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ABSTRACT*

An approach is described for developing methods for "data
fusion": given how events A & B occurring by themselves
influence some measure, estimate the influence (on that measure)
of A and B occurring together. An example is "combine the
effects of evidence on the belief (likelihood) of some hypothesis."
This approach also deals with the opposite problem of estimating
the effects on a measure of A and B by themselves when only their
combined effects are known: data fission. The methods
developed will both 1) try to make intuitive estimations at
information not given, and 2) not conflict with any information
given (unless it is inconsistent).

1. INTRODUCTION

An approach is described for developing methods for "data
fusion": given how events A & B occurring by themselves
influence some measure, estimate the influence (on that measure)
of A and B occurring together. Examples include: 1) combine the
effects of evidence on the belief (likelihood) of some hypothesis,
and 2) combine the effects of pollutants on public hearth
measures. The opposite problem of estimating the effects on a
measure of A and B by themselves when only their combined
effects are known, data fission, is also discussed.

Data fusion problems can be characterized by two properties:

1.In combining events' influences, a whole range of
answers consistent with the given information exists.

2. Often, one or a few intuitive ways exist to combine the
influences which tends to "work."

For example: one wants P[A&B] (the probability of A and B
occurring), but only has P(A] and P[B]. Then P[A&B] can range
from 0 (the two are mutually exclusive) to min[P[A],P[B]] (A
implies B or vice-versa). Furthermore, given that A & B are
"typical" events, one might guess that P[A&B] - P[A]P[B] (A and
B are independent, a case between the two extremes).

Past efforts in this area include fuzzy sets and logic [5], the
Dempster-Shafer rule of combination (orthogonal sum)[7],
simplified rules of probability in PROSPECTOR [3], and the
certainty factor idea in MYCIN [8]. They have concentrated on
intuitive methods of combination, figuring rightly that asking
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people giving knowledge (to the system) to give the effects of
every combination of events would be impossible. However, with
these efforts, when the "intuitive" method fails on some case, and
the correct answer is known, there is no clean way to tell the
system. Often, one misrepresents some value(s) in the system so
that when they combine, they more or less give the correct
answer. For example, let the MYCIN interpreter have the two rules

1. Event A is evidence for event C: CF[C,A]m 0.3 (a
positive value indicates evidence in favor, a negative
value indicates evidence against).

2. But, both events A and B occurring is evidence for C
not occurring: CF[C,A&B] =-0.3.

Now when both A and B occur, both rules will be active, and the
net evidence for C will be the two figures added together (0.3-
0.3=0) and not -0.3, the intended figure. To fix this, one might
make CF[C,A&B]=-0.6. For a further discussion of these
systems, see [9].

To avoid this problem, methods for data fusion (and fission)
should supply both the intuitive answers for combinations lacking
more specific data, and the appropriate answers for known
combinations.

2. GENERAL APPROACH

The following is a general approach for developing a data
fusion/fission system:

1. Determine the form(s) of information you and others
want to give the system (it should be easy to provide),
and the form(s) the system should be able to output.

2.Determine the realm of all legal possibilities for
combinations of given and requested information.
That is, determine when a group of given statements
(information) should be considered consistent.

3. Determine a criterion (rule of thumb) to make
estimations when information given to the system is
not specific (discussed below).

4. Find a specific method (implementation) that:

a. treats the given information as constraints on
the possible results, and reports
inconsistencies.

b. uses the rule of thumb to find the estimate when



the given information is not specific enough to
"force" a result. Limit the result to one that is
consistent with the supplied information.

c. does not require too much storage. A simple
way make all system estimates overridable is to
always store an overwritable estimate for each
possible combination of events to be
considered. However, often an exponential
number of such combinations exist.

A method meeting these criteria 1) provides estimates
where precise information is lacking, and 2) permits
the use of precise information when it is available.

These steps may have to be iterated a few times because 1) the
information and/or criterion in the first three steps turn out to be
not quite what you want, or 2) a specific implementation eludes
you in step 4.

