
T H E U T I L I T Y O F E X P E R T K N O W L E D G E 

Jonathan Schacffer 
TA. Marsland 

Computing Science Department, 
University of Alberta, 

Edmonton, 
Canada T6G 2H1 

A B S T R A C T 
How useful is the knowledge we add to an expert 
system? What is important knowledge? Can too 
much knowledge be bad? These questions are 
examined by presenting the preliminary results of 
experiments that paired programs wi th varying 
amounts of chess knowledge against each other. 
The experiments illustrate problems of interacting 
knowledge and give some insight into methodolo­
gies for "teaching" expert systems. 

1 . I n t r o d u c t i o n 
Wi th the increasing awareness of the potential 

for expert systems, knowledge engineering has 
become a recognized discipline. The addition of 
knowledge to an expert system raises some impor­
tant questions: What should one add? How much? 
Can too much knowledge be a bad thing? The 
goal of answering these questions is to find a 
methodology for adding knowledge to an expert 
system, one that maximizes performance while 
minimizing redundancy and inefficiency. 

Consider the analogy between a student and 
an expert system. Both go through a period of 
learning in which the objective is to raise abilities 
to a desired level of competence. However, the 
student attends schools in which the curriculum is 
organized so that new knowledge builds upon the 
old. It would be absurd, for example, to teach 
quantum mechanics as part of a grade 1 course. In 
contrast, expert systems are "taught" in an ad hoc 
manner. There is no established method for 
teaching an expert system, nor guidelines for 
organizing a curriculum. 

In this paper, a series of experiments wi th 
chess knowledge is reported i l lustrating some of 
the difficulties wi th adding knowledge to an expert 
system. Many of the problems are analogous to 
those a student encounters when enrolled in a 
poorly designed education program. The solutions 
are often similar to the way they are solved by 
educators. The results of the experiments give 
some insight into the difficulties of "teaching" 
expert systems. 
t A competitor in the most recent World Computer 
Chess Championship [1]. 

2. E x p e r i m e n t Des ign 
A chess program has two distinct parts; the 

framework for making and analyzing moves, and 
the knowledge that allows the program to play 
well. The former includes legal move generation 
and tree searching, and is well understood. The 
latter, however, is vague and informal; it is the 
product of centuries of experiences that have been 
condensed into rules and exceptions, few of which 
can be formalized. 

The expertise in our chess program Phoenix t 
was partit ioned into the following 8 routines: Tac­
tics (T), Space and Mobil i ty (SM), Pawn 
Weaknesses (PW), King Safety (KS), Center Con­
trol (CC), Pawn Structure (PS), Incremental 
Scores (IS), and Planner (PL). Details of the con­
tents of the routines can be found elsewhere [2] 
and are not essential to the points raised in this 
paper. To determine the ut i l i ty of this knowledge, 
a pair of experiments have been performed; one to 
show how the knowledge should be acquired and 
one to see the consequences of its removal. The 
experiments illustrate the (un)importance of the 
knowledge routines as they interact wi th each 
other. 

Each experiment followed an established tech­
nique [3-5] and consisted of a series of matches 
between versions of Phoenix wi th differing 
amounts of knowledge. A match consisted of 20 
games, wi th each opponent playing the white and 
black side of 10 starting positions. The accumula­
tive knowledge experiment starts init ial ly wi th the 
basic tactics program, T, and uses it to play a 
series of matches against T supplemented wi th a 
different knowledge routine for each match. This 
allowed us to measure the effectiveness of each 
expert component relative to a program wi th no 
such knowledge. This process was repeated by 
gradually expanding the basic program T w i th 
more and more knowledge and using it to identify 
the next best piece to acquire. The removal exper­
iment starts wi th Phoenix and, using the same 
technique, gradually eliminates knowledge. This 
allows us to measure the importance of the rou­
tines relative to a program wi th complete 
knowledge. 



