
SEEK2: A GENERALIZED APPROACH TO A U T O M A T I C
K N O W L E D G E BASE REF INEMENT

Allen Ginsberg. Sholom Weiss
Department of Computer Science, Rutgers University

and
Peter Politakis

Digital Equipment Corporation

ABSTRACT

This paper describes an approach to knowledge base
refinement, an important aspect of knowledge acquisition.
Knowledge base refinement is characterized by the addition,
deletion, and alteration of rule-components in an existing
knowledge base, in an attempt to improve an expert system's
performance. SEEK2 extends the capabilities of its
predecessor rule refinement system. SEEK [1] , In this paper
we describe the progress we have made since developing the
original SEEK program: (a) SEEK2 works with a more general
class of knowledge bases than SEEK, (b) SEEK2 has an
"automatic pilot" capability, i.e., it can, if desired, perform
all of the basic tasks involved in knowledge base refinement
without human interaction, (c) a metalanguage for knowledge
base refinement has been specified which describes both
domain-independent and domain-specific metaknowledge about
the refinement process.

I K N O W L E D G E A C Q U I S I T I O N A N D T H E K N O W L E D G E
BASE R E F I N E M E N T PROBLEM

The problem of constructing an efficient and accurate
formal representation of an expert's domain knowledge, the
knowledge acquisition problem, is a key problem in AL.*
As a practical matter, the most d i f f icu l t aspect of expert
system design is the construction of the knowledge base; the
rate of progress in developing useful expert systems is directly
related to the rate at which it is possible to construct good
knowledge bases.

The knowledge acquisition problem can be divided into two
phases. In phase one the knowledge engineer extracts an
init ial rough knowledge base f rom the expert, "rough" in the
sense that the overall level of performance of this knowledge
base is usually not comparable to that of the expert In the

second phase, the knowledge base refinement phase, the
init ial knowledge base \s progressively refined into a high
performance knowledge base. In terms of a rule-based
knowledge base, phase one involves the acquisition of entire
rules, indeed entire sets of rules, for concluding various
hypotheses. The refinement phase, on the other hand, is
characterized not so much by the acquisition of entire rules
but by the addition, deletion, and alteration of ru le-
components in certain rules in the existing knowledge base, in
an attempt to improve the system's performance. Obviously
the foregoing description of knowledge base construction is an
idealization. In practice the line between these two phases is
not as sharply drawn. **

A knowledge base refinement problem can be thought of
as an optimization problem in which we start with a proposed
general solution to a given set of domain problems and the
goal is to refine it so that a superior solution is obtained.
The proposed solution is a working knowledge base that is in
need of minor adjustments, but not a major overhaul, i.e., one
assumes that the rules given by the expert are basically
"sensible" propositions concerning the problem domain. The
refinements applied to the rules of this knowledge base must
not only meet the obvious requirements of being syntactically
and semantically admissible, they must also be conservative, in
the sense that they tend to preserve, as far as possible, the
expert's given version of the rules. Employing rule
refinements that meet these requirements makes it more likely
that the construction of a refined knowledge base wi l l not
simply be a matter of "curve f i t t ing." but wi l l result in a
knowledge base that is more robust yet at the same time
"close" to the actual knowledge of the expert

*This research was supported in part by the Division of
Research Resources, National Institutes of Health. Public
Health Service, Department of Health, Education, and Welfare,
Grant P41 RR02230.

* * In this paper we l imit our concern to knowledge bases
that are structured collections of production-rules. Unless
otherwise stated, when we use the term "expert system." we
mean, properly speaking, "production-rule based expert
system." Furthermore we confine our attention to refinements
of production rules that can be achieved as the result of the
sequential application of certain generic refinement operations
that are either generalization or specialization operations.

368 A. Ginsberg et al.

I I T H E BASIC A P P R O A C H ; E M P I R I C A L A N A L Y S I S O F
RULE B E H A V I O R USING CASE K N O W L E D G E

A. Overview

In this section we briefly review the basic approach to
knowledge base refinement taken by SEEK [1] - an approach
that we have continued to employ in SEEK2.

