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Abstract: Wereview and re-examine possible-worlds
semantics for propositional logics of knowledge and be-
lief with four particular points of emphasis: (1) we
show how general techniques for finding decision pro-
cedures and complete axiomatizations apply to models
for knowledge and belief, (2) we show how sensitive the
difficulty of the decision procedure is to such issues as
the choice of modal operators and the axiom system,
(3) we discuss how notions of common knowledge and
implicit knowledge among a group of agents fit into
the possible-worlds framework, and (4) we consider
to what extent the possible-worlds approach is a vi-
able one for modelling knowledge and belief. As far as
complexity is concerned, we show among other results
that while the problem of deciding satisfiability of an
S5 formula with one knower is NP-complete, the prob-
lem for many knowers is PSPACE-complete. Adding
an implicit knowledge operator does not change the
complexity substantially, but once a common knowl-
edge operator is added to the language, the problem
becomes complete for exponential time.

1. Introduction

Reasoning about knowledge and belief has long
been an issue of concern in philosophy and artificial
intelligence (cf. [Hil],[MH],[Mo]). Recently we have
argued that reasoning about knowledge is also cru-
cial in understanding and reasoning about protocols
in distributed systems, since messages can be viewed
as changing the state of knowledge of a system [HM];
knowledge also seems to be of vital importance in cryp-
tography theory [Me] and database theory.

In order to formally reason about knowledge, we
need a good semantic model. Part of the difficulty in
providing such a model is that there is no agreement on
exactly what the properties of knowledge are or should
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be. For example, is it the case that you know what
facts you know? Do you know what you don't know?
Do you know only true things, or can something you
"know" actually be false?

Possible-worlds semantics provide a good formal
tool for "customizing" a logic so that, by making mi-
nor changes in the semantics, we can capture different
sets of axioms. The idea, first formalized by Hintikka
[Hil], is that in each state of the world, an agent (or
knower or player: we use all these words interchange-
ably) has other states or worlds that he considers pos-
sible. An agent knows p exactly if p is true in all the
worlds that he considers possible. As Kripke pointed
out [Kr], by imposing various conditions on this possi-
bility relation, we can capture a number of interesting
axioms. For example, if we require that the real world
always be one of the possible worlds (which amounts to
saying that the possibility relation is reflexive), then it
follows that you can't know anything false. Similarly,
we can show that if the relation is transitive, then you
know what you know. If the relation is transitive and
symmetric, then you also know what you don't know.
(The one-knower models where the possibility relation
is reflexive corresponds to the classical modal logic T,
while the reflexive and transitive case corresponds to
S4, and the reflexive, symmetric and transitive case
corresponds to S5.)

Once we have a general framework for modelling
knowledge, a reasonable question to ask is how hard
it is to reason about knowledge. In particular, how
hard is it to decide if a given formula is valid or satis-
fiable? The answer to this question depends crucially
on the choice of axioms. For example, in the one-
knower case, Ladner [La] has shown that for T and
S4 the problem of deciding satisfiability is complete
in polynomial space, while for S5 it is NP-complete,



and thus no harder than the satisfiability problem for
propositional logic.

Our aim in this paper is to reexamine the possible-
worlds framework for knowledge and belief with four
particular points of emphasis: (1) we show how general
techniques for finding decision procedures and com-
plete axiomatizat ions apply to models for knowledge
and belief, (2) we show how sensitive the difficulty of
the decision procedure is to such issues as the choice of
modal operators and the axiom system, (3) we discuss
how notions of common knowledge and implicit knowl-
edge among a group of agents fit into the possible-
worlds framework, and, finally, (4) we consider to what
extent the possible-worlds approach is a viable one for
modelling knowledge and belief.

We begin in Section 2 by reviewing possible-world
semantics in detail, and proving that the many-knower
versions of T, S4, and S5 do indeed capture some of
the more common axiomatizations of knowledge. In
Section 3 we turn to complexity-theoretic issues. We
review some standard notions from complexity theory,
and then reprove and extend Ladner's results to show
that the decision procedures for the many-knower ver-
sions of T, S4, and S5 are all complete in polynomial
space.”* This suggests that for S5, reasoning about
many agents' knowledge is qualitatively harder than
just reasoning about one agent's knowledge of the real
world and of his own knowledge.

In Section 4 we turn our attention to modifying
the model so that it can deal with beliefrather than
knowledge, where one can believe something that is
false. This turns out to be somewhat more compli-
cated than dropping the assumption of reflexivity, but
it can still be done in the possible-worlds framework.
Results about decision procedures and complete ax-
iomatiiations for belief parallel those for knowledge.

In Section 5 we consider what happens when op-
erators for common knowledge and implicit knowledge
are added to the language. A group has common
knowledge of a fact p exactly when everyone knows
that everyone knows that everyone knows ... that p
is true. (Common knowledge is essentially what Mc-
Carthy's "fool" knows; cf. [MSHI].) A group has im-
plicit knowledge of p if, roughly speaking, when the
agents pool their knowledge together they can deduce
p. (Note our usage of the notion of "implicit knowl-
edge" here differs slightly from the way it is used in
[Lev2] and [FH].) As shown in [HMI], common knowl-
edge is an essential state for reaching agreements and

*

A problem is said to be complete with respect to a
complexity class if, roughly speaking, it is the hardest
problem in that class (see Section 3 for more details).
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coordinating action. For very similar reasons, common
knowledge also seems to play an important role in hu-
man understanding of speech acts (cf. [CM]). The no-
tion of implicit knowledge arises when reasoning about
what states of knowledge a group can attain through
communication, and thus is also crucial when reason-
ing about the efficacy of speech acts and about com-
munication protocols in distributed systems.