Some heuristics for finding a "rule of thumb" in step 3 are the
following:

1. It will 'typically' give the correct answer or something
close. If you find such a rule of thumb, this heuristic
takes the highest priority.

2.When given a range of choices, it will tend towards
the middle ground (as opposed to the extremes). This
way it will not be too far wrong.

3. It is simple conceptuually (maybe easier to debug and
anticipate effects).

An often applicable rule of thumb for fusion is non interaction
between entities. Examples include assumptions of independence
in probability (and similarly, maximizing entropy, see [9]), and
linearity (the total is just the sum of the parts) in many fields.
Justifications for using this include:

1.users (people) tend to notice and mention strong
interactions (such as A causes 8, or
seeing C indicates not D, etc.), so what tends not to be
explicitly given are the noninteractions,

2.it is in the middle between positive and negative
interaction,

3. it is more conceptually "simple" than interaction.

An often applicable rule of thumb for fission is to divide evenly,
and as if things did not interact. Justifications for the former are

1. users tend to notice and mention inequities, so what is
left tends to be equitably distributed,

2.itis in between favoring any one thing.

Justifications for non interaction are the same as the ones in
fusion.
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3. EXAMPLE: LIKELIHOOD INFERENGE

The following is an example of developing a system with the
above approach. The system inlers likelihoods of evenls,
Information is given on how likely the events are when certain
evidence occurs, and on what evidence exists. The example is for
the most part from work done by Konotige lor PROSPECTOR
[4] and extended by Yeh [9], and the details may be found thers.

Step 1: People will give the system information of the form
{some term 1} 77 [some term 2], whers

« Mg =,{, > <, 0r >, and

» [some term o} {a = 1 or 2) Is an a priori or conditional
probability, 2 MYCIN certainty factor, & correlation, or
a numeric constant,

Examples include P[A or B] > 0.5, probabifity of A when B occurs
= P[A|B] € P{A], the certanty factor of Agiven 8 = CF[AB] = 0.3
and correlation(A,B) = correlation(B,C), where A, B, and C are
events.

CF[A,B] measures how much knowing B occurs lells you how
likely A occurs, and ranges from 1 (B—A) to -1 {B—-~A).
CF[AB]=0 means ihat knowing B tells you nothing about
A. CF[A,B] can be translated into probabilistic terms (see [9}). For
example, CF[A,B] =0.3 = (P[A[B}-P[A]/(1-P{A].

Correlation{A,B) measures how much knowing A or B ocours
tells you how likely the other will aceur, and alse ranges from 1
{B++A} to -1 {B—+~A Bnd vice-versa). A value of 0 means that A
and B are independent. Correlation(A,B) ls defined In terms of
probabifities as

(P{A.BJ-P[AJP[B] /(PIAI(1-P[A]PIBK1-P[B]) .
The system will output information of the same form ag the nput.

Step 2; All of the input and output statements can be put in terms
of probabilities. So, lhere should be at leasl one common
probability distribution in which all of the statements held. If not,
the siatements will describe a situation which is impossible given
the laws of probability.

Step 3: The rule of thumb used is maximize the independonce
between events. The reasons for using these are the same as the
ones mentioned in the last saction.

Step 4: The method the system will use Is to find the 2r:rfr:l'.qal':illty
distribution which minimizes the sum of squares Zp’ (It is like
maximizing entropy, and will ranga from 2°" to 1.0}, where n Is the
rumber of events, and p, is the probability of the ith combination
of evenls occurring and not occurring out of the 2" possible
combinations of the distribution (example, If the evenis are A and
B, p, can be one of ~AR~B, ~A&B, A&~B, or A&B). Justifications
are in [8].

As described, the problem can viewed as “pick the values (for
tha probability distribution) that minimizes some funclion, while
satislying certain constraints (areé consistent with the input
information and indeed form e probability distribution}. If none
can satisfy the consiraints, report hat.” In the cperations
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resgarch Ffield, this is called a {non-linear) programming problem,
and many numeric computer programs have been developed to
solve them (example: the Simplex algorilhm). The type of
algorithm to be used for this method is one used lor generalized
geometric programming (GGP) [1, 2]. The specific algorithm used
Is discussed in [6].