A fundamental assumption of this approach is that case
know/edge can be used to drive a process involving
empirical analysis of rule behavior in order to generate
plausible suggestions for rule refinement. Case knowledge is
given in the form of a data base of cases with known
conclusions, i.e., each case contains not only a record of the
case observations but also a record of the experts conclusion
for the case. Empirical analysis of rule behavior involves
gathering certain statistics concerning rule behavior with
respect to the data base of cases: suggestions for rule
refinements are generated by the application of refinement
heuristics that relate the statistical behavior and structural
properties of rules to appropriate classes of rule refinements.
We wi l l shortly explicate the nature of the statistical evidence
gathered and give an example of these rules.

Our basic control strategy is a combination of "divide and
conquer*' together with a goal-directed backward chaining
mechanism. We assume that the expert and knowledge
engineer can identify a f in i te set of final diagnostic
conclusions or "endpoints;" these are the conclusions that the
expert uses to classify the given cases. One can then confine
one's attention to the refinement of rules that are involved in
concluding a particular endpoint. e.g., if the domain is
Rheumatology one may decide to work on refining those rules
involved in concluding the single f inal diagnosis Systemic
Lupus. This is the divide and conquer part of the strategy; it
means that at any given moment the system is applying the
refinement heuristics only to a proper subset of the rules in
the domain knowledge base. The goal-directed backward
chaining mechanism comes into play once an endpoint has
been chosen. If our chosen endpoint is Systemic Lupus, for
example, we begin by applying the heuristics to all the rules
in the knowledge base that directly conclude Systemic
Lupus, i.e., rules whose right hand side is this conclusion. A
rule that directly concludes some endpoint w i l l , in general,
have components on its left hand side that themselves are the
conclusions of some other rules; such components are called
intermediate hypotheses. The rules that conclude

intermediate hypotheses may themselves include components
that are intermediate hypotheses. Whenever the refinement
heuristics suggest modifying an intermediate hypothesis I H ,
such as deleting it f rom some rule, the rules that conclude IH
are thereby implicated as candidates for refinement.

B. Some Statistics and A Heurist ic

At the highest level, many refinements of production rules
may be thought of as fal l ing in one of two possible classes:
generalizations and specializations. By a rule generalization
we mean any modification to a rule that makes it "easier" for
the rule's conclusion to be accepted in any given case. A
generalization refinement is usually accomplished by deleting
or altering a component on the left hand side of the rule or
by raising the confidence factor associated with the rule's
conclusion. By a rule specialization we mean modifications to
a rule that make it "harder" for the rule's conclusion to be
accepted in any given case. A rule specialization is usually
accomplished by adding or altering a component on the left
hand side or by lowering the confidence factor associated with
the rule's conclusion [2] .

On the side of evidence for rule generalization, one of the
concepts we have employed in both SEEK and SEEK2 is a
statistical property of a rule computed by a function that we
call Gen(rule). Gen(rule) is the number of cases in which
(a) this rule's conclusion should have been reached but
wasn't, (b) had this rule been satisfied the conclusion would
have been reached, and (c) of all the rules for which the
preceding clauses hold in the case, this one is the "closest to
being satisfied." A measure of how close a rule is to being
satisfied in a case, based on the number of additional findings
required for the rule to f i re, is easily computed given the
case data (for details of the algorithm used by SEEK see [3] ;
SEEK2's closeness measure is essentially the same).

On the side of evidence for rule specialization, one of the
concepts we have defined is a statistical property of a rule
that is computed by a function we call SpecA(rule).
SpecA(rule) is the number of cases in which (a) this rule's
conclusion should not have been reached but was, and (b)
if this rule had failed to fire the correct conclusion would
have been reached, i.e., the correct conclusion was the "second
choice" in the case (due to its having the second highest
confidence), and the only circumstance preventing its being
the " f i rs t choice" is the fact that this rule is satisfied. If
there is more than one satisfied rule that concludes the
incorrect f irst choice then none of these rules has its SpecA
measure incremented; instead we have defined an additional
concept to cover this situation called SpecB(rule): each of
these rules has its SpecB measure incremented.

To get a feeling for the sort of heuristics employed by
these systems, suppose that for a certain rule r it has been
found that Gen(r) > [SpecA(r) + SpecB(r)], in other words
the evidence suggests that it is more appropriate to generalize
than specialize r. Another piece of information would help
us decide which component of r should be deleted or
altered, viz.. the most frequently missing component, i.e.,
the component of r that has the lowest frequency of
satisfaction relative to the cases that contribute to Gen(r).