It turns out that adding an implicit knowledge op-
erator to the language does not substantially change
the complexity of deciding the satisfiability of formu-
las in the language, but this is not the case for com-
mon knowledge. Using standard techniques from PDL
(Propositional Dynamic Logic; cf. [FL],[Pr]), we can
show that when we add common knowledge to the
language, the satisfiability problem for the resulting
logic (whether it is based on T, S4, or S5) is complete
in deterministic exponential time, as long as there at
least two knowers. Thus, adding a common knowledge
operator renders the decision procedure qualitatively
more complex. (Common knowledge does not seem to
be of much interest in the in the case of one knower.
In fact, in the case of S4 and S5, if there is only one
knower, knowledge and common knowledge are iden-
tical.)

We conclude in Section 6 with some discussion
of the appropriateness of the possible-worlds approach
for capturing knowledge and belief, particularly in light
of our results on computational complexity.

Detailed proofs of the theorems stated here, as
well as further discussion of these results, can be found
in the full paper ([HM2]).

2. Logics of knowledge

2.1 Syntax: A logic of any kind needs a langnage.
Although we consider & number of different logics here,
the syntax for all of them is essentially the same. We
wish to reason about a world consisting of s propo-
sitional reality (“nature®) and m agents, creatively
named 1,...,m. QGiven a set of primitive proposi-
tions ® = {P,Q,R,..} and a set of m agents, we
define £, (@) to be the least set of formulas contain-
ing ¢ , closed under =, A, and the modal operators
Ky,...,Km. Thus, if p and ¢ are formulas of £ (®),
then so are ~p, pA g, and K;p, fori = 1,...,m (where
K;p is read “player i knows p"). We use the standard
abbreviations pV g for ~(~pA—g) and p O g for-(pA
-q). The ssze of a formula p in L (®), denoted |p|, is
its length over the alphabet ®U{—, A, (,), K1,-.., Km}.
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2.2 Possible-worlds semantics: Following Hin-
tikka [Hil], Sato [Sa], Moore [Mo], and others, we use
a posaible-worlds semantics to model knowledge. This
provides us with a general framework for our seman-
tical investigations of knowledge and belief. (Every-
thing we say about "knowledge* in this subsection ap-
plies equally well to belief.) The essential idea behind
possible-worlds semantics is that an agent's state of
knowledge corresponds to the extent to which he can
determine what world he is in. In a given world, we
can associate with each agent the set of worlds that,
according to the agent's knowledge, could possibly be
the real world. An agent is then said to know a fact
p exactly if p is true in all the worlds in this set; he
does not know p if there is at least one world that he
considers possible where p does not hold.

Kripke {Kr| introduced Kripke structures as a for-
mal model for a possible-worlds semantics for the modal
logic of neceasity and possibility. A Kripke structure
M is atuple (S, x, Py, ..., Pn), where S in a set of states,
x(s) is a truth assignment to the primitive propositions
of ® for each state s € § (i.e., x(s, P) € {true, false}
for each primitive proposition P €  and state s € §),
and 7; is a binary relation on the states of §, for
t=1,...,m. A Kripke world (or just world ) wis s
pair (M, s), where M = (S,...) is a Kripke structure
and 8 € §. F; in intended to capture the possibility
relation according to player i: {s,¢) € 5 if, in world
(M, #), player i considers (M, t) a possible world.

One of the advantages of Kripke-style aemantics
is that we can view & Kripke structure as a labelled
directed graph, where the nodes are the states of S,
and there is an edge from s to ¢ labelled i exactly
if (s,t) € F.. This graph-theoretic viewpoint will turn
out to be particularly useful in our decision procedures
(see Section 3).

We now formally define the notion of a formula
being true at a world via the relation |= , a binary
relation between worlds and formulas, where w |=p is
read "p is true at u” or “w satisfies p*:

(M, s) = P {for P € @) iff x(s, P) = true

(M,8) l=pAgiff (M,s) [=pand (M,e) [=¢
(M, ) = —piff (M,s) o p

(M,) | Kip iff (M,¢t) Epforallist. (s,t)€ X

The last clause in this definition captures the in-
tuition that player ¢ knows p in world (M, s) exactly
if p is true in all worlds that s conaiders possible.

A formula p is said to be valid (resp. satisfiable)
if w j= p for all worlds w (resp. some world w). We
write |= p if p is valid. Note that p is satisfiable iff —p
is not valid.

The following well-known thearem captures some
of the formal properties of our | :

Theorem 1:
{(a) Allinstances of propositional tautologies are valid.

{b) For ali formulas p,q € L {®) and v = 1,...,m,
the formula [K;p A K;(p D g)] D Kiq is valid.

(¢) Forallformulasp,g€ L (®),if=pand=p D g,
then = g.

(d) For allp € L,,(®) and i =1,...,m,
if |= p then | K;p. ba

2.3 Axiom systems for knowledge: Thecrem 1
tells us that by subacribing to Kripke semantics we are
forced to accept a number of constraints on the type
of notions of knowledge that we can model.,* We now
show that in a precise sense these are the only con-
straints that we are forced to accept by using Kripke
semantica. We do so by defining an axiom system K.,
corresponding to the above constraints, and then prov-
ing that these axioms characterize Kripke worlds.**
Such results are well known (cf. [HC,Sa,Ch]}. We re-
prove them here (using techniques originally due to
Makinson [Ma]) in order to show the close correspon-
dence between the axioms and a particular Kripke
structure which we call the canonical siruciure.

