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The animal knows, of course. But it certainly does not know that it knows.

Abstract: Several new logics for belief and knowl-
edge are introduced and studied, all of which have
the property that agents are not logically omniscient.
In particular, in these logics, the set of beliefs of
an agent does not necessarily contain all valid for-
mulas. Thus, these logics are more suitable than
traditional logics for modelling beliefs of humans
(or machines) with limited reasoning capabilities.
Our first logic is essentially an extension of
Levesque's logic of implicit and explicit belief, where
we extend to allow multiple agents and higher-level
belief (i.e., beliefs about beliefs). Our second logic
deals explicitly with "awareness", where, roughly
speaking, it is necessary to be aware of a concept
before one can have beliefs about it. Our third logic
gives a model of "local reasoning'*, where an agent
is viewed as a "society of minds", each with its
own cluster of beliefs, which may contradict each
other.

1. Introduction

As has been frequently pointed out in the liter-
ature (see, for example, [Hi]), possible-worlds se-
mantics for knowledge and belief do not seem ap-
propriate for modelling human reasoning since they
suffer from the problem of what Hintikka calls
logical omniscience. In particular, this means that
agents are assumed to be so intelligent that they
must know all valid formulas, and that their knowl-
edge is closed under implication, so that if an agent
knows p, and knows that p implies q; then the agent
must also know q.

Unfortunately, in real life people are certainly
not omniscient! Indeed, possible-world advocates
have always stressed that this style of semantics
assumes an "ideal" rational reasoner, with infinite
computational powers. But for many applications,
one would like a logic that provides a more realistic
representation of human reasoning.

Teilhard de Chardin

Various attempts to deal with this problem have
been proposed in the literature. One approach is
essentially syntactic: an agent's beliefs are just de-
scribed by a set of formulas, not necessarily closed
under implication ([Eb,MH]), or by the logical con-
sequences of a set of formulas obtained by using an
incomplete set of deduction rules ([Ko]). Another
approach has been to augment possible worlds by
non-classical "impossible" worlds, where the custom-
ary rules of logic do not hold (see, for example,
[Cr,Ra,RB]). The syntactic approach lacks the el-
egance and intuitive appeal of the semantic approach.
However, the semantic rules used to assign truth
values to the logical connectives in the impossible
worlds approach have tended to be nonintuitive, and
it is not clear to what extent this approach has been
successful in truly capturing our intuitions about
knowledge and belief.

Recently, Levesque [Lev1] has attempted to give
an intuitively plausible semantic account of explicit
and implicit belief (where an agent's implicit beliefs
include the logical consequences of his explicit be-
lief), essentially by taking partial worlds and a three-
valued truth function rather than classical two-valued
logic. While we have a number of philosophical
and technical criticisms of Levesque's approach
(these are detailed in the next section), it seems to
us to be in the right spirit.

Part of the reason that previous semantic attempts
to deal with the problem of logical omniscience have
failed is that they have not taken into account the
fact that it stems from a number of different sources.
Among these are:

1. Lack of awareness. How can someone say that
he knows or doesn't know about p if p is a
concept he is completely unaware of? One can
imagine the puzzled frown on a Bantu tribes-
man's face when asked if he knows that personal
computer prices are going down! The animal
(in the quotation at the beginning of the paper)
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does not know that it knows exactly because
it is (presumably) not aware of its knowledge.
Similarly, a sentence such as "You're so dumb,
you don't even that you don't know p!" is
perhaps best understood as saying "You're not
even aware that you don't know p".

2. People are resource-bounded: they simply lack
the computational resources to deduce all the
logical consequences of their knowledge (we
still don't know whether Fermat's last theorem
is true).

3. People don't always know the relevant rules.
As pointed out by Konolige [Ko], a student may
not know which value of x satisfies the equation
x +a = b simply because he doesn't know the
rule of subtracting equal quantities from both
sides.

4. People don't focus on all issues simultaneously.
Thus, when we say "a believes p", we more
properly mean that in a certain frame of mind
(when a is focussing on the issues that involve
p), it is the case that a believes p. Even if a
does perfect reasoning with respect to the limited
number of issues on which he is focussing in
any given frame of mind, he may not put his
conclusions together. Indeed, although in each
frame of mind person a may be consistent, the
conclusions a draws in different frames of mind
may be inconsistent.

In this paper we present a number of different
approaches to modelling lack of logical omniscience.
These approaches can be viewed as attempting to
model different causes for the lack of omniscience,
as suggested by the discussion above. Our first
approach is essentially an extension of Levesque's
[Levi] to the multi-agent case, which in addition
avoids some of the problems we see in Levesque's
approach. This approach is one that attempts to
deal with awareness ((1) above). Our second ap-
proach combines the possible-worlds framework with
a syntactic awareness function; it seems to be more
appropriate for dealing with resource-bounded rea-
soning, which has a strongly syntactic component.
By adding time into the picture, we can extend the
second approach to one that can capture how knowl-
edge is acquired over time, perhaps through the use
of a particular (possibly incomplete) set of deduction
rules as in [Ko]. Finally, we present an approach
that could be called the society-of-minds approach
[Mi,Bl,Do], which attempts to capture the type of
local reasoning discussed in (4) above (a similar idea
has been independently suggested by a number of
authors, including Levesque [Lev2], Stalnaker [St],
and Zadrozny [Za]). The second and third approaches
can easily be combined to give a semantics which
captures both awareness and local reasoning.

2 Levesque’s Lopic of Implicit and Explicit Beliaf

Before we describe our models for knowledge
and belief, we briefly review Levesque's logic of
implicit and explicit belief, and discuss our criticisms
of it. (We take the liberty of slightly changing
Levesque’s notation, 1o make it more consistent with
our later development.)