A. Ginsberg et al. 369

The function that computes this statistic is called Mfmc(ru le) .
Mfmc(rule) also tells us the syntactic category of this most
frequently missing component For example, one sort of
component often used in medical diagnostic systems is called a
choice component. These have the form

where k, the choice number is a positive integer and the C's
i

are components (findings or hypotheses, but not choices). A
choice component is satisfied i f f at least k of its C's are

satisfied. If we know that the rule r should be generalized
and that Mfmc(r) is a particular choice component, then a
natural thing to do is to decrease the choice number of that
choice component. Being conservative we decrease the choice
number by 1.

To summarize the discussion in this section we now display
in fu l l the particular heuristic we have described.
I f : G e n (r u l e) > [S p e c A (r u l e) + S p e c B (r u l e)] &

M f m c (r u l e) is CHOICE-COMPONENT C

Then: Decrease the cho ice -number o f
CHOICE-COMPONENT C in r u l e .

Reason: T h i s wou ld g e n e r a l i z e the r u l e s o t h a t i t
w i l l b e e a s i e r t o s a t i s f y .

I l l T H E SEEK EXPERIENCE

A salient feature of the original SEEK program [1] is that
it was not designed to solve the entire knowledge base
refinement problem on its own, rather it was intended to
help, interactively, an expert or knowledge engineer solve the
overall problem by offer ing potential solutions to various sub-
problems that arise along the way. SEEK helps its user in
the fol lowing ways: (a) it provides a performance evaluation
of the knowledge base relative to the case data base, (b) using
its statistical concepts and heuristics it identifies rules that are
plausible candidates for refinement and suggests appropriate
refinements, (c) a user can instruct SEEK to calculate what
the actual performance results of a particular refinement to
the knowledge base would be. and if the user desires. SEEK
wi l l incorporate the change in the knowledge base.

A. Basic Cycle of Operat ion

Although control in SEEK always resides with the user,
and there are a number of paths and facilities available to the
user at almost every point, SEEK can be thought of as having
a basic cycle of operation. The system is given an initial
knowledge base and the case knowledge data base. SEEK
first obtains a performance evaluation of the init ial knowledge
base on the data base of cases. This is done by "running"
the ini t ial knowledge base on each of the cases in the data
base, and then comparing the knowledge base's conclusion with
the stored expert's conclusion. The performance evaluation
consists primari ly of an overall score, e.g. 75% of cases
diagnosed correctly, as well as a breakdown by f inal diagnostic

category of the number of cases in which the system agrees
with the expert in reaching a particular diagnosis. i.e., "true
positives." and the number of cases in which the system
reaches that diagnosis but the expert does not, i.e.. "false
positives."

The user must decide on a diagnosis for which he would
l ike to see refinements in the knowledge base in order to
obtain better performance, e.g.. if the domain is
Rheumatology the user may decide to try to upgrade the
system's performance in diagnosing Systemic Lupus. For the
sake of brevity, we call this user-specified diagnosis the GDX
for the current cycle of operation, where the " G " stands for
"given," since this is a directive that the user must give the
system. The next part of the cycle involves computing
statistical properties concerning the rules of the knowledge
base that conclude the GDX. Plausible refinements are then
generated by evaluating a set of heuristics similar to the one
presented above for each of these rules, as well as any rule
that becomes implicated via an intermediate hypothesis (see
section II .A above).

Once SEEK has given its advice - we think of eacn piece
of advice as a possible "experiment" to improve the knowledge
base - the user wi l l initiate an exper imentat ion phase. This
is a sub-cycle in which the user, interacting with SEEK,
determines the exact effect of incorporating any one of the
proposed experiments. The user wil l then decide which, if
any, of these refinements should be accepted, and instructs
SEEK accordingly. This ends the basic cycle, which can now
be repeated starting wi th the modified knowledge base. This
process continues until the user is satisfied with the overall
performance evaluation.

B. L im i ta t ions

One of SEEK's limitations has already been mentioned: it
does not have the capability to attempt to solve a refinement
problem on its own. We discuss how SEEK2 removes this
l imitation in section IV.A below.