K., consists of two axiom schemaa:

Al All tautologies of the propositional calculus

A2. [KipAKilpo g)] o Kiq, v=1,...,m
and two rules of inference:

Rl. Fromkpandbp 2 ginfert g
(Modus ponens)

R2. From F p infer - K;p (Generalisation)

A formula p is said to be K;,,-provable, denoted
K(ml p, if pis an instance of one of the axiom schemas,
or if p follows from provable formulas by one of the in-
ference rules R1 and R2 (we omit the qualifier K., if
it is clear from context). A formula p is conssatent if —~p
is not provable. A finite set of formulas {p;,...,ps} is
consistent exactly if p) A...A ps is consistent, and an
infinite set of formulas is consistent exactly if all of its
finite subssts are consistent. Of course, a formula or
set of formulas is said to be tnconsistent exactly if it is
not consistent. A set F of formulas is a mazimal con-
sistent setif it is consistent and for all p € (LA (P)\F),
the set F U {p} is inconsistent.

* We discuss the ramifications of this point in Section 6.

**  The name K(m) is inspired by the fact that for one

knower, the system reduces to the well-known modal
logic K.



Using standard techniques of propositional rea-
soning, we can show

Lemma 2: In any axiom system that includes Al
and R1:

(2) every consistent set F can be extended to a max-
imal consistent net,

(b) if F is a maximal consistent set, then for all for-
mulas p, ¢:

(i) either p€ For -pe F,

(i) prge Fifpe Fandge F,

(iii} fpe Fandp D g€ F, then g€ F,

(iv) if p is a valid formula then p € F. b

An axiom system § is sound with respect to a set
of worlds M if every formula provable from § is valid
in M (i.e., is true in every world in M). S is complete
with respect to M if every formula that is valid in M
is provable from §. We think of an axiom system as
characterizing a set of worlds exactly if it provides a
sound and complete axiomatisation of that set.

Theorem 3: K., it a sound and complete axioma~
tization for Kripke worlds,

Proof: Theorem 1 implies that K., is sound with
respect to Kripke worlds. In order to prove complete-
ness, it suffices to show that every consistent formula
is satisfiable. We will do so by constructing a Kripke
structure M¢, which we call the canonical Kripke struc-
ture for K., containing a state sy for each maximal
K my-consistent set V in such a way that (M*°, sy} |=p
for all p € V. Since, by Lemma 2, every consistent set
of formulas is contained in some maximal consistent
set, this suffices. We proceed as follows. Given a set
V of formulas, define V/K; = {p|Kip € V}. Let
M®=(S,%P,..., Pm), where

8 = {ay |V is & maximally consistent set}
true if PeV
w(ov, P} = {fal:e fPEV
Pi={(sv,ew)|V/K: CW}.

We now show, by induction on the structure of p,
that for all V we have (M*,ay) = piff p € V. More
precisely, assuming that the claim holds for all subfor-
mulas of p, we will also show that it holds for p. If
p is a primitive proposition P, this is immediate from
the definition of x{sy, P} above. The cases where p
is & conjunction or a negation are simple and left to
the reader. Assume that p is of the form K;q and that
p € V. Then ¢ € V/K; and, by definition of %, if
{sv ,2w) € 5;, then ¢ € W. By the induction hypoth-
esis, (M®, sw ) |= ¢ for all W such that (av,aw) € A.
By the definition of }=, it follows that (M*, sv) = Kig.
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For the other direction, assume {M*, sv) &= Kq.
It follows that the set (V/K;)U—g is inconsistent. Sup-
pose not. Then by Lemma 2 it would have a max-
imal consistent extension W, and, by construction,
we would have (sy,aw) € F;. By the induction hy-
pothesis we have (M°, sw) = —¢, and so (M*,sy) b=
-K;q, contradicting our original assumption. BSince
(V/K;) U ~¢ is inconsistent, some finite subeet, say
P1,. .-, P, g, tnust be inconsistent. Thus, by propo-
sitional reasoning, we have

FprD{pa2(...(px 2 9)...))

By R2, we have

F&i(pr 2 (pa 3 (---{px > 9)..))

Since a maximal consistent set contains all tautologies,
we must have

Kifpr D2 (pa>...(pw 2 9)...)) EV.
And since p;,...,px € V/K;, we must also have

Kp,...KpyeV.

Now, by repeated applications of axiom A2 and
Lemma 2(b)(iii), we can easily show that K;ge V', as
desired. pa

In the philosophical literature, one finds a great
deal of discussion as to which axioms truly character-
ise knowledge (sce [Len] for a discussion and review).
Some of the ones more commonly considered include:

AS. KipDOop,

the knowledge aziom, which states that only true facts
can be known (this is usually taken as the essential
property distinguishing knowledge from belief),

Ad, Kip > K, K;p, i1=1,...,m,
the positive introspection aziom, which states that an
agent knows what he knows, and

ASB. -Kip 2 Ki~Kip, t=1...,m,
the negative sntrospection azsom, which says that an
agent knows what he does not know.

In the case of a single agent, the system K+ A3 is
classically known as T, T+A4 is known as 84, while
S4+AS5 is known as 55. In the case of m agents, m >
1, we will call these systems T(.,, 84, and 85,
respectively.