The formulas of the language considered by
Levesque are formed in the obvious way [rom z set
@ of primitive propositions, using the standard con-
nectives ~ and A, as well as two modal operators
B and L (standing for explicit belief and implicir belief
respectively; an agent's implicit beliefs include all
the logical consequences of his explicit beliefs).
However, Levesque restricts the language so that no
B or L appears within the scope of another, Thus
if ¢ and ¢ are formulas, then so are ~¢ and p A,
if @ is propositional (does not contain B or L) then
By and Lo are also formulas. Of course, Boolean
connectives snch as VvV and = are defined in terms
of ~ and A as usual.

A model of implicit and expiicit belief is a tuple
M=(5,8TF), where § is a set of (primitive}
Siuations, @& is a subset of § (the situations that
could be the actual ones according to what is be-
lieved), and T and F are functions from & (the set
of primitive propositions) to subsets of §. Intuitively,
T{p) consists of all sinations that support the truth
of p, while F(p) consists of all situations that suppori
the falsity of p.

An incoherent situation s is one that is an element
of T{p) N F{p) for some primitive propasition p. Thus
an incoherent situation supports bath the truth and
falsity of some primitive proposition. A complete
situation (called a possible world in [Lev1]) is one
that supports either the truth or falsity of every
primitive proposition and is not incoherent (ie., &
is 2 member of exactly one of T(p) and F(p) for
each primitive proposition p). A situation s i com-
patible with a situation s’ if 5 and &' agree wherever
g is defined; ie. if se T(p) then &' e T(p), and if
2 € F(p) then ¢’ ¢ F(p), for each primitive proposition
p- Let &8 consist of all complete situations in S
compatible with some situation in &2

We can now define the support relations =y and
=7 between situations and formulas. Intuitively,
M,s = ¢ when situation s in model Af supports the
truth of ¢, while M,s =y o when s supports the
falsity of @. The definition is:

M,s m7p, where p is a primitive proposition, if

se T(p).
M.s =p p, where p it a primitive proposition, if

s« F(p).
Mslyr~pif M.skgo



M.sp~p il Mysro.

MskEroiAp if MskRro, and M.s =7 ¢
MskRroiAg il MisEroy O Mys fer o).

MsmrBp il Miabroforallte &
M,s Fp By il M,s frBe.

Mslkrloif Mtmrplorallre @ .
MskpLloil MshrLe

We say that the formula ¢ is rue, or i5 sarisfied,
at situation s if M,s = ¢ holds. Levesque defines
a formula ¢ to be walid, written k¢, if @ is true at
s for all models A = (5,8, T,F), and all complete
gituations s e §.

As Levesque points out, it is easy to see that
with this semantics |=(By = Lg}, i.e, explicit belief
implies implicit belief. It is alsp easy to see that
implicit beliel is closed under implication and that
all valid formulas are implicitly believed. Thus we
have

If | 7 (where ¢ is propositional), then FLg, and

k(Lo AL(p> ) Ly

Explicit belief does not seem to suffer from the
problems of logical omniscience. Before we go on,
let us discuss what we mean by “logical omniscience'.
An agent is logically omniscient il whenever he believes
all of the formulas in a set £, and X logically implies
the formula ¢, then the agent also beiieves p. There
are three cases of special interest: (1) what we have
been calling closure under implication (namely, when-
ever both ¢ and ¢y are believed, then ¢ is be-
lieved), (2) closure under valid implication (if ¢ ¢ is
valid, and if ¢ is believed, then ¢ is belicved), and
(3) belief of valid formulas (if ¢ is valid, then ¢ is
believed). Now explicit belief has none of these
three properties. Thus, explicit beliels are not closed
under implication (for example, BpA Blp=q) A ~Bg
is satisfiable), ner under valid implication (although
P (p A (gV~q)) is valid, BpA ~B(p A (gV~q)) is sat-
isfiable), and walid formulas are not necessarily be-
lieved (~B(pv~p) is satisfiable). Moreover, it is
2150 possible to explicitly believe unsatisfiable state-
ments (Bp A B~p is satisfiable, as, for that muatter,
is B(p A ~p)).

A closer examination of Levesque’s semantics
shows that the lack of closure under implication
and the possibility of believing unsatisfiable state-
ments both stem from the presence of incoherent
gsituations. Indeed, as Levesque points out in [Lev2},
while

By AB(g»y)» By
is not a valid formula, it is easy 1o check that

Be AB(pw ¢} » BWV(pA~9))
ir valid. Thus, either the agent's knowledge is closed
under implication, or else some situation he believes

R. Fagin and J. Halpern

possible is  incoherent. Similarly, since
By A B(~¢) » B(p A ~¢), inconsistent beliefs are
only possible if every situation the agent belicves
possible is incoherent. However, to the extent that
& 15 viewed as the set of situations that the agent
considers possible, it seems unreasonable to allow
incoherent situations. It is hard to imagine an agent
that would consider an incoherent situation possible.
As Levesque notes in [Lev2], there is a big difference
between believing both p and -p, and believing
pA~p.

On the other hand, an agent's lack of knowledge
of valid formulas is not due 10 incoherent situations,
but is rather due to the Jack of “awareness” on the
part of the ageni of some primitive propositions;
similar reasons hold for the lack of closure under
valid implication. Let us say that an agent is aware
of a primitive proposition p, which we abhreviate
Ap, if B(pv~p) holds. In some of the following
discussion, we shall use the word “aware” both in
the precise mathematical sense just defined, and in
the more usual English sense, since our mathematical
notion of “awarcness” does seem to model fairly
well the English notion. We shall lzter mention
other possible interpretations {or the notion of aware-
ness. Although not every valid sentence is believed,
we do have the following:

Propesition 2.1. Ler ¢ be a valid propositional formula,
and let py, ..., px be all the primitive propositions that appear
in . Then m(A(p) A... AA(p)) »B(p).