Another important l imitation of SEEK is that it does not
work with a general production rule system, rather it expects
that the domain knowledge base wi l l be written in a form
known as the c r i t e r i a table representation. This mode of
representation requires the knowledge engineer to specify a list
of "Major " observations and a list of "Minor" observations
for each possible (diagnostic) conclusion in the knowledge
base. Rules for reaching particular conclusions are then stated
in terms of the number of Majors and Minors for the
conclusion, "Requirements" and "Exclusions." The latter are
additional observations or conclusions, or conjunctions of such,
that are relevant to the diagnosis: a Requirement is some
condition that must be satisfied to reach the conclusion; an
Exclusion is some condition that "rules out" the conclusion.
Furthermore, any rule can reach its conclusion at one of only

370 A. Ginsberg et al.

three possible confidence levels, viz. possible, probable,
definite. As an example, assuming that a list of majors and
minors for the conclusion Systemic Lupus has been specified,
a rule for concluding the latter might state that if (at least)
two of the majors and two of the minors are present then
the conclusion is warranted at the "definite" level.

While this mode of representation has proven to be useful
in the Rheumatology domain [4] and other medical
applications, it is in fact not as powerful a representation
language as that of EXPERT [5] or similar production rule
systems, in the sense that one can write knowledge bases in
general production rule languages that are not translatable into
the criteria table format. However, any criteria table can be
translated into production rule syntax. Thus the set of
criteria table knowledge bases is a proper subset of the
set of production'rule knowledge bases.

SEEKs knowledge engineering knowledge, i.e., its statistics
and heuristics, was formulated with reference to the criteria
table representation scheme, and criteria table concepts also
were embedded in the control structure of the program. As a
consequence, certain forms of rule refinement were not
available or were restricted in SEEK, e.g., changing a rule's
confidence factor was limited to making "jumps" from one
level to another, such as probable to possible. In general,
SEEK could do very little with a knowledge base that was not
written in a criteria table format.

SEEK2, on the other hand, is a refinement system that will
work with any knowledge base written in EXPERT'S rule
representation language. In designing SEEK2, we found it was
possible to decouple SEEKs knowledge engineering concepts
from the criteria table representation; we were able to apply
many of these concepts in relation to features of more
general types of production-rules. For example, criteria table
rule-components using the notion of Majors and Minors are
special cases of rule-components using choice-functions.
Decreasing or increasing the number of Majors or Minors
required by a rule, is a special case of decreasing or
increasing the choice-number of a choice-function. Thus the
example heuristic given above in section II.B is a
generalization in SEEK2 of two separate similar heuristics
originally stated in SEEK, one for Majors, one for Minors.

In moving to a more general representation language as the
target language for knowledge base refinement, we broadened
the scope of the set of generic refinement operations available
to the system. For example, confidence factors for
generalization experiments may be increased based on an
average of the highest-weighted (erroneous) conclusion for a
set of misclassified cases.

From the programmer's point of view, SEEK's own
know/edge base, the representation of its knowledge
engineering statistics and heuristics, was strictly separate from

its control structure. However, this was not the case from
the point of view of the user, since there was no facility by
which the user, qua user and not qua programmer, could
access and modify SEEK's own knowledge base, in the way
that a user can modify the domain knowledge base. Our
approach to this issue forms part of a broader project which
we describe in section IV.B.1 below.

IV SEEK2: AN EXPERT SYSTEM FOR KNOWLEDGE
BASE REFINEMENT

A. Automatic Pilot Capability

Unlike SEEK. SEEK2 is a system that can present plausible
solutions to the overall refinement problem without the need
for interaction with an expert. The output of SEEK2 running
in automatic pilot mode is not a list of suggested rule
refinements for a particular GDX ("given" dx), rather it is a
refined version of the entire knowledge base, i.e., a set of
rule refinements to the initial knowledge base which yield an
improvement in overall performance. In this section we
describe SEEK2's current Automatic Pilot capability.

The attempt to find a sequence of refinements that
optimizes performance is a search problem. Where there is a
search problem of sufficient complexity, good heuristics must
be found to guide the search. As we will see, SEEK2's
current automatic pilot algorithm is a heuristic search
algorithm, in the sense that it uses a classic "weak method,"
hill-climbing.