Philosophers have spent years trying to determine
which of these systems (if any) best captures knowl-
odge (again, see [Len]). In view of Theorem 1, the best

t=1....,m,
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that can be said is that we are modelling a rather ide-
alised reaaoner, who knows all tautologies and all the
logical consequences of his knowledge. If we take the
classical interpretation of knowledge as true, justified
belief, then an axiom such as A3 seems to be neces-
sary. On the other hand, philosophers have shown that
axiom A5 does not hold with respect to this interpre-
tation ([Len]). However, the S5 axioms do capture an
interesting interpretation of knowledge appropriate for
reasoning about distributed systems (see [HM1] and
Section 6). We continue here with our investigation
of all these logics, deferring further comments on their
appropriateness to Section 6.

Theorem 3 implies that the provable formulas of
K(m) correspond precisely to the formulas that are
valid for Kripke worlds. As Kripke showed [Kr], there
are simple conditions that we can impose on the pos-
sibility relations P; so that the valid formulas of the
resulting worlds are exactly the provable formulas of
T(m), S4(m), and S5, respectively. We will try to
motivate these conditions, but first we need a few def-
initions.

We say that » binary relation P on a set 5 is re-
flezive if (2, 5) € P for all s € S; P is transstive if, for all
st ueS, if (s,¢) € P and (t,u) € P, then {s,u) € P;
P is symmetric if, for all 8, ¢t € S, whenever (s,¢) € P
then (t,2) € P; P is Euclidean if, for all s,t,u€ §,
whenever (s,t) € 7 and (s,u) € P, then (t,u) € P;
finally, P is serial if, for all s € &, there is some ¢ such
that {#,t} € P. A relation that is reflexive, symmetric,
and transitive, is also commonly called an egqusvalence
relation . Some of the relationships between these no-
tions are described by the following lemma (cf. [Ch]):

Lemma 4:

(a) If P is symmetric and transitive, then P is Eu-
clidean.

(b} 7 is symmetric, transitive, and serial iff P is re-
flexive and Euclidean iff 7 is reflexive, symmetric,
and traneitive. b

We say a world (M, ¢) is reflezsve (resp. symmet-
ric, transstive, Euclidean, rt, rot, serial) exactly if all
the possibility relations in M are reflexive (resp. sym-
metric, transitive, Euclidean, reflexive and transitive,
reflexive, symmetric, and transitive, serial).

To see the relationship between these notions and
the axioms described above, consider the canonical
Kripke structure M* defined in Theorem 2. Recall
that (sy,ow ) € P; in M® exactly if V/K; C W, where
V/K; = {p| K;p € V}. Now suppose that all instances

of A3 are true at 8. Then it is ensy to see that
(sv,8v) € P, since V/K; C V. This suggests that A3
corresponds to reflexivity. Indeed, it is easy to check
that A3 is sound in all reflexive worlds. In terms of
the pomsible worlds, if P, is reflexive, then in world w,
player ¢ always considers w to be one of his possible
worlds. Thus, if in world w player s+ knows p, then p
muat bes true in w; ie., K;p D .

Ad forces the possibility relations in the canonical
structure to be transitive. To see this, suppose that
(v, sw), (ow,2x) € F; and that all instances of A4
are true at sv. Then if K;p € V, by A4 we have
K;K.p € V, and by the construction of M*, we have
KipeWand pec X. Thus V/K; C X and (sv,sx) €
#; as desired. In terms of possible worlds, a transitive
posaibility relation says that if in world w, player s
considers w' possible, and if in w' players considers w”
possible, then in world w player 1 will already consider
w" possible.

Similar reasoning shows that axiom A5 forces the
possibility relation in the canonical structure to be
Euclidean. Note that the possibility relation in the
canonical structure is forced to be symmetric by the
axiom

- Kl'-'Kipl

which can be shown to be a consequence of A3 and A5,
This corresponds to the observation of Lemma 4(b)
that a relation that is both reflexive and Euclidean is
also symmetric.*

Arguments essentially identical to those of Theo-
rem 3 can now be used to show:

Theorem 5:

(2) T(m) is & sound and complete axiomatization for
reflexive worlds.

(b) S4,., is a sound and complete axiomatisation for
t worlds.

{¢) 55(s i» a sound and complete axiomatisation for
rst worlds. bt

We close this section with some remarks on Kripke
structures for S5 (i.e., the case of one agent). We de-
fine two worlds (M, s} and (M’,s') to be equivalent,
written (M,s) = (M',#), if, for all formulas p, we
have (M, s) |= p iff (M",¢') Ep.

*

Since Lemma 4(b) says that a relation that is both

reflexive and Euclidean must also be transitive, the
reader may auspect that axiom A4 ia redundant in
S5. Thia indeed ia the caae.



Proposition 6: Suppose M = (8, x,P), where
P is an equivalence relation {so that M is a2 model
of 85), and s € S. Then {M,s) = (M’ s), where
M = (5« P)and 8 = {t|(s,t) € P} (s0 S is the
equivalence class of s), x’ is «x restricted to S, and
P ={{t,t")|¢,¢ € 8').

Proof: By a straightforward induction on the struc-
ture of formulaa. bed

Proposition 6 intuitively says that in determin-
ing the truth of an S5 formula at 2 given state s, we
can restrict our attention to states that are considered
possible at 8. It follows that we can assume without
loss of generality that models of S5 have a particularly
aimple form: M = (S, x, P), where for all s, € §, we
have {s,¢t) € P {and in particular, S5 is a sound and
complete axiomatisation for worlds (M, s) where M
has this form). Note that for such models, we do not
even have to mention the P relation; we can simply
assume that all states are related to each other via P.
However, these remarks do not held for 85, if m > 1.