Intuitively, Proposition 2.1 says that, you believe
a valid formula provided that you are aware of all
primitive propositions that azppear in {t. This sug-
gests that Levesque's semantics may be appropriate
for capturing the lack of logical omniscience that
arises through lack of awareness, but not for cap-
turing the type that arises due to lack of computa-
tional resources. There may well be a very compli-
cated formula whose truth is hard to figure out,
even if you are aware of all the primitive propositicns
thai appear in it.

We have a number of other criticisms, both phil-
osophical and technical, of Levesque’s logic:

1. Although truth (i.e. the |=r reiation) is defined
for all situations, only complete situations are
considered when checking for validity. This
means that there are “valid" formulas ¢ of
Levesque's logic (for example, pV~p) such that
M, b1 o for some situation 5. While restricting
10 complete situations ensures that all
propositionally valid formulas continuve to be
valid in Levesque’s logic, it seems inconsistent
with the philosophy of looking at situations.

2. As umg] with non-Clamsical worlds, while the
intuitions behind = seem fairly clear for prim-
itive propositions, they are not so clear for the
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propositional connectives. For example, suppose
that the agent is unaware of the primitive prop-
osition p, so that neither M, s bz p nor M,s =g p
hold. Thus, by the semantic definitions given
above, M.s =7 (p= p) does not hold either. Yet
we can still imagine an agent that is unaware
of p yet but is aware of some propositional
tautologies, in particular ones like p=p. It is
interesting to note that in the classical three-
valued logic of Lukasiewicz {Lu], # is usually
taken to be a primitive along with A and ~,
and the semantics is defined so that p=p is a
tautology, even though pwv~pg is not. Even
though Levesque's semantics could be redefined
in this way, the question of motivating the
semantics of the connectives still remains.

3. As Vardi observes [Va], although an agent in
Levesque's model does not know all the logical
consequences of his beliefs (if we understand
"logical consequence" to mean consequence of
classical propositional logic), it follows from
Levesque's results [Lev1] that agents in
Levesque's logic are perfect reasoners in rele-
vance logic [AB]. Unfortunately, it seems no
more clear that people can do perfect reasoning
in relevance logic than that they can do perfect
reasoning in classical logic!

Besides the criticisms mentioned above, the cur-
rent presentation of Levesque's logic suffers from
another serious drawback: namely, it deals with only
depth-one formulas and with only one agent. But
a viable logic of knowledge or belief should be able
to capture - within the logic! - meta-reasoning about
one's own beliefs and reasoning about other agents'
beliefs. Meta-reasoning is crucial for planning and
goal-directed behavior, since one has to reason about
the knowledge that one has and needs to acquire.
And a knowledge representation utility that does
not have certain information may need to reason
about where that information is located, and thus
about the knowledge of other systems. Such rea-
soning can quickly get quite complicated, and it is
not immediately obvious how to extend Levesque's
model to deal with it.

In the next three sections we present three other
approaches to dealing with the problem of logical

omniscience, each of which attempts to solve aspects
of the problem. All of them deal with the multi-agent
case, and are presented in a Kripke-style possible-
worlds framework.  Kripke-style structures were
chosen because of their familiarity to most readers;
we could just as well have used the modal structures
framework of [FHV,FV].

3. A logic of awareness

The first logic we consider, a Jogic to reason
about awareness, is essentially an extension of
Levesque's logic (1o allow multiple agents and nested
beliefs) that dispenses with both partial and inco-
herent situations. Formally, we proceed as follows.
Since we wish to deal with many agents, we fix a
set of agents (or players) 1,...,r and instead of a
single B and I, we allow operators B, ..., B,. L1, ... L,.
We allow arbitrary nesting of the B's and L's in
formulas. A Kripke siructure for awareness is a tuple
M= (S 7.uf),.. of, 8, 8) where § i5s a set
of sates, w{s, *) is a truth assignment to the primitive
propositions for each state se S (ie,
(s, p) € {true, false} for each pe @), f, associates
with each state & a s¢t of primitive propositiony
{intuitively, these are the primitive propositions of
which player j is aware at state 3), and &, is a
binary relation over § which is transitive, Euclidean,
and serial, for each player i.! For convenience, we
also assume that fafse is a special primitive propo-
sition, and that w(s, false) m false and falee ¢ ()
for all swates s

Note that a state corresponds to a complete sit-
uation or possible world. There are no partial states.
However, as we shall see, the awareness functions
make each state partial from the point of view of
player i Of course, in a given state, player i and
player j will not necessarily be aware of the same
formulas.

In order to define truth of formulas in this logic
with many players, we have support relations i-;
and l-}' for each set ¥ of primitive propositions.
Intuitively, the effect of i-;-' and }-}-’ is to restrict
every state to & partial situation where only the
primitive propositions in ¥ are defined. We also
have a standard two-valued notion of truth defined
vizd =, We proceed as follows:

1 A relation R is transdtive if {1, %) ¢ R whenever (5.0 ¢ R and (r.w) ¢ R: R & Ewciidean if (r.w) ¢ R whenaver (5, ¢ R ond (o) c R; R Is
serial It for each ;¢ § there Is xome 1 ¢ § such that (s.¢) ¢ R Innitively, (5.1) ¢« &, If player ¢ in siato s bellsves that slate ! is possible.
It 4 well known (see [Ch.HM] for discussion and motivation) that by making the &, relations transitive, Evclidean, and serial we
capture the axjoms amociated with belief. In purticular, the fact that &, it transitive ensures the soundness of the axiom Lipw L Ly,
the fact that it s Evclidesn enstres the soundness of ~Lp L, ~L,p, while the fact that it Is serisl onseres the soundness of ~L,(ois).
Mote that the fact thal &, Is Euclidean means 1hat for any given state i, the relation &, resiricted 1o the workis possible relative to
s (o, §t[ (&)« &1 & a0 equivalence relation (i.e., It iz reflexive. symmetric, and tramsitive); the fact that &9, is serial means that
thare ¢ always soome workl possible relative to 5. Knowledge differs from belief in that you cannol know false facta (alhough you
may believe them). This amounts to requiring the additions] axiom X,p » ¢ {(acte wo ase K, 10 dengote "player | knows™. In order to
capture knowledge, instead of sassuming that sach &, is tranpsitive, Euclidean, and sarial, we would maks the stronger aswumption that

oach &, is an equivalence relation on S.



