 
determine the order in which GDX's are chosen and 
experiments attempted; ultimately every potential GDX (for 
which perfect performance has not been obtained) is chosen, 
and every experiment suggested by the heuristics is performed. 
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In other words, an automatic pi lot cycle involves attempting, 
according to the ordering just given, every proposed 
refinement experiment for every potential f inal diagnostic 
conclusion in the knowledge base. (Of course, the number of 
experiments generated by the heuristics represents a small 
fraction of the total number of logically admissible 
refinements.) Out of all these experiments SEEK2 "accepts" 
only one, the one that gives the greatest net gain in 
knowledge base performance foT all f inal diagnostic 

conclusions (not just for one GDX). An internal record of 
the accepted refinement is kept; and then the next automatic 
pi lot cycle begins. If the current automatic pilot cycle is 
such that no attempted experiment leads to an actual net gain. 
SEEK2 stops. 

We present a simplif ied example in order to illustrate the 
preceding remarks. Let us suppose that we have a 
Rheumatology knowledge base dealing only with the two final 
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diagnoses Systemic Lupus and Rheumatoid Arthri t is, that a 
data base of 20 cases is available, and that our human expert 
has diagnosed 10 of these cases as Systemic Lupus and the 
other 10 as Rheumatoid Arthrit is. Suppose that the initial 
performance evaluation computed by SEEK2 is as follows: 

The measure SEEK2 uses to compute G D X order is the 
maximum of the false negatives and false positives. Thus in 
our example Systemic Lupus would be the f irst diagnosis in 
the G D X ordering since it has 7 false negatives, i.e., 7 out of 
the 10 cases that should have been diagnosed as Systemic 
Lupus were no t Therefore SEEK2 wi l l f i rst generate 
refinement experiments for Systemic Lupus. 

Continuing the example, suppose that rule r concludes 
Systemic Lupus, and SEEK2 finds that Gen(r) = 6, SpecA(r) = 
1. SpecB(r) = 0, and Mfmc(r ) = Choice-Component C. These 
findings would satisfy the antecedent of the refinement 
heuristic presented in section II.B. Therefore SEEK2 wi l l post 
the decreasing of C's choice-number as a refinement 
experiment SEEK2's estimate of the expected net gain of 
performing this experiment is given by Gen(r) - [SpecA(r) ♦ 
SpecB(r) + 5. (This is an estimate; the only way to know 
what the precise effect of decreasing the choice-number of C 
wi l l be. is to decrease i t , and then recompute the system's 
performance on the entire data base of cases.) Once all the 
refinement experiments for Systemic Lupus have been posted 
and ordered according to their expected net gain, SEEK.2 
performs all the experiments on this list as ordered. If 
SEEK2 finds that decreasing the choice-number of component 
C in rule r leads to an overall performance gain of 3 cases, 
i.e., the "bottom l ine" performance total for both Rheumatoid 
Arthr i t is and Systemic Lupus improves f rom 12 to 15/20, and 
this turns out to be the maximum net gain of all the 
experiments for Lupus, SEEK2 records this fact. 

Next, it w i l l select Rheumatoid Arthr i t is as the G D X and 
repeat the process. Suppose that the aforementioned 
experiment for rule r yields a greater net gain than the best 
refinement experiment for Rheumatoid Arthr i t is. Then SEEK2 
wi l l "accept" the refinement to rule r, i.e.. it wi l l modify its 
internal copy of the domain knowledge base to reflect this 
refinement, and a new cycle wi l l commence. 

The automatic pi lot algorithm just described is a h i l l -
cl imbing procedure: at each step SEEK.2 is guided totally by 
the " local" informat ion as to which proposed refinement on 
the current knowledge base results in the best improvement, 

i.e., leads in the direction of "steepest ascent" When SEEK2 
stops it is because a maximum has been reached. This may 
very well be only a local maximum. While a local maximum 
represents a "dead end" to the current SEEK2. we are 
experimenting with special statistics and heuristics that wi l l 
"kick i n " only when a dead end is reached, and which wi l l 
hopefully allow the system to discover a better maximum if 
one exists. 

B. A Metalanguage fo r Representing Meta- leve l Knowledge 

1. Metaknowledge in Knowledge Base Refinement 

It is clear f rom the examples in section I I .B that a 
refinement system requires metaknowledge of both the syntax 
and semantics of the "object" system's language, i.e., the 
representation language of the domain knowledge base. For 
example, Gen, M fmc , SpecA. and SpecB presuppose a working 
knowledge of what it is for a rule or a rule-component to be 
satisfied. Other researchers have shown ways in which 
metaknowledge can aid in the general knowledge acquisition 
process [6] and in enhancing an expert system's performance 

[ 7 ] . In this section we describe a metalanguage designed 
specifically for the refinement task. Using this metalanguage 
one can define knowledge engineering concepts and heuristics, 
such as Gen(rule), as well as domain specific metaknowledge 
- e.g., the fact that case findings x and y are incompatible -
in terms of a set of primit ive concepts and operations. 

