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A b s t r a c t 

Methods for Conceptual Clustering may be explicated in 
two lights. Conceptual Clustering methods may be viewed 
as extensions to techniques of numerical taxonomy, a col­
lection of methods developed by social and natural scien­
tists for creating classification schemes over object sets. 
Alternatively, conceptual clustering may be viewed as a 
form of learning by observation or concept formation, as 
opposed to methods of learning from examples or con­
cept identification. In this paper we survey and compare 
a number of conceptual clustering methods along dimen­
sions suggested by each of these views. The point we 
most wish to clarify is that conceptual clustering processes 
can be explicated as being composed of three distinct but 
inter-dependent subprocesses: the process of deriving a h i ­
erarchical classification scheme; the process of aggregating 
objects into individual classes; and the process of assigning 
conceptual descriptions to object classes. Each subpro-
cess may be characterized along a number of dimensions 
related to search, thus facilitating a better understanding 
of the conceptual clustering process as a whole. 

I . INTRODUCTION 

Classification is a process critical to the success of 
an intelligent organism. The ability to classify objects 
(events, states, observations, etc.) as members of object 
families or concepts, is the basis of all inferential capac­
ity. Work in Art i f icial Intelligence has concentrated sig­
nificantly on developing mechanisms for classification, and 
the conceptual representations necessary to support these 
mechanisms. Machine Learning research, specifically work 
in learning from examples, has facilitated a better under­
standing of processes of concept identification, that is the 
derivation of concepts for a teacher imposed classification. 
Learning f rom examples however, has not addressed the 
problem of how a learner can originate classes, but only 
how conceptual descriptions can be assigned to externally 
provided classes. Recently methods of conceptual clus­
tering have been forwarded, which do provide (partial) 
solutions to the object class origin problem. 

Methods of conceptual clustering are best explicated 
and compared wi th respect to two alternative, but com­
plementary views. 

Two Views of Conceptual Clustering 

1) Methods of conceptual clustering are viewed as ex­
tensions or analogs to techniques of numerical tax­
onomy, a collection of methods developed by natu­
ral and social scientists used to form classification 
schemes over data sets. 

2) Already alluded to is that conceptual clustering is a 
form of concept formation or learning by observation 
as opposed to learning from examples. 

Each of these views has uti l i ty in explicating pro­
cesses of conceptual clustering, and each view wi l l con­
tr ibute to a unified set of dimensions along which we may 
characterize various conceptual clustering techniques. 

n . CONCEPTUAL CLUSTERING and 
NUMERICAL TAXONOMY 

Conceptual clustering is a process abstraction orig­
inally motivated and defined by Michalski (1980) and 
Michalski and Stepp (1983a) as an extension of processes 
of numerical taxonomy. Any clustering method, whether 
it be of the conceptual clustering or numerical taxonomy 
variety may be abstracted as follows. 

The Abstract Clustering Task 

Given: A set of symbolically described objects, O. 

Task: Distinguish clusters (ie. subsets of O), 
C\,..., C n , such that the set of clusters 
(ie. a clustering) is of high quality 
(perhaps not optimal) w i th respect to a 
clustering quality function. 

f This work was supported by Contract N00014-84-K-0345 from the 
Information Sciences Division, Office of Naval Research. 
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Methods of numerical taxonomy cluster objects that 
are symbolically described as sets of variable-value pairs 
(ie. attribute-feature pairs). In methods of numerical tax­
onomy, the quality of a clustering is a function only of the 
clusters of the clustering. That is, numerical taxonomy 
techniques attempt to find a clustering which maximizes 
a (numeric) quality function of the following form. 