When running in automatic pilot mode SEEK2 makes three
types of decisions that were previously made by the user of
SEEK: (a) choice of GDX for the current cycle, (b) which
rule refinement experiments to try, (c) which refinements to
incorporate in the knowledge base given the results of the
experiments (see figure IV-1). Additionally SEEK2 has to
know when to stop.

In the current implementation, SEEK2 orders the potential
GDX's in descending order according to a simple measure on
the number of "false negatives" and "false positives."
information that is given by the performance evaluation phase.
Potential rule refinement experiments for a GDX are ordered
by simple measures on the statistics used in generating the
refinement, eg., if the generalization heuristic given in section
II.B fires, the quantity Gen(rule) - [SpecA(rule) +
SpecB(rule)] is used as an estimate of the expected net gain
to be derived by performing the experiment

Information of this sort could be used to limit the
number of experiments performed in a cycle. However, in the
current implementation, the information is used only to
determine the order in which GDX's are chosen and
experiments attempted; ultimately every potential GDX (for
which perfect performance has not been obtained) is chosen,
and every experiment suggested by the heuristics is performed.

A. Ginsberg et al. 371

In other words, an automatic pi lot cycle involves attempting,
according to the ordering just given, every proposed
refinement experiment for every potential f inal diagnostic
conclusion in the knowledge base. (Of course, the number of
experiments generated by the heuristics represents a small
fraction of the total number of logically admissible
refinements.) Out of all these experiments SEEK2 "accepts"
only one, the one that gives the greatest net gain in
knowledge base performance foT all f inal diagnostic

conclusions (not just for one GDX). An internal record of
the accepted refinement is kept; and then the next automatic
pi lot cycle begins. If the current automatic pilot cycle is
such that no attempted experiment leads to an actual net gain.
SEEK2 stops.

We present a simplif ied example in order to illustrate the
preceding remarks. Let us suppose that we have a
Rheumatology knowledge base dealing only with the two final

372 A. Ginsberg et al.

diagnoses Systemic Lupus and Rheumatoid Arthri t is, that a
data base of 20 cases is available, and that our human expert
has diagnosed 10 of these cases as Systemic Lupus and the
other 10 as Rheumatoid Arthrit is. Suppose that the initial
performance evaluation computed by SEEK2 is as follows:

The measure SEEK2 uses to compute G D X order is the
maximum of the false negatives and false positives. Thus in
our example Systemic Lupus would be the f irst diagnosis in
the G D X ordering since it has 7 false negatives, i.e., 7 out of
the 10 cases that should have been diagnosed as Systemic
Lupus were no t Therefore SEEK2 wi l l f i rst generate
refinement experiments for Systemic Lupus.

Continuing the example, suppose that rule r concludes
Systemic Lupus, and SEEK2 finds that Gen(r) = 6, SpecA(r) =
1. SpecB(r) = 0, and Mfmc(r) = Choice-Component C. These
findings would satisfy the antecedent of the refinement
heuristic presented in section II.B. Therefore SEEK2 wi l l post
the decreasing of C's choice-number as a refinement
experiment SEEK2's estimate of the expected net gain of
performing this experiment is given by Gen(r) - [SpecA(r) ♦
SpecB(r) + 5. (This is an estimate; the only way to know
what the precise effect of decreasing the choice-number of C
wi l l be. is to decrease i t , and then recompute the system's
performance on the entire data base of cases.) Once all the
refinement experiments for Systemic Lupus have been posted
and ordered according to their expected net gain, SEEK.2
performs all the experiments on this list as ordered. If
SEEK2 finds that decreasing the choice-number of component
C in rule r leads to an overall performance gain of 3 cases,
i.e., the "bottom l ine" performance total for both Rheumatoid
Arthr i t is and Systemic Lupus improves f rom 12 to 15/20, and
this turns out to be the maximum net gain of all the
experiments for Lupus, SEEK2 records this fact.

Next, it w i l l select Rheumatoid Arthr i t is as the G D X and
repeat the process. Suppose that the aforementioned
experiment for rule r yields a greater net gain than the best
refinement experiment for Rheumatoid Arthr i t is. Then SEEK2
wi l l "accept" the refinement to rule r, i.e.. it wi l l modify its
internal copy of the domain knowledge base to reflect this
refinement, and a new cycle wi l l commence.