M,s |=¥ p, where p is a primitive proposition, if
wis,p)=true and pe ¥.

M,s =¥ p. where p is & primitive proposition, if
w{s, p) = {alse and pe ¥.

M,s p=p, where p is a primitive proposition, if
w(1,p) = true.

M kY ~p il MR

M ,"F ~p il M,s f=,'r P.

Ms=~¢ if Mske

M pf PiAP if Mos =T ¢ and M.s ¥ P1.
Mg s g1 Agz if M,sF ) or Mys =F ga.
M.S " 41 A 2 if M..!' F 1 and M.s f‘ Pa.

M I-;uq-' By il M1t F;M‘(’)q: for all ¢ such that
(s.0) e 8,

M, |-§' By if M,r r-}'"“"(")w for some r such
that (s, f) e 98;.

M,s EBig if My i-?ﬂ,qa, where ¢ is the set of
all primitive propositions.

Mys mfLp if MgtmYe for all ¢ such that
G.Nedd

M.s ¥ Lip if M ¥ ¢ tor some s such that
(s,0) € B,

M,s = Lpif M.t = ¢ [or all 1 such that {5,1) ¢ &,
We note a number of properties of this definition.

Proposition 3.1.
L. = is complete, ie, for each M,s, 9, either M,s F ¢
or M,s pe ~p, ,
2. a. IF¥s¥ and if M,s =7 o, then M,s i-g,qp.
b IF¥S¥ and if M,s EX e, thm M,s kY @,
3. a. For each ser ¥ of primitive propositions, if
M5 1} @ then M,s = 9.
b. For each set ¥ of primitive propositions, if
M, I-}-' @ then M,s = ~q.

Proof. The proof in each case is a straightforward
induction on the structure of ¢. W

From the definitions, it also follows that B,p is
true relative to ¥ at state s (i.e., M,s |7 B,p) iff
¢ is true relative to ¥ uf;(s) at all the states that
player i thinks possible (in state s). In particular,
this means that B;p is true at state 5 (i.e., M, |= By,
that is, M, s l-?-Bf-p. where & is the set of all prim-
itive propositions) iff o is true relative t0 wf,(s)
(the primitive propositions of which 7 is aware at
state 5) at all the states player 7 thinks possible. By
way of contrast, since L;p depends only on player
#'s implicit belief, and not his awareness, L,p is true
at state s if in all states that player i thinks possible,
¢ i true (irrespective of whether ; is aware of ¢).
It can easily be shown (using perts 2(a) and 3(a)
of Proposition 3.1) that just 83 in Levesque’s logic,
we have |=(B;p = L;p): if player { explicitly helieves
g, then he also implicitly believes g, Note that we
also have |=(B,L;p = B,p). 0 that player / explicitly
believes that he implicitly believes ¢ exactly il he
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explicitly belicves . Thus, our semantics extends
to nested formulas in a reasonable way.

Our logic of awareness shares 3 number of prop-
erties with Levesque's. As before, player i implicitly
believes all valid formulas and all the logical con-
sequences of his beliefs. Not all valid formulas are
necessarily explicitly believed; in  particular,
~B (pv~p) is still satisfiable. Neither are a player's
explicit beliefs closed under valid implications; for
cxample, BpA ~B,(pA(gV~g)) is satisfiable. And
Proposition 2.1 still holds, indicating that we also
have a logic of awareness. Indeed, all of the axioms
of Levesque's logic are still sound in our system.
{A complete exiomatization of our logic will appear
in the full paper.) However, because we do not
have incoherent sitnations, our notion of explicit
belief differs from Levesgue's in that (a) for us, an
agent's set of explicit beliefs iz closed under impli-
cation, and (b) in our system, an agent cannot hold
inconsistent beliefs; thus, a formula such es
B,(p A ~p) is not satisfiable,

The careful reader will have also noticed one
more difference between our logic and Levesque's:
namely, the treatment of I-:: for formulas of the
form Bp and L;p. For Levesque, M,s =g By iff
M,s W By, so that 2 situation supports the faisity
of explicit belief exactly if it does not r{udp t its
truth. For us, M,s =g Bip il M, i-}' ")w for
some t such that (5,7) ¢ &, Thus, for us, a situation
supports the falsity of B, exactly if there is a
situation that agent 7 believes pnssible that supporta
the falsity of ¢. [t turns oot (hat this change has
no effect on the valid depth one formulas {which
is why we did not mentiozn it above), but does affect
nested formulas. Our formulation allows a formula
such as ~ B, (8,pV~B,p) to be satisfiable (for example,
if i is not aware of p).

We close this section with one final observation
on the relationship between implicit and explicit
belief in our logic. It is easy to check that

Bipvg)m

{ApALPIVAGALOVUPAAGALEVO)
Similarly, we can show that, for example,
B, B,pwm (A:pALi{ApALp)). Note that in both these
cases explicit belief was replaced by a combination
of implicit belief and awareness (recall that A,p is
an abbreviation for B;(pV~p). This can be done in
general. In fact we have the following proposition,
whose proof is given in the full paper:

Proposition 3.2. Given a formula ¢, we can effectively
find a formula @' such thar pwm o' and B, oceurs in ¢’
only in the context B,(pV~p), where p is a primitive prop-
osition.