One motivation for a metalanguage was alluded to in 
section I I I .B, where we mentioned that SEEK's knowledge base 
of heuristics and statistics was inaccessible to the user of the 
system. The abil ity to easily access and modify this 
knowledge base is quite desirable for designing and 
experimenting with refinement concepts. For example, some 
of the current statistics for SEEK2 are not likely to be as 
useful with respect to an expert system that employs a scoring 
scheme for combining confidence factors. Useful variants of 
these statistics could be defined within the same metalanguage 
that we have developed for SEEK2 

In general, even within one expert system framework, 
di f ferent styles of knowledge bases are possible; it is likely 
therefore that di f ferent styles of refinement wi l l be needed. 
For example, some knowledge bases employ a taxonomic 
ordering of hypotheses. Such an ordering provides knowledge 
that could be used, together with appropriate control 
heuristics, to formulate a more eff icient version of SEEK2's 
automatic pi lot algorithm. A knowledge base refinement 
metalanguage wi l l allow for the representation of such control 
heuristics (see figure IV-1) . A refinement metalanguage wi l l 
allow the expert or knowledge engineer to represent the 
knowledge that a certain component in a rule should not be 
altered under any circumstances, or that if a change to 
component x is made, component y must be changed as well , 
or that additions to any rule wi th conclusion C should be 
drawn f rom a specified list of components, etc. It w i l l also 
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allow for the definition of special-purpose statistics that may 
be of use in suggesting plausible rule refinements, e.g., the 
frequency of occurrence of a certain combination of findings 
in a specified subset of cases. 

2. Defining Statistics in SEEK2's Metalanguage 

SEEK2's statistical concepts can be specified in a set-
theoretic metalanguage that employs only a small number of 
refinement primitives together with some appropriate 
notions from simple set theory, arithmetic, and logic. Using 
these primitives it is possible to experiment with variations on 
SEEK2's statistics and define domain specific statistics as well. 

A set-theoretic definition of concepts such as Gen(rule) 
(see section ll.B) requires refinement primitives of the 
following sorts. Some primitive variables are needed to 
provide the system or a user with the ability to "access" 
various "objects" in the domain knowledge base and the data 
base of cases. For example, rule is a variable whose range is 
the set of rules in the domain knowledge base, case is a 
variable whose range is the set of cases in the data base of 
cases, and dx is a variable whose range is the set of possible 
final diagnostic conclusions in the knowledge base. In 
addition some primitive functions are needed to allow one to 
refer to selected parts or aspects of a rule or a case, e.g., 
RuleCF(rule) is a function whose value is the confidence 
factor associated with rule, PDX(case) is a function whose 
value is the expert's conclusion in case ("PDX" stands for 
"Physician's Diagnosis"), and CDX(case) is a function whose 
value is the conclusion reached for the current knowledge base 
in case ("CDX" stands for "Computer's Diagnosis"). As an 
example of the way in which these primitives can be used, 
note that using the notions of PDX(case) and CDXicase) one 
may define a misdiagnosed case as any case for which 
?DX(case) ≠ CDX(case). 

Certain special sets of objects are of importance in the 
knowledge base refinement process, and it is therefore useful 
to have primitives that refer to them, e.g., Rules-For(dx) is 
a function whose value is the set of rules that have dx as 
their conclusion. Finally various primitives that in some way 
involve semantic properties of rules, or the performance 
characteristics of the knowledge base as a whole are useful, 
e.g.. Satisfied(rule-component, case) is a predicate that is 
true iff rule-component is satisfied by the findings in case, 
and false otherwise, and ModelCF(dx, case) is a function 
whose value is the system's confidence factor accorded to dx 
in case. 

SEEK2's refinement knowledge base was designed using the 
metalanguage we have just outlined [8]. Implementation was 
achieved by incorporating the aforementioned primitives as 
procedures and functions, and then coding (by hand) high-
level set-theoretic definitions as efficient procedural forms 
employing these primitives. Currently we are experimenting 

with a system in which the primitives described above (and 
others) are available to the user and can be combined to form 
expressions designating sets, variables, and functions of interest 
to the user. 

V DISCUSSION 

SEEK2 currently has ten statistical concepts and nine 
heuristics for generating refinements. Working in automatic 
pilot mode on a Rheumatology knowledge base of 
approximately 140 rules with 5 final diagnostic categories, and 
using a data base of 121 cases. SEEK2 was able to increase 
the overall performance of the system from a value of 73% 
(88/121) to a value of 98% (119/121). It used approximately 
18 minutes of Vax-785 cpu time. The total number of 
experiments tried was 106. out of which 8 were accepted.*** 

In evaluating the usefulness of SEEK2's automatic pilot 
capability it is important to keep in mind that the expert is 
still the final judge. Despite the assured gain in performance 
with respect to the given data base of cases, and the 
reasonable expectation of performance enhancement with 
respect to new cases, the expert may agree with only a subset 
of the total number of refinements suggested by SEEK2****. 
The measure of SEEK2's usefulness is not, however, simply 
how many of its experiments the expert accepts; even rejected 
experiments have value: they point out areas of the knowledge 
base that need to be examined if enhanced performance is to 
be achieved. 

Validity and consistency are important goals in developing 
expert systems. Yet the design of these systems is often 
lacking in a coherent formal approach for achieving these 
goals. The approach to knowledge base refinement described 
here can lead to a more solid foundation for designing and 
validating expert system knowledge bases. 
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