The automatic pi lot algorithm just described is a h i l l -
cl imbing procedure: at each step SEEK.2 is guided totally by
the " local" informat ion as to which proposed refinement on
the current knowledge base results in the best improvement,

i.e., leads in the direction of "steepest ascent" When SEEK2
stops it is because a maximum has been reached. This may
very well be only a local maximum. While a local maximum
represents a "dead end" to the current SEEK2. we are
experimenting with special statistics and heuristics that wi l l
"kick i n " only when a dead end is reached, and which wi l l
hopefully allow the system to discover a better maximum if
one exists.

B. A Metalanguage fo r Representing Meta- leve l Knowledge

1. Metaknowledge in Knowledge Base Refinement

It is clear f rom the examples in section I I .B that a
refinement system requires metaknowledge of both the syntax
and semantics of the "object" system's language, i.e., the
representation language of the domain knowledge base. For
example, Gen, M fmc , SpecA. and SpecB presuppose a working
knowledge of what it is for a rule or a rule-component to be
satisfied. Other researchers have shown ways in which
metaknowledge can aid in the general knowledge acquisition
process [6] and in enhancing an expert system's performance

[7] . In this section we describe a metalanguage designed
specifically for the refinement task. Using this metalanguage
one can define knowledge engineering concepts and heuristics,
such as Gen(rule), as well as domain specific metaknowledge
- e.g., the fact that case findings x and y are incompatible -
in terms of a set of primit ive concepts and operations.

One motivation for a metalanguage was alluded to in
section I I I .B, where we mentioned that SEEK's knowledge base
of heuristics and statistics was inaccessible to the user of the
system. The abil ity to easily access and modify this
knowledge base is quite desirable for designing and
experimenting with refinement concepts. For example, some
of the current statistics for SEEK2 are not likely to be as
useful with respect to an expert system that employs a scoring
scheme for combining confidence factors. Useful variants of
these statistics could be defined within the same metalanguage
that we have developed for SEEK2

In general, even within one expert system framework,
di f ferent styles of knowledge bases are possible; it is likely
therefore that di f ferent styles of refinement wi l l be needed.
For example, some knowledge bases employ a taxonomic
ordering of hypotheses. Such an ordering provides knowledge
that could be used, together with appropriate control
heuristics, to formulate a more eff icient version of SEEK2's
automatic pi lot algorithm. A knowledge base refinement
metalanguage wi l l allow for the representation of such control
heuristics (see figure IV-1) . A refinement metalanguage wi l l
allow the expert or knowledge engineer to represent the
knowledge that a certain component in a rule should not be
altered under any circumstances, or that if a change to
component x is made, component y must be changed as well ,
or that additions to any rule wi th conclusion C should be
drawn f rom a specified list of components, etc. It w i l l also

A. Ginsberg et al. 373

allow for the definition of special-purpose statistics that may
be of use in suggesting plausible rule refinements, e.g., the
frequency of occurrence of a certain combination of findings
in a specified subset of cases.

2. Defining Statistics in SEEK2's Metalanguage

SEEK2's statistical concepts can be specified in a set-
theoretic metalanguage that employs only a small number of
refinement primitives together with some appropriate
notions from simple set theory, arithmetic, and logic. Using
these primitives it is possible to experiment with variations on
SEEK2's statistics and define domain specific statistics as well.

A set-theoretic definition of concepts such as Gen(rule)
(see section ll.B) requires refinement primitives of the
following sorts. Some primitive variables are needed to
provide the system or a user with the ability to "access"
various "objects" in the domain knowledge base and the data
base of cases. For example, rule is a variable whose range is
the set of rules in the domain knowledge base, case is a
variable whose range is the set of cases in the data base of
cases, and dx is a variable whose range is the set of possible
final diagnostic conclusions in the knowledge base. In
addition some primitive functions are needed to allow one to
refer to selected parts or aspects of a rule or a case, e.g.,
RuleCF(rule) is a function whose value is the confidence
factor associated with rule, PDX(case) is a function whose
value is the expert's conclusion in case ("PDX" stands for
"Physician's Diagnosis"), and CDX(case) is a function whose
value is the conclusion reached for the current knowledge base
in case ("CDX" stands for "Computer's Diagnosis"). As an
example of the way in which these primitives can be used,
note that using the notions of PDX(case) and CDXicase) one
may define a misdiagnosed case as any case for which
?DX(case) ≠ CDX(case).