We remark that ¢’ is in general exponentia] in the
size of @, 30 that such a represeniation may not be
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very muccinet. However, this result does show that
in a strong sense explicit beliel in this logic is
generated by awareness of primitive propositions.
4, A logic of general awsreness

The logic defined in the previous section limits
awarensss 10 primitive propositions. This prevents
it from capturing general resource-bounded reason-
ing. We now present a logic that gives us more
fine-grained control over 2 player's awarcness. In
particular, in this logic, an agent's knowledge is not
closed under implication. The main new feature of
this logic is a somewhat syntactic awareness operator.
Thus, in addition to the modal operators B; and L,
of the previous logic, we also have & modal operator
A; lor each player /. We can give the formula A,¢
2 number of interpretations: “/ is aware of ¢", “/
is able to figore out the truth of ¢, or even {when
reasoning about knowledge hases) “i is able to com-
pute the truth of ¢ within time 7.

A Kripke structure for gensral awarensss is 4 tuple
M (S 7,0, ..,uf, B,..,8,), where, as before,
S is a et of states, o(s, ) is 2 truth assignment for
ecach state s ¢ §, and 48, is 2 transitive, Euclidean,
and serial binary relation on § for each player i3
However, now we take «f,(s) 10 be an arbitrary set
of formulas (not just primitive formulas), where
again we add the restrictions that false e (s} for
all 5. Note that we have not (yet) placed any
restrictions on f,(s). In particular, it is poasible
for both p and ~p to be in «f,(s), and it is possible
that, for example, p A ¢ i3 in f,(s) but ¢ A g is DOt
in offy(y). The formulas in .f;(s) are those that the
agent is “aware of", not necessarily those he believes.

We have not yet discussed exacily what “aware-
ness” really is, and indeed, we do not intend to do
30 at a1l here! The precise interpretation we give
to the notion of awarensss will depend on the in-
tended application of the logic. By placing various
restrictions on the awareness function, we can cap-
ture a2 number of interesting distinct notions. We
shall discuss some interesting restrictions below.

This Jogic does not have support relations, just
2 sandard two-valued truth relation |, defined
inductively as follown:

M,z s p, where p i3 a primitive proposition, if

w(s,p) = true,

Mn' k“"v if Mr‘ “w-

Mo Agy il M,a g and M,s = ¢,

Mo mAp i @ e (s}

M,s = B,p il ¢ ¢ of(s) and M,z = ¢ for all r such
that (s,f) ¢ @,
M,s L if M,t =g for all 1 such that (s,7) ¢ &,

Note that with this logic, player /i explicitly be-
lieves @ A{{ (a) player ¢ implicitly believes p (ie., ¢
is true in all the worlds he considers possible) &nd
{b) player 7 is aware of ¢; thus BigmLip A A e
You cannot have explicit beliefs about formulas you
are not aware o' It iy edsy to see that L, acts like
the classical belief operator; il we assume that play-
ers are aware of all formulas, this logic reduces to
the classical logic of belief, known as KD45 or weak
85 (ef. [Ch,HM)).

Just as for our previous logic, agents still do not
explicitly believe all valid formulas; for example,
~B,{(pV~p) i satisfiable because the agent might not
be aware of the formula pv~p. However, unlike
the previous logic, an agent's explicit beliefs are not
necessarily closed under implication;
B.p A B,(pw g) A ~B,q s satisfiable since i might not
be awarc of g Sitce sawareness is essentially a
syntactic operator, this approach does suffer from
a1l the shortcomings of the syntactic approach men-
tioned by Levesque [Levi] For example, there is
no reason tc suppose that B (p A y) = By A ),
since 4;(p A ¢) might hold without A;{¢ A @) holding.
But in fact, people do nor necessarily identify for-
mulas such as ¢ A p and g Ay, Order of presentation
does seem to matter. And a computer progtam that
can compute the truth of ¢ Ay in time T might not
be able 1o compute the truth of yAgp in time T

On the other hand, as menuoned above, depending
on the intended application, we may want to add
some restrictions to the awareness function 10 cap-
ture certain properties of “awareness”. These in-
clude:

1. Awareness could be closed under subformulas;
i.e, if ¢« f(s) and ¢ is a subformula of ¢,
then v e of,(s). Noto that this makes sense if
we are reasoning about a knowledge base that
will never compute the truth of & formula unless
it has computed the truth of all its subformulas.
But it is also easy to imagine a program that
knows that ¢V~p is true withoot needing to
compute the truth of ¢. Perhaps a more rea-
sonable restriction iz simply to require that if
w Ay e ofy(s) then both ¢, ¢ € uf,{5).?

2. If order of presentation of conjuncts is {rrelevant,
we could have g Ay e of (5} iff ¢ Ape ofi(s).
Similarly, we could decide that an agent is awars

2 Again, 10 captore kaowledge rather than balief, we would take &, 1o be an equivalence relation on 5.

1 As was pointad out to ns by Peter van Emde Boas, without this latter restriction the “pragmatioally parndoxical” sentence B,{pA ~8.0)
("Agent | simultanecnsly balisves that p & \rue and that he dossn't believe It") & satisfiable !n tha logic (at » state ¢+ where

PA~Bp o o (2), 001 p g o, (5)).



of a formula iff he is aware of its negation, so
that p € () iff ~p e ofi(s).

3. Agent i might only be aware of a certain subset
of the primitive propositions, say ¥. In this
case we could take «f,(s) to consist of exactly
those formulas which only mention primitive
propositions that appear in ¥. This type of
awareness function gives a logic in somewhat
the same spirit as Levesque's Jogic or the logic
of awareness presented in Section 3, but there
are some crucial differences. For example, in
the awareness logic, the formula B;p = B,(gVy)
is wvalid, whether or not ¢ is aware of ; but
this formulz is not valid in the logic we have
just described.