586 J. Schaeffer and T. Marsland 

To l imi t the scope of the problem, we have 
restricted our attention to the acquisition of 
middlegame knowledge. It was therefore neces­
sary to remove any influence that other phases of 
the game might have. Opening specific informa­
tion was reduced by chosing diverse start ing posi­
tions for the matches that were each ten moves 
into the game. Tree searching techniques were 
factored out of the experiment by having all pro-
grams use the same parameters and search to a 
depth of 5 ply. A game was considered over when 
it either ended in checkmate or draw, or when 
Phoenix determined that an endgame had been 
reached. In the latter case, the final position was 
adjudicated. 

A difficult problem was posed by cases where 
there was no clear-cut winner, but one side had 
accumulated positional advantages that in the 
long-term may prove decisive. Since the 
opponents have slightly different models of what is 
important, it was possible for both sides to th ink 
that they had the advantage! The notion of a 
superior or inferior position was introduced to 
ensure that the advantage of long term factors 
could be considered even though the material bal­
ance was equal. To ensure impart ia l i ty, the adju­
dications were performed by the chess program 
Cray B l i tz t . Adjudicat ion resulted in a position 
being assessed a value in the range 0 to 1 wi th a 
win (worth 1 point) defined as the side to move 
being up a ful l pawn. If the position was not won, 
a value was assigned reflecting how (un) favour­
able the position was, wi th a value of 0.5 for a bal­
anced position. 

3 . Resu l ts 
The results of the accumulative knowledge 

experiment are summarized in Table 1. Each row 
gives the result of the matches between a base 
variant of Phoenix (T w i th 0 or more pieces of 
knowledge added) and that program supple­
mented by the piece of knowledge specified in the 
column heading. For example, the entry in row 3 
and column 6 says that the base program 
T + SM + CC lost by a score of 9.35 to 10.65 to 
T + SM + CC + KS. Note, however, that the 
acquisition of knowledge cannot be done in an 
arbitrary manner. Consider row 3 column 7, 
where the base program won by a score of 11.15 to 
8.85 over itself supplemented by PS. This, and 
similar apparent anomalies, i l lustrate that the 
haphazard addit ion of knowledge may not be 
effective unt i l necessary basic knowledge is in 
place. 

These results can be put into a more familiar 
form by expressing them as chess ratings, which 
provide a convenient means of equating the 

t A portable version of the current World Computer 
Chess Champion (l], but running on a VAX 11/780. 

program's performance wi th human abilities. The 
average club player has a rating of about 1400. 
The details of the rating formula are not impor­
tant and are discussed elsewhere [2]. Pegging the 
basic T program wi th a rat ing of 1110, experimen­
tally determined and consistent wi th others [3], 
yields Table 2. Note that the version of Phoenix 
used has a tournament rat ing of 1840, close to the 
predicted 1786. 

The tables support the well-known result [6] 
that the most important heuristic is Space and 
Mobi l i ty , since it gives Phoenix almost half its rat­
ing points. Space and Mobi l i ty is the simplest 
routine to implement and requires no real expert 
knowledge. In some sense, SM can be viewed as 
the first lesson in the education of a chess pro­
gram. 

After SM, it appears that the law of diminish­
ing returns takes over. Addi t ional knowledge pro­
vides fewer rating points for increased effort. It is 
interesting to note that the three smallest gains 
(IS, PL, and PS) were for the three largest routines 
containing the most heuristics. The inclusion of IS 
appears to have a negative effect on performance, 
although the difference between 9.65 and 10 is not 
significant (as verified by other experiments). This 
is an example of knowledge used as a building block) 
IS by itself may not be significant, but its presence 
provides the environment necessesary for effective 
use of subsequent additions. The rating gains 
obtained by adding knowledge appear to decrease 
steadily, except for King Safety (see Table 2). 
This anomaly may be explained by the observa­
tion that KS is not an important factor in most 
positions, and in many games has l i t t le bearing on 
the play. 

Table 3 presents the results of the diminishing 
knowledge experiment. Whereas SM is the first 
piece of knowledge that one would give to a pro­
gram, PW is the most valuable to retain. When 
Phoenix is supplemented by all the knowledge rou­
tines, PW plays a much more important role than 
it does when working in an environment wi th l i t t le 
knowledge. This illustrates that some knowledge 
needs the right environment w i th which to 
interact to achieve best results. An analogy might 
be teaching new material to students who do not 
have the proper pre-requisites. 