3. Deciding the satisflability of formulas

In this section we examine the inherent difficulty
of determining whether a formula in a given logic is
satisfiable. Of course, the problem of determining va-
lidity is a closely related one, since p is valid iff —p is
not satisfiable. We consider this problem using tools
from the computational complexity. We briefly review
the necessary notions here; the reader should consult
[HU] for further details.

The cost of solving a given problem is usually
measured by the amount of time and or space (mem-
ory) required to compute the solution, as a function
of the input sise. Since the inputs we consider in this
section are formulas, we will typically be interested in
how difficult it is to determine if a formula p is satisfi-
able or valid as a function of |p|. We are usually most
interested in determénistic computations, where at any
point in the computation, the next step of a compu-
tation is uniquely determined. However, thinking in
terms nondelerministic computations — ones where
the program may “guess® which of a finite number of
steps to take — has been very helpful in classifying
the intrinsic difficulty of a number of problems. The
complexity clusses we will be most concerned with here
are P, PSPACE , EXP, and NP: the problems that are
solvable in deterministic polynomial time, determinis-
tic polynomial space, deterministic exponential time,
and nondeterministic polynomial time, respectively. It
is not hard to show that P C NP C PSPACE C EXP;
it is also known that P % EXP, While it ia conjectured
that all the other subset relations are strict, proving
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this remains elusive. The P = NP problem is cur-
rently considered the most important open problem in
the field of computational complexity.

Roughly apeaking, a problem A is said to be hard
with respect to a complexity class C (eg. NP-hard,
PSPACE-hard, etc.) if every problem in £ can be ef-
fectively reduced to A; i.e., for any problem B in C, an
algorithm for B can be easily obtained from an algo-
rithm for A. A problem is complete with respect to a
complexity class C if it is in { and is C-hard. A well-
known result due to Cook [Co| shows that the problem
of determining whether a formula of propositional logic
is satisfiable is NP-complete. In particular, this means
that if we could find a polynomial-time algorithm for
deciding satisfiability for propesitional logic, we would
also have polynomial-time algorithms for ali other NP
problems. This is considered highly unlikely.

Since propositional logic is a sublanguage of all
the logics we have considered, the satisfiability prob-
lem for all of them is NP-hard. Ladner showed that,
at least for S5, it is no harder.

Theorem 7 ([La]): The problem of deciding 55-satis-
fability is NP-complete.

The key step in the proof of Theorem 7 lies in
showing that satisfiable 55 formulas can be satisfied in
very small worlds:

Proposition 8 {[La]): An S5 formula p is satisfiable
iff it is satisfiable in a world (M, s) where M has less
than |p| states.

Proof: Assume that p is satisfiable, and let (A, s) |= p.
By Proposition 6 and the remarks following it, we can
sssume that M = (S, 7, P), where (t,¢') € P for all
t,# € 8. Let F be the set of subformulas of p of
the form Kg for which (M, s) |= ~Kg; i.e., F is the
set of subformulas of p that have the form K¢ and
are false at state 5. For each formula K¢ € F, there
must be » state 8, € § such that (M, s,;) &= —g. Let
M' = (8.« P'), where §' = {s}U{s|qE F}, ¥ is
the restriction of # to §', and P’ = {(¢, ') |t,¢' € §'}.
Note that |5’} < |p|. We now show that for all states
¢ € §' and for all subformulas ¢ of p (including p
itaelf), (M,s') = ¢ if (M',4') E q. As usual, we
proceed by induction on the structure of ¢. The only
nontrivial case is when ¢ is of the form K¢'. Sup-
pose ' € §'. I {M,s') | K¢, then (M,¢) E ¢
for all t € S, so, in particular, (M,t) k= ¢ for all
t € §'. By induction hypothesis, (M',t) j= ¢ for all
te 5, 0 (M,d) E K¢. And if (M,s) | K¢,
then (M,s') F -K¢. Since M is & model of 85,
we have (M,s') F K~K¢, so that (M,s) F ~K¢
(since (¢',8) € P by assumption}. But then it fol-
lows that K¢’ € F, and (M, s¢) = ~¢'. By construc-
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tion, 8y € §', and by induction hypothesis, we also
have {M’,2¢:) b= —¢'. Since (o’,8¢) € P', we have
(M',¢'} = ~K¢', and 0 (M',s') £ Kq' as desired.
Since s € §' and (M, s) = p by assumption, we also
have (M', 4} = p. ba

Proof of Theorem 7: Because the propositional
calculus is part of 85, Cook’s Theorem implies that
deciding 85 satisfiability is NP-hard. We now give
an NP algorithm for deciding S5 satisfiability, Intu-
itively, given a formula p, we simply guess » world
(M, s) where M has at most |p| states, and verify that
this world does satisfy p. More formally, we proceed
as follows.

Given a formula p, where |p| = n, we nondeter-
ministically guess a Kripke structure M = (5, x, P),
where S is a set of k < n states, {s,2) € P for all
st €8, and for all s € § and primitive propositions
P not appesring in p, x(s, P) = true. (Note that the
only “guessing” that enters here is in the choice of k,
and the truth value x{s, P) for primitive propositions
P that sppear in p in the k states in §.) Since at most
n primitive propositions appear in p, guessing such
a Kripke structure can be done in nondeterministic
time O(n?) (i.e., < ¢n? for some constant c). Next, we
check whether p is satisfied at some state s € §. This
can easily be done deterministically in time O(n?) by
simply computing, by induction on structure, whether
(M, a) [ ¢ for each state 2 € § and each subformula
g of p. We leave details to the reader. By Proposi-
tion 8, if p i» satisfiable, one of our guesses is bound
to be right. (Of course, if p is not satisfiable, no guess
will be right.) Thus we have a nondeterministic O(n?)
algorithm for deciding if p ia satisfiable. (2

As the following result shows, this technique will
not work for deciding satisfiability for the other logics
we have been considering.