4. We can allow awareness of players as well as
formulas, so, for example, player j might not be
aware of any formula that mentioned player i

5. A self-reflective agent will be aware of what
he is aware of. Semantically, this means that
it @ € o, {5), then A,p € of {5). This corresponds
to the axiom A;¢ =449

6. Similarly, an agent might know what formulas
he is aware of. Semantically, this means that
il (s,0) ¢ @, then f,(5)=f (). This corre-
sponds 1o the axiom A, ¢ = L 4,p. This restriction
seems particularly appropriate when awareness
is generated by a subset of primitive propositions
or a subset of players, as discussed above.

7. The elements of «{(s) could be exactly those
formulas whose truth can be computed in some
specified time or space bound by a given pro-
gram or set of programs. This type of “aware-
ness” could provide a tool for formalizing the
recent advances in cryptography theory. Here
the problem is in making sensec out of what it
means that an adversary does not know how to
read a message which is encoded using a public-
key cryptosystem (cf. [RSA,Me GMR]). Such
a system is completely insecure from an
information-theoretic point of view, but is
deemed to be difficult to break in a reasonazble
amount of time for complexity-theoretic reasons.
We remark that knowledge seems more appro-
priate than belief when trying to capture rea-
soning about cryptographic protocols.

The message that the reader should get from these
cxamples is that the ability 1o place conditions on
the awareness function provides a flexibie tool for
modeiling various situations. Even greater flexibility
can be attained once we incorporate time into the
language; this is the subjoct of the next section.

8. Incorporating time

R. Fagin and J. Halpern

We can further extend this logic (and in fact all
the other logics we have been discussing) by adding
a relation, and 2 corresponding modal operator, to
capture time. Formally, 2 mode] would now be a
tuple M = (S, m, fy, ..., 88, ..., 88, &), where &
is a deterministic, serial relation; ie. for all ¢ S,
there is a unique 7 ¢ 5 such that (s,1) € &. Intuitively,
(s.9) € & if 1 describes the state of the world at the
“next™ time instant after s5.* We also add unary
modal operators O and § into the language, where
Qp is true if @ is true at the next time instant (or
“tomorrow™), and ¢ is true if p is eventually true.
We define * 1o be the reflexive, transitive closure
of &, that is, the binary relation on § defined by
(s, e & Il there exist states x,....sx such that
gmgp, §m= 8y, and (5,5,1) ¢ & for ik More for-
mally, we have:

M,s = Oy if M,: [=q for (the unigue) r such that

GNedF.

MsEOpil Mtmo [or some re &,
As usual in the literature, we define (J to be the
dual of ¢, so that D¢ is ~0~p. Thus [Jp is true
if ¢ is true now and forever in the future.

Once we have time in the pictare, we can con-
sider investigating what happens when we impose a
nember of additional constraints on the relationship
between belief {or knowledge), time, and awareness,
When considering knowledge rather than belief, in
some treatments (for example [Sa,Lehl]), an addi-
tional requirement is placed on the interaction be-
tween knowledge and time, which, roughly speaking,
captures “not forgetting’ The intnition is that the
set of worlds an agent thinks possible should decrease
over time, as the agent acquires more information.
In particular, this means that at a given time, the
set of worlds that an agent now thinks could possibly
describe the situation of tomorrow is a superset of
the set of worlds that he actually thinks pomsible
tomorrow. Syntactically this corresponds to the ax-
iom

) K(op)»oKg:
if agent i knows (today) that ¢ will be true tomor-
row, then tomorrow he will know ¢ (where we use
K, since we are degling with knowledge rather than
belief). Semantically, this corresponds to the follow-
ing restriction (where &, i3 an equivalence relation,
since we are desling with knowledge):

If for some states s,f, ¢ we have (3, e &
and (f, 4} ¢ &,, then there exists a state

w such thet (s,w) ¢ @, and (W) ¢ F;

it FoBSBF.

It is easy 10 check that axiom (*) holds in all models

")

4 Thus we have taken time to be linear rather than branching, discrete rather than continuous, and with no endpoint However, easy
modifications can be made to the model presented above to allow us to deal with all of the possibilities (cf. (HCJ).
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that obey the restriction (**) (although it is still an
open question whether (*) characterizes such models).
As pointed out to us by Elias Thijsse, (*) is not
immediately applicable to belief. For example, |
may believe now that | may finish writing this paper
by tomorrow, but tomorrow | may realize that this
belief is false, and no longer believe it. But even
with regards to knowledge, (*) is not often not a
realistic assumption. People certainly forget! And
(+*) seems to have rather unpleasant consequences
for the decision procedure of the resulting logic (see
Section 7).

Recall that one interpretation we gave the aware-
ness function in the previous section was in terms
of the formulas whose truth could be computed
within a certain amount of time. Since we are
dealing with a decidable language, we can imagine
a program that will eventually be able to compute
the truth value of every formula. We can capture
this very easily in our present framework by simply
requiring that the awareness functions satisfy the
following constraints:

(1) if (s.1) € & then of ()<t (i) and
) for all 3¢ § and all formuolas @, there is
some ¢ with {8, ) e & and pe o, ().
Intuitively, constraint (1) says that agent f's aware-
ness never decreases over time, while (}) says that
i is eventually aware of every formula. In a model
satisfying these constraints, we have the following
sound inference rule: from ¢ infer ¢B;p. Thus, all
valid formulas are eventually believed Moreover,
the obvious weakening of closure nnder implication
also holds. As long as ¢ and g ¢ arc stable
formulas (once true, they remain true), then if ¢
and ¢ ¢ are believed, it follows that eventually ¢
will be believed too. Thus, if ¢ and pwy are
stable, then we have

(Bip AB (g y)) OB

Other variations on these restrictions are also
possible. For example, we may want to drop (})
while retaining (1), s0 that while an agent's awareness
increases, he might not be eventually aware of every
formula,. We may also want to impose conditions
on Aow awarencss increascs, say by allowing appli-
cation of a particular deduction rule at every step,
where the deduction rule applied might depend on
current knowledge or past history {this was suggested
to us by Kurt Konolige). There is clearly room for
further work here.

