
Generating Rules From Examples 

Bijan Arbab I B M Los Angeles Scientific Center, USA 

Donald Michie Turing Institute, Glasgow, UK 

INTRODUCTION 
T h i i work describes tools for generating decision trees that are opt i ­
mized w i th respect to linearity and are more efficient than those 
generated by Bratko's A O C D L [3] The rule generator is specialized 
to as to obey stated constraints corresponding to the above two 
properties. Rule induction takes advantage of one of the expert's 
most reliable and highly developed skills [9 ] , teaching by example, 
and avoids the need to resort to dialogue-acquisition of rules, tradi­
t ionally recognized as the bottle-neck problem of knowledge engineer­
ing. However, decision trees derived from situation-action pairs are 
inherently less descriptive for expressing concepts than first-order or 
multivalued logic used in other projects [16] [8] [5], The lack of 
descriptive power is primarily associated wi th the absence of quanti­
fied variables. 

R. Quinlan [12] and A Shapiro [13] have demonstrated that genera­
t ion of decision trees from a set of examples provided by a domain 
expert is a practical method for knowledge acquisition (see also A 
Martel l i and U. Montanari [6] for generation of optimal trees). 
Quintan's ID3 uses an information theoretic approach to control a 
"best-first no backtrack" search, producing decision trees of high, 
but not optimal, execution-efficiency. Bratko's A O C D L uses back­
track heuristic search. ID3 ignores the human understandability 
cr i ter ion for induced rules while A O C D L ignores the efficiency 
cri terion. ID3's attribute selection criterion, based on entropy, pro-
motet efficient decision tree execution on the machine. However, the 
decision trees are not easily understood by humans. A O C D L is 
beuristically guided by a non-linearity (branching) measure Arb i t rar i ­
ly branching structures are hard for a human to keep mental track 
of. So one idea is to only allow for linear or almost linear decision 
trees [10] . A decision tree is said to be linear if every node has at 
most one non-terminal son. Note that even trees w i th high branching 
ratios (multiple-value-attributes) and multiple decision classes can be 
linear. The relation between linear trees and understandability has 
been experimentally investigated by Shapiro and Niblett in [14] [15]. 
In two separate classification tasks in chess end-games, structured 
representations wi th tree-linearity constraint were uniformly under­
standable, whereas representations in the form of arbitraily branching 
decision trees were uniformly opaque. Our Rule Generator (RG) 
produces decision trees that are linear where such trees exist. In cases 
where such a tree does not exist, the most linear tree is constructed. 
The derived trees are efficient at execution time. These two require­
ments, linearity and efficiency, are inversely related. A balanced tree 
is shallower and more efficient for machine execution than a linear 
tree. In synthesizing decision trees, however, we always trade eff ic ien­
cy for linearity, in much the same way that structured programming 
trades efficiency for program clarity and readability. 

The presence of a domain expert makes "structured induct ion" possi­
ble, which breaks the problem into subproblems A detailed descrip-
t ion of structured induction is given by Shapiro and Niblett [13] [14]. 
Wi th structured induction the size of the example sets is never large, 
e.g., at most in the order of tens It has been found by Quinlan [12] 
that small example sets are sufficient to generate rules capable of 
classifying even large domains wi th high reliability. 

We have developed RG under the assumptions that: 

1 Structured induction is feasible 

2 Linearity of decision trees is to be optimized even at the expense 
of efficiency. 

3 Eff iciency of decision trees is to be increased only subject to the 
constraint that linearity is not affected 

Decision trees in Figure 1 correspond to an example set taken f rom 
planning domain for building an arch, see [4]. Each node of the tree 
corresponds to an attr ibute, leaf nodes represent decision classes, and 
the labels on the arcs are the attribute's values. These trees were 
induced by (1) Expert-Ease [7 ] , a commercial version of the ID3-
derived ACLS algorithm which produces efficient but non-linear trees; 
(2) A O C D L , which maximizes linearity but not efficiency; and (3) 
RG, which maximizes linearity and promotes efficiency. The exact 
non-linearity and efficiency (execution cost) measures of these trees 
can be seen for comparison in Figure 7 under EX4. 

RG incorporates linearity and efficiency measures wi th in an A O * [11] 
algorithm as heuristics to guarantee optimal linearity. The efficiency 
of the decision trees is increased according to each candidate at­
tribute's expected information contribution if appended at the given 
point in the tree, i.e. attributes w i th high information content w i l l 
be placed as high in the decision tree as possible thus increasing 
probabil i ty of classification to occur as early as possible. 



632 B. Arbab and D. Michle 

DESIGN PRINCIPLES 
We mentioned that experts are generally adept at communicating their 
expertise by means of examples. The examples thus form a language 
through which knowledge is communicated. There are three parts to 
this language: attributes, classes, and examples, the latter being defined 
in terms of attr ibute values and classes 

Wi th respect to a specified example set an attr ibute has decider status: 
total, partial, or non-decider An attribute's decider status is defined 
as fol lows: 

1. Total Decider, if the attr ibute partit ions the example set such 
that each part i t ion belongs to a single class 

2. Partial Decider, if the attr ibute partit ions the example set such 
that al l but one part i t ion belong to a single class. 

