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ABSTRACT 

Models of complex phenomena often consist of 
hypothetical entities called "hidden causes", which cannot 
be observed directly and yet play a major role in under­
standing, communicating, and predicting the dynamics of 
those phenomena. This paper examines the cognitive and 
computational roles of these constructs, and addresses 
the question of whether they can be discovered from em-
pirical observations. 

Causal models are treated as trees of binary ran­
dom variables where the leaves are accessible to direct 
observation, and the internal nodes-representing hidden 
causes-account for inter-leaf dependencies. In proba­
bilistic terms, every two leaves are conditionally indepen­
dent given the value of some internal node between 
them. 

We show that if the mechanism which drives the 
visible variables is indeed tree-structured, then it is possi­
ble to uncover the topology of the tree uniquely by ob­
serving pair-wise dependencies among the leaves. The 
entire tree structure, including the strengths of all inter­
nal relationships, can be reconstructed in time propor­
tional to nlogn, where n is the number of leaves. 

I. INTRODUCTION: CAUSALITY, CONDITIONAL 
INDEPENDENCE AND TREES 

This study is motivated by the observation that 
human beings, facing complex phenomena, exhibit an al­
most obsessive urge to conceptually mold these phenome­
na into structures of cause-and-effect relationships. This 
tendency is, in fact, so compulsive that it sometimes 
comes at the expense of precision and often requires the 
invention of hypothetical, unobservable entities such as 
"ego", "elementary particles", and "supreme beings" to 
make theories fit the mold of causal schema. When we 
try to explain the actions of another person, for example, 
we invariably invoke abstract notions of mental states, 
social attitudes, beliefs, goals, plans and intentions. Med­
ical knowledge, likewise, is organized into causal hierar-
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chies of invading organisms, physical disorders, compli­
cations, pathological states, and only finally, the visible 
symptoms. 

This paper takes the position that human obses-
sion with causation is computationally motivated. Causal 
models are only attractive because they provide effective 
data-structures for representing empirical knowledge, 
and their effectiveness is a result of the high degree of 
decomposition they induce. More specifically, causes are 
viewed as names given to auxiliary variables which en-
code a summary of the interaction between the visible 
variables and, once calculated, would permit us to treat 
visible variables as if they were mutually independent. 

The dual summarizing-deoampoaing rale of a 
causal variable is analogous to that of an orchestra con-
ductor; it achieves coordinated behavior through central 
communication and thereby relieves the players from 
having to communicate directly with each other. Such 
coordination is characteristic of tree structures and draws 
its effectiveness from the local nature of the data flow to­
pology. In a management hierarchy, for example, where 
employees can only communicate with each other 
through their immediate superiors, the passage of infor­
mation is swift, economical, conflict-free, and highly 
parallel. These computational attributes, we postulate, 
give rise to the satisfying sensation called "in-depth 
understanding", which people experience when they dis-
cover causal models consistent with observations. 

Cast in probabilistic terms, central decomposition 
is embodied by the relation of conditional independence, 
which we claim constitutes the most universal and dis­
tinctive characteristic featured by the notion of causality. 
(See also [6] and [7].) In medical diagnosis, for example, 
a group of co-occurring symptoms often become indepen­
dent of each other once we know the disease that caused 
them. When some of the symptoms directly influence 
each other, the medical profession invents a name for 
that interaction (e.g., complication, pathological state, 
etc.) and treats it as a new auxiliary variable which again 
assumes the decompositional role characteristic of causal 
agents. Knowing the exact state of the auxiliary variable 
renders the interacting symptoms independent of each 
other. Causes invoked to explain human behavior, such 
as motives and intentions, also induce conditional in-
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dependence. For example, once a murder suspect 
confesses to having wished the death of the victim, tes­
timonies proving that he expressed such wishes in public 
or that he stood to gain from the victim's death are per* 
ceived to be irrelevant; they shed no further light on 
whether he actually performed the murder. 

Based on these observations we chose to represent 
causal models as trees of binary random variables, where 
the leaves are directly accessible to empirical observa­
tions and the internal nodes represent hidden causes; any 
two leaves become conditionally independent once we 
know the value of some internal variable on the path 
connecting them. The propagation of updated probabili­
ties in such trees was analyzed by Pearl [6] and Kim and 
Pearl [3]. It was shown that the propagation can be ac­
complished by a network of parallel processors working 
autonomously, and that the impact of new information 
can be imparted to all variables in time proportional to 
the longest path in the tree. 