6. A logic of local reasoning

Although the logic of general awareness discussed
in the previous two sections is quite flexible, it still
has the property that an agent cannot hold incon-
sistent beliefs. In this section we present a logic
in which agents can hold inconsistent beliefs, but
without making use of incoherent situations.

Our key observation is that one reason that peo-
ple hold inconsistent beliefs is that beliefs tend to
come in non-interacting clusters. We can almost
view an agent as a society of minds, each with its
own set (or cluster) of beliefs, which may contradict
each other.

This phenomenon seems to occur even in science.
The physicist Eugene Wigner [Wi] notes that the
two great theories physicists reason with are the
theory of quantum phenomena and the theory of
relativity. However [RB, p. 166], Wigner thinks
that the two theories may well be incompatible!

In our previous logics, given a state s, we viewed
frl(s,0) € 8B} as the set of states that agent i thought
possible in state 5. In our next logic, there is not
necessarily one set of states that an agent thinks
possible, but rather a number of sets, each one
corresponding to a different cluster of beliefs. Al-
ternatively, as discussed in the introduction, we can
view these sets as representing the worlds the agent
thinks are possible in 2 given frame of mind, when
he is focussing on a certain set of jssues.

More formally, a Kripke model for local reasoning
{or & cluster model) is a tuple M= (S, 7,%;,..,.%,)
where § is a set of siaees, =(s,*) i5 2 truth assignment
to the primitive propositions for each siate se S,
and ¥;(s) is a nonempty set of nonempty subsets of
S, with the restriction that if s’ ¢ T« ®(s), then
Te %{s"). It turns out that this restriction ensures
that if an agent believes a fact, then he believes
that he believes it (i.e., Bip# B Bi@)® Intuitively,
i ®,(s) = {74, ..., T3}, then in state s player i sometimes
{depending perhaps on his state of mind or the issues
on which he 18 focussing) believes that the set of
posnible states is precisely 7); sometimes he believes
that the set of possible states is precisely Ta, etc.
Or we could view each ol these sets a5 representing
precisely the worlds that some member of the society
in agent /s mind thinks possible. If %,(s) is just a
singleton set for each state », say {7}, then this
mode] is equivalent to the models of the previous
scction, where we interpret (5,1) € &, exactly if re T,

An interesting special case of these models is one
where in each frame of mind, an agent refuses to
admit that he may occasionally be in another frame

S If we with to capture knowledge rather than belief, then we need to add the further rettrieUon that § if a member of every member

of Vi(s).



of mind. This phenomenon can be observed with
people. Semantically, we can capture this by requir-
ing that if s’ € Te ¥;(s), then ¥(s") is the singleton
set {115 We call a cluster model satisfying this
restriction & sarrow-minded cluster model.

With this semantics we are not really trying to
capture implicit and explicit belief. Rather, we are
trying to capture weak and strong belief, where a
weak belief i3 one that is true of some frame of
mind (i.e. all the states in some cluster), while a
strong belief is one that is true in all frames of
mind. Accordingly, we now interpret B;¢ as player
i weakly beligves , and use the new modal operator
S, to denote strong belief, so that S,¢ means player
i strongly believes ¢. 'We define k= for cluster models
as follows:

M.s =p, where p is g primitive proposition, if
w{s, p) = true.

MspkE~pif MislFe

MskoiAg il Ms g and M5 = s

M,s = B;p if there is some Te #;(s) such that
MimgpforallreT

Ms = S, if M1 = ¢ for every Te ¥{s) and ev-
eryteT

It is easy 10 see from the semantic definitions
given that weak belief is not closed under implication,
but in this case the reason has nothing to do with
awareness. B.pA B;(pw g) A ~B,g is satisfiable sim-
ply because in one frame of mind agent / might
believe p, in another he might believe p=# g, but he
might never be in & frame of mind where he puts
these facts together to conclude g.

More importantly for our purposes, note that an
agent may now hold inconsistent (weak) beliefs:
B,p A B,~p is satisfiable, since in one¢ frame of mind
agent { might believe p, while in another he might
believe ~p. On the other hand, B;,(pA ~p) is im-
possible: agents do not believe in incoherent worlds.
Of course, S;pA Si~p is slso unsatisfizble.

In the narrow-minded cluster model, an agent
will believe he is consistent (even if he is not} since
in 2 given frame of mind he refuses to recognize
that he may have other frames of mind. Thus,
B,(~(8,p A B;~p)) is valid in this case. Indeed, since
an agent can do perfect reasoning within & given
frame of mind, a “narrow-minded” agent will also
believe he is a perfect reasoner: in the narrow-minded
cluster model, B,(B;p A By(p=» g) » B,5) in also valid,
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Note that in both the general and narrow-minded
cluster mode] an agent's beliefs are closed under
valid implication and agents believe all valid formu-
las. This is because we have assumed that agents
can do perfect reasoning within each cluster. We
can easily combine the ideas of the cluster model
with those of the general awareness model to get a
model where agents do not necessarily believe all
valid formulas. The details are straightforward and
left to the reader.

7. Decision procedures and complete
axiomatizations

In the case of the classical logics of belief and
knowledge, SS and KD45, it is known that the
problem of deciding whether a formula is satisfiable
is NP complete in the case of one player, and
PSPACE complete if there is more than one player
(see [HM] for a discussion of these results). Despite
the apparent extra machinery we have introduced
in our models, we can show that the decision pro-
cedures get no harder.