Proposition 9: There is a constant ¢ > 0 such that
for all n > 1, there is a formula p, with |[p,| = n that
is 855y~ (resp. 84-, T-, K-) satiafiable such that p, is
satisfiable only in worlds with > 2vV®™ (resp. > 2°°,
2 2V, > 2VOR) gtates. ba

In fact, as Ladner shows:

Theorem 10 ([La]): The problem of deciding the
satisfiability of formulas for the logics K, T, snd Si is
PSPACE-complete. b

It is sasy to extend Ladner’s techniques to show
that for all m, K, T(m;, snd 84, are PSPACE
complete. Interestingly, although S5 is NP.complete,
was can show that 85, for m > 1, is also PSPACE-
complete. Thus, for 5, having more than one knower
bumps the complexity of deciding satisflability up from

NP-.complete to PSPACE-complate. The upper bound
for 85, is proved wsing techniques similar to Lad-
ner's. The lower bound follows from the following ob-
servation (which is also used in the proof of Proposi-
tion 9):

Lemma 11: Let p € £,,(®) (i.e., only one modal
operator, K, appears in p). Let r(p) be the £, (%)
formula that results from replacing all occurrences of
K in p by K, K;. Then p is T-satisfiable iff r(p) is
85,;-satisfiable (iff r(p) is S4,y,-satisfiable).

An a consequence, we have:

Theorem 12: The problem of deciding the satisfia-
bility of formulas in K.y, T(m;, and 84,., is PSPACE-
complete. The problem of deciding the satisfiability of
formulas in 85, for m > 2 in also PSPACE-complete.
b

The algorithms that prove that the logics are all
in PSPACE are based on tableau techniques and de-
pend crucially on the following observation. Define a
structure M = (S, 7, Py,..., Pm) to be treehke if ita
graph forms a tree, with no backedges. The r-closure
of M is the structure that results when the possibil-
ity relations Py,..., Pm are replaced by their reflexive
closures. We can similarly define the ri-closure and
rat-closure of & structure M.

Proposition 18: A K., (resp. Tim), S4(m), S5(m))
formula p is satisfisble iff it is satisfiable in a world
(M, s) where M is a treelike structure (respectively,
the r-closure, rt-closure, rst-closure of a treelike struc-
ture) of depth < |p|. bt

Using Proposition 13, we construct an algorithm
that checks if p in satisfiable by constructing the appro-
priate treelike structure for p depth first, in & space-
efficient manner. See [HM2] for details.

4. Belief

A number of recent papers (for example [Lev1])
have pointed out that the knowledge represented in
a knowledge base is typically not required to be true.
Thus the propositional attitude that philosophers have
called belief seems more appropriate than knowledge
for formalising the reasoning and deduction of a knowl-
edge base. Since knowledge bases typically are as-
sumed to have introspective powers, and so know what
they know and do not know, this amounts to dropping
A3 from the S5 axioms. However, since it is also as-
sumed that knowledge bases do not have inconsistent
beliefs, we must add:

AG6. -K(false).

(Note that A6 follows from A3 by propositional rea-
soning, but is independent of the rest of the axioms if



we drop A3.) A6 is also called the axiom D, and the
system consisting of A1, A2, A4, A5, A6, R1, and R2
is called KD48u; (cf. [Ck]) or weak S5,,,,.

It now remains to find a model for KD45m). In
terms of possible worlds, the semantic impact of A6 is
simply to say that the possibility relations must be se-
rial. Since we have already argued that A3 corresponds
to reflexivity, it would seem that we can get a model of
KD45m) simply by considering worlds where the possi-
bility relation(s) are symmetric, transitive, and serial,
although not necessarily reflexive. Unfortunately, this
won't work; as Lemma 4 shows, any binary relation
which is symmetric, transitive, and serial, must also
be reflexive.

In the case of one knower, there are well-known
ways to get around this problem: we consider a struc-
ture where one distinguished state describes what is
true in the "real" world, and a set of states corre-
sponds to the worlds that the agent thinks possible (cf.
[Lev1]). This is analogous to the case for S5, where as
observed in the remarks after Proposition 6, we can,
without loss of generality, take a model to be a set of
states (all related to each other by the possibility rela-
tion P), one of which will be the real world. Thus, in
the case of one knower, the difference between knowl-
edge and belief is that, in the case of belief, the real
world is not necessarily one of the worlds the agent
considers possible. But this approach does not extend
to the many-knower case in any obvious way.

The solution to our problem is already implicit
in our discussion in Section 2. Recall that axiom A5
corresponds to the possibility relation being Euclidean
rather than symmetric. To understand the intuition
behind Euclidean relations, observe that for a given
state a, if P is Euclidean then the restricton of P to
{t|{s,t) € P} is reflexive, symmetric, and transitive,
i.e., an equivalence relation. Thus, for a Euclidean
relation, the worlds that an agent thinks are possible
form an equivalence relation, but do not necessarily
include the real world. The fact that the relation is
serial means that an agent always thinks some worlds
are possible. Applying exactly the same techniques as
those used in Theorem 5 we can now show (cf. [FV]):

Theorem 14: KD45,, is a sound and complete ax-

iomatisation for Euclidean, transitive, and serial worlds.