Certain special sets of objects are of importance in the
knowledge base refinement process, and it is therefore useful
to have primitives that refer to them, e.g., Rules-For(dx) is
a function whose value is the set of rules that have dx as
their conclusion. Finally various primitives that in some way
involve semantic properties of rules, or the performance
characteristics of the knowledge base as a whole are useful,
e.g.. Satisfied(rule-component, case) is a predicate that is
true iff rule-component is satisfied by the findings in case,
and false otherwise, and ModelCF(dx, case) is a function
whose value is the system's confidence factor accorded to dx
in case.

SEEK2's refinement knowledge base was designed using the
metalanguage we have just outlined [8]. Implementation was
achieved by incorporating the aforementioned primitives as
procedures and functions, and then coding (by hand) high-
level set-theoretic definitions as efficient procedural forms
employing these primitives. Currently we are experimenting

with a system in which the primitives described above (and
others) are available to the user and can be combined to form
expressions designating sets, variables, and functions of interest
to the user.

V DISCUSSION

SEEK2 currently has ten statistical concepts and nine
heuristics for generating refinements. Working in automatic
pilot mode on a Rheumatology knowledge base of
approximately 140 rules with 5 final diagnostic categories, and
using a data base of 121 cases. SEEK2 was able to increase
the overall performance of the system from a value of 73%
(88/121) to a value of 98% (119/121). It used approximately
18 minutes of Vax-785 cpu time. The total number of
experiments tried was 106. out of which 8 were accepted.***

In evaluating the usefulness of SEEK2's automatic pilot
capability it is important to keep in mind that the expert is
still the final judge. Despite the assured gain in performance
with respect to the given data base of cases, and the
reasonable expectation of performance enhancement with
respect to new cases, the expert may agree with only a subset
of the total number of refinements suggested by SEEK2****.
The measure of SEEK2's usefulness is not, however, simply
how many of its experiments the expert accepts; even rejected
experiments have value: they point out areas of the knowledge
base that need to be examined if enhanced performance is to
be achieved.

Validity and consistency are important goals in developing
expert systems. Yet the design of these systems is often
lacking in a coherent formal approach for achieving these
goals. The approach to knowledge base refinement described
here can lead to a more solid foundation for designing and
validating expert system knowledge bases.

VI ACKNOWLEDGMENTS

We would like to thank Casimir Kulikowski for his helpful
suggestions concerning this work, and Kevin Kern for
programming assistance.

***The system has not yet been tested on alternative
knowledge bases.

****The incorporation of domain-specific metaknowledge in
SEEK2 might enable the system itself to sometimes reject a
refinement that in some way violates the expert's
understanding of the domain, even though it may improve
performance.

374 A. Ginsberg et al.

References

[1] Politakis, P. and Weiss, S. "Using Empirical Analysis to
Refine Expert System Knowledge Bases." Artificial
Intelligence. 12 (1984) 23-84.

[2] Mitchell, T. "Generalization as Search." Artificial
Intelligence. 18 (1982) 203-226.

[3] Politakis, P., Using Empirical Analysis to Refine
Expert System Knowledge Bases, PhD dissertation.
Department of Computer Science, Rutgers University,
1982.

[4] Lindberg, D., Sharp. G., Kingsland. L. Weiss, S.. Hayes,
S.. Ueno. H., and Hazelwood, S. "Computer-Based
Rheumatology Consultant" In Proceedings of the
Third World Conference on Medical Informatics.
North-Holland. 1980. 1311-1315.

[5] Weiss, S.. and Kulikowski, C "EXPERT: A System for
Developing Consultation Models." In IJCA/-79. Tokyo,
Japan, 1979. 942-947.

[6] Davis. R. "Interactive Transfer of Expertise: Acquisition
of New Inference Rules." Artificial Intelligence. 12
(1979) 121-157.

[7] Li-Min, Fu and Buchanan, B. "Enhancing Performance
of Expert System by Automated Discovery of Meta-
Rules." In The First Conference on Artificial
Intelligence Applications. December, 1984.

[8] Ginsberg, A., Weiss, S., and Politakis, P. "An Overview
of the SEEK2 Project", Technical report, Department of
Computer Science, Rutgers University, 1985.