The results of matches involving PS in both 
Tables 1 and 3 are interesting in that by removing 
PS the program often plays better! Most of the 
knowledge in PS is sophisticated, in the sense that 
it builds on many elementary concepts that would 
be taught early in any chess education. One possi­
ble explanation of the results then is that Phoenix 
does not know enough to use PS properly. 
Another possibility is that PS has not been imple­
mented correctly; either there is a bug in the rou­
tine, or the knowledge has not been properly 



J. Schaeffer and T. Marsland 587 

represented. Regardless, it appears that PS may 
not be of significant benefit to Phoenix as it 
currently stands. The argument for inclusion of a 
piece of knowledge should take into account the 
expected benefit versus the cost in terms of space, 
execution t ime, and implementation time. 

Finally, a few words of caution. These results 
must be taken in the proper perspective. They 
could be implementation dependent; other 
interpretations of chess knowledge may differ. In 
addit ion, since the experiments were done wi th 
only one program, the ratings reported should be 
interpreted as measuring relative rather than abso-
lute importance. Each match consisted of 20 
games and took an average of 55 hours of comput­
ing time on a VAX 11/780. Each experiment con­
sisted of 28 matches for a total of 1120 games, tak­
ing over 6 months to complete. Despite the large 
outlay of computing resources some statistical 
variabi l i ty is sti l l to be expected. 

4 . Conc lus ions 
Our experiments illustrate some of the 

benefits of a complete retrospective study of the 
knowledge in an expert system. In particular, 
they show that knowledge cannot be added in an 
arbitrary manner, since more sophisticated con­
cepts require that certain fundamental ideas be in 
place before they can become effective. If the 
knowledge components are independent, they may 
be added in any order, but this is not normally the 
case. Rather, there are interactions which are 
used to resolve contradictions, in order to provide 

Table 3: Diminishing Knowledge Results 

a "best guess decision" when the situation is not 
clear-cut. These interactions are seen clearly in 
the knowledge removal experiment. For example, 
they show the benefits of planning in chess (PL), 
something that was not obvious in the accumula­
tion experiment. They also illustrate the problems 
wi th knowledge that is used infrequently (KS), or 
perhaps is not well understood (PS). A l l too often 
such knowledge may be handling special cases 
only, and may even be detrimental when applied 
inappropriately. Probably this is an indication 
that too much diverse knowledge is embodied into 
a single routine, leaving open the possibility that 
the best implementation of the ideas contained 
therein has not been provided. 

Our experiments have opened up some other 
avenues of research. In particular, to what extent 
does knowledge compensate for depth of search? 
A well-known result is that an extra ply of search 
in a chess program is worth about 250 rating 
points [5], To what extent are the two inter­
changeable; can additional knowledge in Phoenix 
be used to compensate for a shallower search tree? 
Other experiments being formulated are designed 
to measure the granularity or (in)dependence of 
knowledge. None of the knowledge routines is 
completely independent of the others. By break­
ing the routines into finer granules, the interac­
tions can be identified more clearly, and redun­
dant or contradictory relations can be eliminated. 

References 
l .D . Kopec and M. Newborn, The Fourth World 

Computer Chess Championship, Communications of the 
ACM 27, 8(1984), 845-849. 

. Jonathan Schaeffer, The Relative Importance of 
Knowledge, ICCA Journal 7, 3 (1984), 138-145. 

. J.J. Gillogly, Performance Analysis of the Technology 
Chess Program, CMU-CS-78-189, Carnegie-Mellon 
University, 1978. 
T.A. Marsland and P.G. Rushton, Mechanisms for 
Comparing Chess Programs, ACM Annual Conference, 
1973, 202-205. 
Ken Thompson, Computer Chess Strength, Advances in 
Computer Chess 3, (1982), 55-50, Pergammon Press. 
E. Slater, Statistics for the Chess Computer and the 
Factor of Mobility, Symposium on Information Theory, 
Ministry of Supply, London, 1950, 150-152. 

Table 1: Accumulative Knowledge Result! Table 2: Effect on Rating of Additional Knowledge 