Despite the usefulness of numerical taxonomy tech­
niques, any such method suffers from a major limitation, 
in that the resultant clusters may not be well character­
ized in some human-comprehensible conceptual language. 
This limitation can be of concern to a data analyst (or 
learning program) who (which) wishes to abstract the un­
derlying conceptual structure of object groups in order to 
hypothesize about future observations, or to simply com­
press the data in an intelligent, easily recoverable way. 
Michalski (1980) defines conceptual clustering as an ex­
tension over the techniques of numerical taxonomy, which 
directly addresses the problem of determining conceptual 
representations. In methods of conceptual clustering, the 
quality of a clustering is dependent on the quality of con­
cepts which may be used to characterize clusters of the 
clustering (eg. the 'simplicity' of concepts) and/or the 
map between concepts and the clusters they cover (eg. the 
'fit1 or generality of derived concepts). That is, methods 
of conceptual clustering seek to obtain clusterings which 
maximize a quality function of the following form. 

where CONCEPTS is a set of concepts which may 
be used to describe object clusters.1 

Conceptual clustering algorithms which have been 
framed as extensions to numerical taxonomy techniques 
include CLUSTER/2 by Michalski and Stepp (1983a, 
1983b), D ISCON by Langley and Sage (1984), and the 
R U M M A G E program by Fisher (1984). A number of 
other algorithms, although not explicitly labeled concep­
tual clustering techniques, but which nonetheless can be 
framed as such, include G L A U B E R by Langley, Zytkow, 
Simon, and Bradshaw (1985), M K 1 0 by Wolff (1980), 
and Lebowitz' EPP (Lebowitz, 1983) and U N I M E M 
(Lebowitz, 1982) systems. Each of these systems has a 
rough analog with some methods of numerical taxonomy 
which we now touch upon. 

The literature on numerical taxonomy distinguishes 
three classes of methods (Everitt, 1980). 

1 T h k definition of conceptual clustering differs from but is consistent 
with Michabki ' i (1980). 

Optimization techniques of numerical taxonomy form 
a 'flat' (ie. unstructured) set of mutually exclusive 
clusters (ie. a partition over the input object set). 
Optimization techniques make an explicit search for 
a globally optimal K-partition of an object set, where 
K is a user supplied parameter. This search for glob­
ally optimal partitions make optimization techniques 
computationally expensive, thus constraining their 
use to small data sets and/or small values of K. 

Hierarchical techniques form classification trees over 
object sets, where leaves of a tree are individual ob­
jects, and internal nodes represent object clusters. A 
'flat' clustering of mutually-exclusive clusters may 
be obtained from the classification tree by sever­
ing the tree at some level. Hierarchical techniques 
are further divided into divisive and agglomerative 
techniques, which construct the classification tree 
top-down and bottom-up, respectively. Hierarchical 
techniques depend on 'good' clusterings arising from 
a series of 'local' decisions. In the case of divisive 
techniques, a node in a partially constructed tree is 
divided independent of other (non-ancestrial) nodes 
of the tree. The use of 'local' decision-making in hi­
erarchical methods make them computationally less 
expensive than optimization techniques with an as­
sociated probable reduction in the quality of con­
structed clusterings. 

Clumping techniques return clusterings where con­
stituent clusters possibly overlap. The possibility 
of cluster overlap stems from independently treat­
ing some number of clusters as possible hosts for an 
object which must be incorporated into a clustering. 

We can impose a classification on conceptual cluster­
ing methods analogous to the one just discussed for meth­
ods of numerical taxonomy. The PtLrtitioning Module of 
CLUSTER/2 by Michalski and Stepp can be viewed as 
a conceptual optimization technique which given an ob­
ject set to be partitioned and a parameter, K, specifing 
the number of desired clusters (ie. the partition size), at­
tempts to construct an optimal K-partition of the object 
set. The partitioning module is computationally expen­
sive and is prohibitive for large values of K. The Hierarchy-
building Module of CLUSTER/2 is a conceptual hierarchi­
cal technique which builds a classification tree top-down 
(ie. it is a divisive technique). In dividing each node in 
the classification tree, the hierarchy-building module calls 
the partitioning module for small partition sizes (ie. K), 
and selects the optimal partition from among these possi­
bilities. Other divisive hierarchical techniques of concep­
tual clustering include DISCON and RUMMAGE. Both 
RUMMAGE and DISCON form monothetic classification 
trees in which any set of siblings in the tree are distin­
guished by their value along a single variable. In contrast, 
CLUSTER/2 allows arcs to be labelled by a conjunction 
of values across several variables, and thus CLUSTER/2 
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forms polythctic classifications. DISCON, unlike both 
RUMMAGE and CLUSTER/2, discovers an optimal clas­
sification tree (in terms of the number of nodes in the com­
pleted tree), whereas the latter two algorithms seek only 
to independently optimize the division of each node, in 
the hopes that the resultant trees wi l l be of 'high quality'. 
MK10 by Wolff represents an agglomerative hierarchical 
technique. Conceptual clumping techniques include DPP 
and U N I M E M by Lebowitz and GLAUBER by Langley 
et.al.. Each of these systems builds classification schemes 
equivalent to reentrant, acyclic graphs, where each node 
represents a cluster, and objects may be included in mul­
tiple clusters. 