3. Non-Decider, if neither of the above is true. 

Decider status of an attr ibute plays an important role in our search 
for linear decision-trees. If an attr ibute must be selected from a set 
of total or partial deciders, then the l inearity of the f inal tree is not 
affected by the choice of a particular attr ibute, but eff iciency can 
depend on this choice. However, selection of a non-decider attr ibute 
can affect efficiency and invariably destroys linearity. Consider the 
example set in Figure 2. For simplicity we have assumed binary 
attributes and only two classes. 

Figure 2: An example set 

It so happens that in the above example set all candidate attributes 
for the top of the tree are non-deciders However, different attributes 
lead to various non-linear trees Using attr ibute A2 at the top leads 
to a tree of the form shown on the left side of Figure 3 while using 
either one of attributes A l , A3, A4 or A5 leads to a tree of the form 
shown on the right. 

Figure 3: Trees with different linearity measure 

Clearly the tree on the right is a more linear tree (we recall that linear 
decision trees are easier to understand). Therefore, when selecting 
an attribute one must consider their effect on the overall linearity 
and efficiency of the decision tree. In general, making the right 
selection requires a search procedure which is described in later 
sections. 

We have mentioned linear versus non-linear trees and have used 
degree of linearity as a measure of desirability for trees. This concept 
mutt be formalised to allow comparison of trees on the basis of their 
non-linearity. Some desirable characteristics of a function to compute 
non-linearity of trees are: 

1. An intuitive, yet formal, basis. 

2. Sensitivity to the size of trees. 

3 Sensitivity to location of non-linearity in a tree. 

Bratko [3] has proposed such a function The non-linearity measure 
which he proposes is based on the fact that traversal of a linear tree 
requires scanning through contiguous memory locations and minimizes 
jumps across the memory. This is one possible reason why linear 
decision trees are easier to understand than are non-linear trees. 

Let T be a decision tree whose root is A and subtrees are S1, S2, 
... Sm, as in Figure 4. 

Tl is absolutely linear thus its non-l inearity measure is zero. T2 is 
veTy close to being a balanced tree, non-l inearity one. T3 is preferred 
to T4, i.e this funct ion is sensitive to the location of non-linearity 
w i th in a tree (the lower non-linearities occurs in a tree the lower 
(better) its measure). 

Consider the example set of Figure 2. Two equally linear decision 
trees for classifying this example set are shown in Figure 6 

Figure 6: Trees wi th dif ferent execution cost 



Labels on the arcs correspond to the number of examples per value 
of each attribute Let c(a,) represent the execution cost of an 
attribute. There are 11 examples in the original example set and the 
execution cost for each tree can be computed on the basis of how 
early in the decision tree a classification takes place, one way of 
computing this cost is as follows: 

Assuming execution cost of each attribute has unit cost, c(a,)=l. the 
execution cost for trees T1 and T2 are 3 0 and 2 9 respectively, i.e. 
T2 is about 3% more efficient than Tl Thus, it is desirable for 
attributes with high information content (entropy) to appear as early 
as possible in a decision tree This increases the probability of a 
classification to occur as soon as possible RG employs entropy as 
the selection criterion for increasing efficiency, as in [12] 

We adapted Bratko's measure of non-linearity and used an attribute 
selection criterion that promotes execution efficiency of the resulting 
decision tree RG incorporates the notions of linearity and efficiency 
into an AO* [11] search technique. Details of RG are in [1] [2] 

The state space for finding a decision tree is finite and decreasing 
with the number of variables since the number of attributes and 
examples are finite An "And/Or" tree is used to represent the state 
space "OR" nodes correspond to candidate attributes and "And" 
nodes are subproblems that must be solved The root can be consid­
ered as an "And" node Each node may be labeled as solved, closed 
or open. Solved nodes mean that a solution has been reached from 
this node, a closed node means that a solution under current considera­
tion incorporates this node internally, a node is open if it is neither 
closed nor solved. 