Given that tree-dependence captures the main 
feature of causation and that it provides a convenient 
computational medium for performing updating and 
predictions, we now ask whether the internal structure of 
the tree can be determined from observations made sole­
ly on the leaves. If it can, then the structure found would 
constitute an operational definition for the hidden causes. 
Additionally, if we take the view that "learning" entails 
the acquisition of computationally effective representa­
tions for nature's regularities, then the procedure of con­
figuring the tree may reflect an important component of 
human learning. 

A related structuring task was treated by Chow 
and Liu [1], who also used tree-dependent random vari­
ables to approximate an arbitrary joint distribution. 
However, whereas in Chow's trees all nodes denote ob­
served variables, the internal nodes in our trees denote 
dummy variables, artificially concocted to make the 
representation tree-like. The problem of configuring 
probabilistic models using auxiliary variables is men­
tioned by Hinton et al. [2] as one of the tasks that a 
Boltzmann machine should be able to solve. However, no 
performance results have been reported and it is not 
dear whether the relaxation techniques employed by the 
Boltzmann machine can easily handle the restriction that 
the resulting structure be a tree. 

This paper is organized as follows: Section 2 
presents nomenclature and precise definitions for the no-
tions of star-decomposability and tree-decompotability. 
In section 3 we treat triplets of random variables and ask 
under what conditions one is justified in attributing the 
observed dependencies to one central cause. We 
show that these conditions are readily testable and, when 
the conditions are satisfied, that the parameters specify­
ing the relations between the visible variables and the 
central cause can be determined uniquely. In section 4 
we extend these results to the case of a tree with n 

leaves. We show that if a joint distribution of n variables 
has a tree-dependent representation, then the uniqueness 
of the triplets' decomposition enables us to configure that 
tree from pair-wise dependencies among the variables. 
Moreover, the configuration procedure takes only 
0(nlogn) steps. In Section 5 we evaluate the merits of this 
method and address the difficult issues of estimation and 
approximations. 
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The advantages of having star-decomposable dis­
tributions are several. First, the product form of Ps in (1) 
makes it extremely easy to compute the probability of 
any combination of variables. More importantly, it is 
also convenient for calculating the conditional probabili­
ties describing the impact of an observation x} on 
the probabilities of unobserved variables. The computa­
tion requires only two vector multiplications. 

Unfortunately, when the number of variables 
exceeds 3 the conditions for star-decomposability become 
very stringent, and are not likely to be met in practice. 
Indeed, a star-decomposable distribution for n variables 
has 2*+1 independent parameters, while the specification 
of a general distribution requires 2n- l parameters. La-
zarfeld [4] considered star-decomposable distributions 
where the hidden variable w is permitted to range over X 
values, Such an extension requires the solution of 

non-linear equations to find the values of the 
independent parameters. In this paper, we pur­

sue a different approach, allowing a larger number of 
binary hidden variables, but insisting that they form a 
tree-like structure (see Figure 2), i.e., each triplet forms 
a star but the central variables may differ from triplet to 
triplet. Trees often portray meaningful conceptual 
hierarchies and, computationally, are almost as con­
venient as stars. 

We shall say that a distribution is 
tree-decomposable if it is a marginal of a tree distribution 

where correspond to the internal nodes of 
an unrooted tree to its leaves. 
Given a tree structure and an assignment of variables to 
its nodes, the form of the corresponding distribution can 
be written by inspection. We first choose an arbitrary 
node as a root. This, in turn, defines a unique father 

for each node » the 
tree, except the chosen root, >i. The joint distribution is 
simply given by the product form: 

(4) 

For example, if in Figure 2 we choose w2 as the root we 
obtain: 
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that induced by their dependencies cm the third variable; 
a mechanism accounting for direct dependencies must be 
present. 

Having established the criterion for star-
decomposability we may address a related problem: Sup-
pose p is not star-decomposable, can it be approximated 
by a star-decomposable distribution P that has the same 
second-order probabilities? 

The preceding analysis contains the answer to this 
question. Note that the 3rd order dependencies are 
represented only by the term and this term is con­
fined by Eq. (17) to a region whose boundaries are 
determined by 2nd- order parameters. Thus, if we insist 
on keeping all 2nd-order dependencies of P in tact and 
are willing to choose so as to yield a star-
decomposable distribution, we can only do so if the re-
gion circumscribed by (17) is non-empty. This leads to 
the statement: 

Theorem 2: A necessary and sufficient condition for the 
2nd order dependencies among the triplet x1 x2 x3 to sup­
port a star-decomposable extension is that the six ine­
qualities: 

(19) 

possess a solution for x. 