The view of conceptual clustering methods as exten­
sions to methods of numerical taxonomy has served as a 
vehicle for presenting the input-output behavior of a num­
ber of algorithms. For a better understanding the process­
ing characteristics and ut i l i ty of each of these techniques 
we turn to the view of conceptual clustering as learning 
by observation. 

i n . CONCEPTUAL CLUSTERING A S LEARNING 

An alternative view of conceptual clustering relates 
this task to the well-studied problem of learning f rom ex­
amples. Both the conceptual clustering task and learning 
from examples are concerned wi th formulating some de­
scription that summarizes a set of data. In learning f rom 
examples, a tutor specifies which objects should be as­
signed to which class, and the learner must characterize 
each class. In conceptual clustering the learner has the 
two-fold task of creating object classes as well as charac­
terizing these classes. Thus there are two problems which 
must be addressed by a conceptual clustering algorithm, 
one of which is shared by processes of learning from ex­
amples. 

The aggregation problem is the problem of distin­
guishing subsets of an init ial object set, that is the 
formation of a set of classes, each defined as an ex-
tensionally enumerated set of objects. The aggre­
gation problem is addressed by tasks of conceptual 
clustering and not by processes of learning from ex­
amples which assume a set of classes has been sup­
plied by an external source (ie. a tutor) . 

The characterization problem is the problem of de­
termining characterizations (ie. concepts) for an ex-
tensionally represented object class, or each of mul­
tiple object classes. This problem has been exten­
sively addressed in work on learning from examples 
where object classes are presented by a tutor , and 
the learner is responsible for assigning a conceptual 
description to each class. In fact, the characteriza­
t ion problem, as defined here, and the problem of 
learning from examples are the same. Conceptual 

clustering processes must address the characteriza­
t ion problem since cluster quality, as we have stated, 
is dependent on conceptual descriptions which may 
be used to describe clusters. 

We do not mean to imply that the aggregation and 
characterization (ie. learning from examples) problems 
are independent, simply that they may be usefully mod­
ular ized, thus allowing us to make use of the wealth of 
information regarding learning from examples in analyz­
ing and formulating methods of conceptual clustering. 

Given this view, a natural approach to solving the 
conceptual clustering problem involves first solving the 
aggregation problem, and then using traditional methods 
of learning f rom examples to solve the characterization 
problem. In fact, present conceptual clustering algorithms 
can be framed in this way. For instance, GLAUBER forms 
classes based on the most commononly occuring relation 
(defined over an object set) and then characterizes these 
classes w i th respect to the remaining relations. MK10 
employs a very similar technique (in fact, GLAUBER'S 
method is based on MK10). U N I M E M and IPP construct 
a number of alternative classes each of which is based on 
the predictive features (ie. variable values) shared by all 
class members, and characterized by a conjunction of all 
predictable features shared by class members.2 

Both R U M M A G E and DISCON use a list of user-
specified attributes to form possible partitions over an 
object set. RUMMAGE considers a number of part i ­
tions, each implied by the values of a distinct attr ibute 
and selects that part i t ion (ie. clustering) which possesses 
the 'best' conceptual descriptions of objects over the re-
maining attributes. Thus, RUMMAGE solves the aggre­
gation problem by using individual attribute values to 
imply possible clusters (the values of a single attr ibute 
collectively imply a clustering), and then utilizes a learn­
ing from examples subroutine to characterize clusters in 
terms of the remaining attributes. RUMMAGE applies 
this method recursively to each of the resulting clusters, 
thus tracing out a single hierarchical classification scheme. 
Like R U M M A G E , DISCON uses attribute values to imply 
possible partit ions, thus solving the aggregation problem. 
Unlike R U M M A G E , DISCON does not construct an ex­
pl ici t description of the devised clusters over the remain­
ing attr ibutes, but simply calls itself recursively on each 
of the possible clusters, thus forming a classification tree 
over the objects of each cluster wi th respect to the remain­
ing attr ibutes. Both RUMMAGE and DISCON are to a 
greater or lesser extent based on Quintan's ID3 program 
for learning f rom examples (Quinlan, 1983) An abstrac­
t ion of the aggregation processes of both RUMMAGE and 
DISCON is given in figure 1. 