Similarly, using the same techniques as in Theo-
rems 7 and 12, we can show:

Theorem 15: The problem of deciding the satisfia-
bility of KD45 formulas is NP-complete. For m Z 2,
the problem of deciding the satisfiability of KD45
formulas is PSPACEcomplete.
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5. Incorporating Common Knowledge and
Implicit Knowledge

In a number of situations it is useful to be able
to reason about the state of knowledge of a group of
agents, not just that of an individual agent. For ex-
ample, we may want to reason about facts that are
part of a group's "culture": not only does everyone
know them, but everyone knows that everyone knows
them, and everyone knows that everyone knows that
everyone knows, and so on. These facts are said to be
common knowledge . Put another way, these are es-
sentially the facts that "any fool knows" (cf. [MSHI]).

To capture these notions, we extend the language
L (®) by adding two new operators; E and O. Thus,
if p is a formula, then so are Ep (“everyone knows p”)
and Cp (*p is common knowledge®). We view Ep as an
abbreviation for Ky pA.. A Knp, while Op is intended
to represent the infinite conjunction Ep A EEp A ...
Note that if m = 1 then Ep = Kp; thus common
knowledge becomes interesting only if there are at loast
two agents.

We can capture the intended meaning of these
constructs quite straightforwardly in our semantics.
Given a structure M = (5, x, F1,..., Pm}, we define a
state £ to be reachable from s if there is some sequence
Ugy. . - Un Of states in & such that s = ug, t = u,,
and for all € = 1,...,n — 1, there iz some 5 such that
(%5, wi41) € P;. Then we have

(M, s) = Ep iff (M,t) |= p for all ¢ such that
(n,)ePU...UPp,
and

(M, s) | Cp iff (M, t) = p for all t reachable from .

Somewhat surprisingly, even though C is an ®in-
finitary” operator, we can give a complete axiomati-
sation for it. Consider the following set of axioms
(cf. [MSHI,Sa,Leh]):

AT. Ep=KipA...AKnp

A8. Cpop

A9. COp D ECp

Al10. [OpAC(p D ¢)] D Oq

All. (p D Ep} > (p > Cp),
and the rule of inference

R3. From I p infer - Cp.
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Let Kc(,.) (mp- TC(.‘J, 340(,.), SSC{-)) be the
system that results from adding A7-A11 and R3 to the
axioms for Kqm; (resp. Timy, S4(mys S5¢m)-

Theorem 16: For the language of common knowl-
edge, KC(m) (resp. TC(m), S4Cm), S50(m)) is a sound
and complete axiomatisation for Kripke worlds (resp.
reflexive worlds, rt worlds, rst worlds). -]

The common knowledge operator C adds a great
deal of expressive power to the language. We can now
make universal statements about what is true at all
reachable worlds in the structure. One of the conse-
quences of this is that the analogues to Theorem 12
and Proposition 13 no longer hold. In fact we have:

Proposition 17: There is a constant € > 0 such that
foralln > 2, there is aformula p, with [p..| = niihat is
KC- (resp. TC-, 84Cy)-, 85Cy)-) satisfiable, but is not
satisfiable in any world (M, a) where M is a treelike
structure (resp. reflexive closure, rt closure, rst closure
of a treelike structure) of depth « 2ven, ]

Theorem 18: For m 2 2, the problem of decid-
ing the satisfiability of KC(m) (resp. TC(m), S4C(m),

85C(m,} formulas is complete for exponential time. =

The proof of the exponential-time lower bound
follows from techniques similar to those used in [FL]
to prove a similar bound for PDL. The upper bound
can be obtained using techniques of [Pr] or [EH]. In
fact, the techniques of [EH] allow us to combine the
proof of the correctness of the algorithm with a proof
of the completeness of the appropriate axiom system.
Further details can be found in [HM2].

Besides the knowledge common to a group of agents,

it is also often desirable to be able to reason about
the knowledge that is implicit in the group, i.e., what
someone who could combine the knowledge of all of
the agents in the group would know.* Thus, for exam-
ple, if Alice knows p and Bob knows p 3 g, then to-
gether they have implicit knowledge of q, even though
it might be the case that neither of them individually
knows q. Whereas common knowledge, in McCarthy's
analogy, essentially corresponds to what *any fool*
knows, implicit knowledge corresponds to what a (fic-
titious) "wise man" (one that knows exactly what each
individual agent knows) would know. Implicit knowl-
edge is a useful notion in describing the total knowl-
edge available to a group of agents in a distributed
* Note that Levesque [Lev2] uses the term "implicit be-
lief" in a somewhat different sense than we do here.
In his case, an agent's "explicit" beliefs are not de-
ductively closed, and the agent's "implicit* beliefs are
roughly the deductive closure of his explicit beliefs.

environment {cf. [HM1]). Intuitively, & group has im-
plicit knowledge of a fact if the knowledge of that fact
is distributed among the members of a group. In a
closed system, a group of cooperating agents cannot
come to know a fact if it is not already implicit knowl-
odge

In order to capture the notion of implicit knowl-
edge in our language, we add a new modal opera-
tor I that stands for *implicit knowledge®. We can
then capture implicit knowledge semantically as fol-
lows. Given a Kripke structure M = (S, x, P1,..., P},
we define

(M,s) | Ip iff (M,t) | p for all ¢ such that
(s,6)ePn...NPn.

The intuition behind this definition is that if all
the agents could “put their knowledge together®, the
only worlds they would consider possible are precisely
those in the intersection of the sets of worlda that each
one individually considers possible. Put another way,
if some agent knows that a world ¢ is not the real world,
then the *wise man” should know this too. Thus the
wise man would only consider possible the worlds that
all agents considar possible. Note that in the case of a
single agent (i.e., m = 1}, we have Ip = Kp; implicit
knowledge just reduces to knowledge.