During the expansion of the search tree, an optimistic estimate for 
non-linearity is used in conformity with the AO* algorithm for search­
ing "And/Or" graphs This estimate differentiates between total, 
partial and non-decider attribute Thus, if there are total deciders 
among the candidate attributes the search tree is expanded using them 
and the nodes are labeled as solved All partial decider attributes 
are considered if no total deciders exist and non-decider attributes 
are considered only if there are no total or partial deciders 

The optimal solution path is marked in the search tree according to 
(1) non-linearity of the partially constructed decision tree; (2) number 
of expected internal nodes and; (3) the attribute's entropy measure. 
The entropy measure is used simply as a tie breaker between attributes 
which produce equally linear decision trees Thus, optimality with 
respect to linearity is guaranteed while efficiency is only enhanced. 
When RG terminates the optimal decision tree can be constructed 
by tracing markers from the root node to the bottom and recording 
the attributes and their values 

RESULTS WITH RG 
RG was used to induce rules for some examples selected from the 
planning domain (construction of an arch and sorting a stack of 
blocks) and chess-end games (some examples from Shapiro's Ph.D. 
thesis [13]) in addition to some artificially constructed example sets. 
For the most part the rules synthesized by RG were more linear than 
those induced by ID3. The exceptions occurred when ID3 happened 
to construct a fully linear decision tree. ID3 produces more efficient 
decision trees than AOCDL or RG. This is to be expected because 
RG (and AOCDL) emphasizes the linearity criterion before efficiency. 
However, the decision trees generated by RG were more efficient 
than those produced by AOCDL since this program, AOCDL, only 
optimize! the linearity criterion. The decision trees generated by RG 
are more understandable than those generated by AOCDL, since RG 
optimizes efficiency without destroying linearity. For an example 
see Figure 1. The following are five examples that demonstrates the 
differences between these programs; see Arbab [1] for listings of the 
examples. 

B. Arbab and D.Michie 633 

Figure 7: Performance analysis of programs 

The above table indicates that RG produces decision trees that are 
as linear as those produced by AOCDL but more efficient, also, the 
produced decision trees are more linear than those produced by ID3 
Therefore, RG has been successful in its goal i e producing the most 
linear decision tree while enhancing execution efficiency 

ACKNOWLEDGMENTS 
We would like to thank Stephen Crocker, Michel Melkanoff and Stott Parker 

for their continued advice, and Farhad Arbab for his comments on this paper, 
and Gary Silverman, Jim Moore and Rina Dechter for providing many helpful 
suggestions throughout the project Many thanks arc also due to the IBM 
Los Angeles Scientific Center for providing resources and support 

BIBLIOGRAPHY 

[1 ] Arbab, B.. Building Expert Systems by Generating Rules from Exam­
ples, IBM Los Angeles Scientific Center report (LA. CA. 1984) 

[2] Arbab, B and Michie, D.. Generating Expert Rules from Examples 
in Prolog, Machine Intelligence 11 (Eds Hayes J. E, Michie. D and 
Richards. J) (1985) 

13] Bratko, I, Generating Human-Understandable Decision Rules. E 
Kardelj University Ljubljana (Working paper) (Yugoslavia, 1983). 

[4] Dechter, R and Michie, D, Structured Induction of Plans and 
Programs, IBM Los Angeles Scientific Center report (LA, CA, 1984) 

[51 Hayes-Roth, F and McDermott, J., Knowledge Acquisition from 
Structural Description. Proceedings of the Fifth IJCAI (Cambridge, 
Mass., 1977) p 356 to 362 

[6] Martelli, A. and Montanari, U.. Optimizing Decision Trees through 
Heunstically Guided Search, Communications of the ACM 21 (1973) 
p 1025 to 103 

[7] McLaren, R., Expert-East User Manual, Glasgow Intelligent Termi­
nals Ltd (1983) 

[8] Michalski, R. S, Pattern Recognition as Rule-Guided Inductive 
Inference, IEEE Transactions on Pattern Analysis and Machine 
Intelligence Vol. PAM1-2, No. 4 (1980) p 349 to 361. 

[9] Michie. D., The State of The Art in Machine Learning. Introductory 
Readings in Expert Systems (Ed. D. Michie) (1982) p 208 to 228. 

[10] Michie, D., 'Mind-like' Capabilities in Computers, a note on comput­
er induction, Cognition 12 (1983) p. 97 to 108. 

[11] Nilsson, N J., Principles of Artificial Intelligence. Tioga Publishing 
Co. (Palo Alto, CA, 1980). 

[12] Quinlan, J. R., Learning Efficient Classification Procedures and their 
Applications to Chess end-games, Machine Learning; An Artificial 
Intelligence Approach (Eds. Michalski. R. S.. Carbonel, G. and Much-
ell. T.) (Palo Alto, CA. 1982) p. 391 to 411. 

[13] Shapiro, A., Ph.D. thesis. The Role of Structured Induction in Expert 
Systems. University of Edinburgh: Machine Intelligence Research 
Unit (1983). 

[14] Shapiro, A. and Nibleit, T., Automatic Induction of Classification 
Rules for a Chess Endgame, Advances in Computer Chess 3 (Ed. 
Clarke. M. R. B.) (1982) p. 73 to 92. 

[15] Shapiro. E. Y., Inductive Inference of Theories From Facts. Yale 
University: Department of Computer Science (1981). 

[16] Vere, S. A., Inductive Learning of Relational Productions, Pattern-
Directed Inference Systems (Eds. Waterman. D. A. and Hayes-Roth. 
F) (New York, 1978). 