IV. A TREE-RECONSTRUCTION PROCEDURE 

We are now ready to confront the central problem 
of this paper: Given a tree-decomposable distribution 

can we recover its underlying topology and 
the underlying tree-distribution 

The construction method is based on the observa­
tion that any three leaves in a tree have one and only 
one internal node that can be considered their center, 
i.e., it lies on all the paths connecting the leaves to each 
other. If one removes the center, the three leaves become 
disconnected from each other. This means that if P is 
tree-decomposable then the joint distribution of any tri­
plet of variables is star-decomposable, i.e., 

I uniquely determines the parameters a,fi, tgi as in 
Equations (11), (12), and (13), where is the marginal 
probability of the central variable. Moreover, if we com­
pute the star decompositions of two triplets of leaves, 
both having the same central node w, the two distribu­
tions should have the same value for . This 
provides us with a basic test for verifying whether two 
arbitrary triplets of leaves share a common center and a 
successive application of this test is sufficient for deter­
mining the structure of the entire tree. 

Consider a 4-tuple of leaves in r. These 
leaves are interconnected through one of the four possi-
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ble topologies shown in Figure 3. The topologies differ 
in the identity of the triplets which share a common 
center. For example, in the topology of Figure 3(a), the 
pair [(1,2,3), (1,2,4)] share a common center and so does 
the pair [(1,3,4), (2,3,4)]. In Figure 3(b), on the other 
hand, the sharing pairs are [(1,2,4), (2,4,3)] and 
[(1,3,4), (2,1,3)], and in Figure 3(d) all triplets share the 
same center. Thus, the basic test for center-sharing t r i ­
plets enables us to decide the topology of any 4-tuple 
and, eventually, to configure the entire tree. 
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V. CONCLUSIONS AND OPEN QUESTIONS 

This paper provides an operational definition for 
entities called "hidden causes", which are not directly 
observable but facilitate the acquisition of effective causal 
models from empirical data. Hidden causes are viewed 
as dummy variables which, if held constant, induce pro-
babilistic independence between sets of visible variables. 
It is shown that if all variables are bi-valued and if the 
activities of the visible variables are governed by a tree-
decomposable probability distribution, then the topology 
of the tree can be uncovered uniquely from the observed 
correlations between pairs of variables. Moreover, the 
structuring algorithm requires only nlogn steps. 

The method introduced in this paper has two ma­
jor shortcomings: It requires precise knowledge of the 
correlation coefficients and it only works when the 
underlying model is tree-structured. In practice, we often 
have only sample estimates of the correlation coeffi­
cients, and it is therefore unlikely that criteria based on 
equalities (as in Eq. (21)) will ever be satisfied exactly. 
It is possible, of course, to relax these criteria and make 
topological decisions on the basis of proximities rather 
than equalities. For example, instead of searching for an 
equality we can decide the 4-tuple topology 
on the basis of the permutation of indices that minimizes 
the difference pypu — PitPji* Experiments show, however, 
that the structure which evolves by such a method is very 
sensitive to inaccuracies in the estimates pv, because no 
mechanism is provided to retract erroneous decisions 
made in the early stages of the structuring process. Ideal­
ly, the topological membership of the (i+l) th leaf should 
be decided not merely by its relations to a single triplet 
of leaves chosen to represent an internal node wf but also 
by its relations to all previously structured triplets which 
share w as a center. This, of course, will substantially 
increase the complexity of the algorithm. 

Similar difficulties plague the task of finding the 
best tree-structured approximation to a distribution which 
is not tree-decomposable. Even though we argued that 
natural data which lend themselves to causal modeling 
should be representable as tree-decomposable distribu­
tions, these distributions may contain internal nodes with 
more than two values. The task of determining the 
parameters associated with such nodes is much more 
complicated and, in addition, rarely yields unique solu­
tions. Unique solutions, as shown in section 4, are essen­
tial for building large structures from smaller ones. We 
leave open the question of explaining how approximate 
causal modeling, an activity which humans seem to per­
form with relative ease, can be embodied in computation­
al procedures that are both sound and efficient. 
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