How can we be sure that this definition really does
capture our intuitions regarding implicit knowledge?
One way is to find a complete axiomatisation. If we
view [p as saying “the wise man knows p*, one axiom
that suggests itself is

Al12. Kp D Ip,

this axiom is easily seen to be sound with respect to the
semantics given for . We also expect the [ operator
to act like & knowledge operator, and indeed it is easy
to see that it satisfies the axiom schema A2:

izll"'!m;

[fpAl(p D q)] D Iq.

Moreover, if the P, relations are reflexive, so that knowl-
edge satisfies A3, then so does implicit knowledge; sim-
ilar remarks hold for A4 and A5. Let KL, (resp.
T m)s S4lim), S51(,n)) be the system that results from
adding axiom A12 to the axiom system K., (resp.
T(m)> S4(m), 55(m;) and sssuming that I also satisfies
axiom schemas A2, A3, A4, and A5 (where applica-
ble). Then we have

Theorem 19: For the language of implicit knowl-
edge withm > 2 knowerl, KI[-) (mp. TI(_), S4I¢..),
S5I;,.,) is & sound and complete axiomatisation for
Kripke worlds (resp. reflexive worlds, rt worlds, rst
worlds). b



We remark that if m = 1, we can get a com-
plete axiomatization for implicit knowledge simply by
adding the axiom schema Ip = Kp to the axioms for
knowledge.

In the discussion above, we also viewed implicit
knowledge as the knowledge the agents would have by
pooling their individual knowledge together. This sug-
gests the following rule of inference:

R4. From
infer

FlanA...Agm) D p
F (Kiqu A-.. A Kmam) D Ip.

Again, this inference rule is easily seen to be sound
with respect to the semantics for | given above. Intu-
itively it says that if g = g+ A ... A g implies p, and
if each of the agents knows a "part" of q (in particu-
lar, agent i knows q;), then together they have implicit
knowledge of q, and thus implicit knowledge of p.

It is easy to check that this inference rule is deriv-
able from axiom A2, A12, and propositional reasoning.
Conversely, A12 is derivable from R4 and the other ax-
ioms for knowledge. Thus, we can replace A12 by R4
and get another complete axiomatization for implicit
knowledge. We omit details here. Finally, we observe
that the addition of the | operator does not essentially
affect the complexity of the language. We can extend
the techniques of Theorem 12 to show:

Theorem 20: For m 2> 2, the problem of deciding
the satisfiability of Klm (resp. T ), S41 ), S5m))
formulas is PS PA CIS-complete.

6. Conclusions

We have investigated various classical modal log-
ics of knowledge and belief. It is reasonable at this
point to consider to what extent these logics really do
capture our intuitive notions. Our feeling in this re-
gard is that there are several useful notions of knowl-
edge and belief; some of them are captured by these
logics, others are not. For example, consider a proces-
sor in a given distributed system that has received a
certain set of messages (or a robot that has observed
a certain set of facts). There are a number of global
states of the system ("possible worlds*) that are con-
sistent with the processor having received these mes-
sages (or the robot having made these observations).
We can say that the processor knows p in this case if
p is true in all these global states. Note that this is an
"external" interpretation of knowledge, that does not
require a processor to perform any reasoning to obtain
knowledge, or even to be "aware" of this knowledge.
This interpretation of knowledge precisely satisfies the
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S5(m) axioms, and turns out to be quite useful in prac-
tice (see [HMI] for further discussion).

When it comes to formalizing the reasoning of a
knowledge base or of humans, computational complex-
ity must be taken into account. We cannot expect
a program to carry out exponential-time algorithms,
much less a human! On the other hand, we must be
careful in interpreting the lower bounds on complexity
we have presented in the previous sections. These are
worst-case results, and there is no reason to believe
that most cases of interest should act like the worst
case. Indeed, the evidence suggests that just the op-
posite is true. The complexity of deciding formulas
that humans are interested in tends to be much better
than the worst-case analysis would indicate. We have
noted that for one-knower S5 and KD45, the decision
procedure for satisfiability of formulas is NP-complete,
just as it is for propositional logic. Resolution methods
have proved to be quite efficient in practice for propo-
sitional logic, and it seems that similar techniques can
also be applied successfully to S5 and KD45. And the
fact that there are successful practical theorem-provers
for linear-time temporal logic, a modal logic whose sat-
isfiability problem is PSPACEcomplete, suggests that
this is a feasible task even for the many-knower ver-
sions of the logics we have been considering.

These observations suggest that the logics we have
been considering may provide reasonable approxima-
tions to the reasoning carried out by a knowledge base,
but they still do not seem realistic models for hu-
man reasoning. Humans simply do not seem to be
logically omniscient [Hi2], in the sense of Theorem 1:
they do not know all tautologies, nor is their knowl-
edge closed under deduction (i.e., it does not satisfy
[Kip AKi{p 2 ¢)] O Kig). A number of attempts
have been made to modify the possible-worlds frame-
work to provide a more realistic semantic model of hu-
man reasoning. Most of these attempts have involved
either allowing non-classical "impossible" worlds in ad-
dition to the regular possible worlds [Gr,Ra], using a
non-classical truth assignment [Lev2,FH] or enriching
the possible worlds with a syntactic "awareness* func-
tion [FH]. While none of these attempts appears as
yet to provide the definitive solution, they do suggest
that there is sufficient flexibility in the possible-worlds
approach to make it worth pursuing.
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