Theorem 7.1.  For Levesque's model of implicit and
explicit belief, and the one-knower version of the logics of
awareness, the logic of general awareness, and the narrow-
minded version of the logic of local reasoning, the problem
of deciding satisfiability of formulas is NP complete (and
hence the problem of deciding validity is co-NP complete).
For the many-knower versions of all these logics, the one-
knower and many-knower versions of the logic of general
awareness with time, and the unrestricted version of the
logic of local reasoning the problem of deciding satisfiability
and validity of formulas is PSPACE complete.

We remark that once we add condition (+*) to the
semantics of knowledge and time, things seem to
get much worse. There the best-known results are
a double-exponential decision procedure in the case
of one knower; the problem for many knowers is
still open.’

Using standard techniques of modal logic, we can
also provide complete axiomatizations for all the
logics we have discussed. We discuss a complete
axiomatization for the logic of general awareness
here to show how the usual axioms of belief must
be modified. Axiomatizations for the other logics
we have discussed and further details of proofs will
appear in the full paper.

Recall that in thiz logic we have B.o m Lip A 49,
and L; acts like the classical belief operator. It i
well-known {(c¢f. [Ch,FV,HM]) that beilel can be

6 Note that this restriction is not possible in general when dealing with knowledge rather than belief. You cannot refnte to know the

truth, although you can refuse to believe it!

7 The proof in the case of one knower is a modification of the techniques of [Leh1] In that paper, Lehmann also claims a
double-exponential decision procedure for the logic of knowledge and time with many knowers, but his proof techniques seem to fail

[Leh2].
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axiomatized as follows:

1. All substitution instances of propositionsal
tautologies.

2. Ligw Ly (“Introspection of positive belie*).

3 ~Ligw»L~Lep {(“Introspection of negative be-
liel"™).

4 LiptAL(p1» 9} Ly (“What player i be-
lieves is closed under modus ponens').

S. ~L{false} (“Player i does not believe a contra-
diction"}.

There are two inference rules: (i) from ¢; and
@y %y infer p; (modus ponens) znd (2) {rom ¢
infor Lyp (“belief of tautologies”).?

If we simply add to this collection of axioms
two more axioms, namely A;(falke) (“player i is
aware of the formula faise’™) and Bipm Lo A Ay
{"explicit belief is equivalent to implicit belief plus
awareness'), then we get a complete axiomatization
of the logic of general awareness.

Theorem 7.2. The axiom swstern described above is a
sound and complete axiornatizarion of the logic of general
awareness.

Even more insight into the logic is obtained if
we consider the fragment of the logic where we can
only discuss explicit belief, and not implicit belief
(i.e, if we consider the language without the I;
operatars). Consider the following axioms schemas
and rules of inference.

1. All substitution instances of propositional
tautologies.

Bip AABip» BBp

~Byg A Aj(~B;p) > B;~B, ¢

Bip) ABi(p1 > 92) Adip2» By

~B\({false)
Af(fd‘le).
. Bipw Ao
There are three inference rules: (1) from ¢ and
@ ¢ infer ¢, (2) from ¢ infer A By, and (3)
from B A ABig. Ay AL Ape ¢ infer
By A B, AAyw By, (We can view (2) gs &
special case of (3) with n=0) Both (2) and (3)
can be viewed a3 rules of “limited beliefs of
tautologies”.

Note how the crucisl differences between implicit
and explicit belief are reflected in the axiom system,
particularly axioms 2, 3, and 4 and the rules of
Hmited belief of tautologics. In ail these cascs an
agent must be aware of the relevant formula before
he believes it. Of course, similar remarks hold if
we replace beliefl by knowledge. Note that axiom

N e W

2 indicates how, according to de Chardin, an animal
may know, but not know that it knows, while axiom
3 indicates how an agent may be “so0 dumb that he
doesn’t even know that he doesn't know p”.

Theorem 7.3. The axiom systerm above iy a yound and
compiete axiomatization for the language of general aware-
ness without the implicit belief operator.

It is also straightforward to exiomatize some of
the restrictions on swareness mentioned in Section
4. For example, if the order of presentation of the
conjuncts does  not  rattet, we have
Alp Ap) = A, (¥ Ap); if an agent is always simulta-
neously aware of a formula and its negation, we
have 4,¢ & A;~¢. If we take awareness 1o be closed
under subformulas, then this can be captured axio-
matically by adding the axiom schemas 4,(~¢) » A, ¢,
Alg AP > Lo Ady, A4(Bg) e Aip, A{Lg)> A,
and A,{4,9) > A, ¢. With these additional axioms, it
can be shown that an agent's beliefs are c¢losed
under implication (that is, whenever both ¢ and
¢ ¢ are believed, then ¢ is believed), although
agents still do not believe all valid formulas. By
changing = 10 = in thess axioms, we can capture
a notion of awareness generated by a set of primitive
propositions. We note that in the case of awareness
generated by a set of primitive propositions, a num-
ber of the axioms and rules simplify. In particular,
we can omit the clauses involving awareness in
axioms 2, 3, and 4, and omit mile of inference (3)
altogether. Further details can be found in the full
paper.

8. Conclusions

We have examined a number of logics, each of
which captures different aspects of the problem of
lack of logical omniscience, including lack of aware-
ness and loca) reasoning (within a cluster of beliefs).
We expect that other logics can be designed to
capture other aspects of this issue.

We are currently investigating quantified versions
of these logics. Here some very interesting technical
and philosophical questions arise. For example,
since we would like to be able to capture sentences
such as “He is aware of something that I am not
aware of”, we seem 10 be forced into allowing states
with different domains, and dealing with all the
technical complications that arise there. We hope
to report on these issues in a future paper.

§  Note that in the onss of knowiedge, rather 1han belief, we replace L, by X, snd replace the axiom ~L.(fabe) by Xigm g ("Whatever

player { knows b tras”),
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