Some warnings about these algorithms: From a given starling
paint, they may not converge (even when a solution exists), or
converge 1o a point other than the true global minimum. To some
exlent, using many random starting points will ameliorate this. For
GGP algorithms, combination probabilities have to be striclly > D.
In[6]. an error exists: Zu(g'{i}-1) in the Lagrangian funclion
shouid be —Xg{g'(t}-1}. Also, [6]'s aigorithm uses exponenliation
to find the approximate solution. To help prevent
over/underflows, force that exponentiation to relurn numbers
within “reasonable” bounds (examples: all variables are > 100,
all combination probabilities are < 1.0).

After the distribution has been lound by this method (which can
involve e fair amount of computation}, the system can use the
distribution to fairly quickly angwer various questions that may be
ask ol lt (give output stalements of the form mentioned in step 1).

An exampie of setting up a problem for a programming method:
The events are A, B, & C, and the input statement is CF[C,A] = 0.3.
First, translate it into & constraint on the probabilities of the 2
combinalions of the events:

{PIC,A}/PIA] - PICII/(1-F[C)) = 0.3,
whare P[C.A)= P[A,~B.C] + P{A,BL], and similarly for P[A) and
P[C]. Now, use the method In[8] to find the values of the
combination probabilities ol the distribution which minimize

P[~A,~B,~C]®+ P[~A,~B.C}?+ P[~AB,~CP+ P[~ABCF +
PlA,~B,~C]?+ P[A,~B.CI?+ P[AB,~C]?+ PIABCPR
subject to the constraint above, plus the conslraints that any
disiribution for A, B, & C should chey {> 0 is used instead of > 0

becavse of GGP):

P{~A,~B,~C], P[~A,~B,C], P{~AB,~C}, ....P[A,BC] >0
P[~A,~B,~C]+P[~A,~BC]+P[~AB,~C}+...+P[AB,C]a1.
The system returns the distribulion’s combination proabilities
{rounded to 4 digits, order as in the sum of squares function

above):

0.1553 0.1166 0.1553 0.1166

0.0729 0.1553 00720 0.1553
From this disiribution, one finds that P[A8]= P[A]XFP{8]
PBC]= PEIXPIC], end  (P[C|ABI-P{C)/{1-PIC]) =
CFIC,A8B]= 0.3= CF{C,A]. Here, no relations were given
betwean B and alther A or C, 50 the systom assumes that B has no
affect on (is Independent of} sither A or C. [f [ater, one lsarns that
CF[C,A8B]= -0.3x {P{C}AB}-P[C]/PIC] (pasitive and negative
CF'a have different forms), one can add this consiraint, and the
system will return the distribution {order as before):

0.1589 0.1360 0.1589 0.1380

0.0114 0.2088 0.1148 0.0732

which satisfies both CF constraints.

Since n events leada to a 2" slement distribution, trying to find
the ona joint distribution underlying all events is & problem. To

lower the storage requirements, [9] describes ways to organize
the events to take advantage of forms of independence between
them. These forms let one find probabilities involving two or more
sets of events jointly from probabilities involving those sets
separately. A very simple example: if the events AB are
independent from the events D,E, then P[a,b,c,d]=P[a,b]P[d,e],
where a is A or ~A, b is B or ~B, etc. This lets the 4 event
distribution be found from two 2 event distributions.

4. SUMMARY

An approach for developing flexible data fusion and fission
methods is presented. Such methods will both 1) try to make
intuitive estimations at information not given, and 2) not conflict
with any information given (unless it is inconsistent). Past work
has concentrated on the intuitive estimation for "fusion" aspect,
and more or less ignored the nonconflict aspect. An example of
using this approach to develop a method for likelihood inference
is given. The method has yet to be fully implemented, so doing
this, as well as trying the approach on new examples remain as
possible work for the future.
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