3 See Lebowits (1983) for definitions of predictive and predictable 
features. 
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The Partitioning Module of Michalski and Stepp's 
CLUSTER/2 system uses a more experimental solution 
to the aggregation problem than the systems described 
above. Given the task of dividing the observed objects 
into N disjoint classes, the system initially selects N seed 
objects (initially this is done randomly). The system 
treats each such seed as a positive instance of some class 
and treats the other seeds as negative instances of the 
same class. The program then derives maximally-general 
discriminant descriptions for each class implied by the 
seeds.8 The result is that for each seed a number of de­
scriptions (ie. concepts) are derived, each of which cov­
ers that seed and no other seed. Each description of 
each seed also covers some number of non-seed objects 
which are assigned to the same class as the appropri­
ate seed. Once all objects (seed and non-seed) have been 
classified with respect to the maximally-general discrim­
inant descriptions, these maximally-general descriptions 
are 'thrown out', and maximally-specific characteristic de­
scriptions are derived for each defined object class. By 
selecting one description for each seed, a set of (possibly 
overlapping) clusters, that is a clustering, is implied which 
classifies the input object set. A pictorial summary of the 
above process is given in figure 2. 

The reasons for this seemingly roundabout means of 
aggregating and describing object classes are best expli­
cated in Michalski (1980). By first formulating maximally-
general descriptions, any clustering implied by any combi­
nation of maximally-general descriptions (one description 
for each seed) can be shown to contain at least one clus-
ter which covers an arbitrary object. Thus by first formu­
lating maximally-general descriptions, CLUSTER/2 guar-
entees that every observed object can be classified. Once 
all objects are classified, derivation of maximally-specific 
descriptions serve to reduce the possibility of overlapping 
clusters with respect to unobserved objects. A 'fix-up' op­
eration is then employed to make all possible clusterings 
mutually-disjoint. 

I V . OTHER DIMENSIONS FOR CHARACTERIZING 
CONCEPTUAL CLUSTERING ALGORITHMS 

We have thus far characterized conceptual cluster­
ing algorithms in terms of the structuring of the clus­
terings they produce, and in terms of the ways in which 
each technique deals with the problems of aggregation and 
characterization. We now define dimensions relating to 
search, along which we may describe the subprocesses of 
conceptual clustering. We begin by discussing dimensions 
of characterization (ie. learning from examples). 

A. Searching the Space of Characterizations 

As we have seen, the characterization component 
of the conceptual clustering task is identical to the well-
studied task of learning from examples. Thus, we can em­
ploy previous results from the machine learning literature 
in our analysis of this component. For instance, Mitchell 
(1982), Dietterich and Michalski (1983), and Langley and 
Carbonell (1984) have proposed various dimensions along 
which methods for learning from examples may vary. Mit­
chell points out that the space of concept descriptions is 
ordered according to generality. This ordering leads to 
three alternative schemes for systematically searching the 

3 Set Michalski (1983) for definition! of discriminant and character­
istic description!. 
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space of hypotheses. First, one may start w i th a very spe­
cific hypothesis, and move toward more general descrip­
tions in search of one that covers the instances; this ap-
proach may be called learning by generalization. Second, 
one may start w i th a very general hypothesis, and move 
toward more specific descriptions that cover the data; this 
may be called learning by discrimination. Finally, one 
may search in both directions, hoping to converge on the 
correct hypothesis; this is Mitchell's version space strat­
egy. 

Applying this analysis to the characterization com­
ponents of the existing conceptual clustering systems, we 
find that U N I M E M / I P P and GLAUBER use general­
ization in characterizing their groupings. Recall that 
CLUSTER/2 forms characterizations at two points in its 
processing: the derivation of maximally-general discrimi­
nant concepts uses a discrimination approach; the deriva­
t ion of maximally-specific characteristic concepts uses a 
generalization approach. RUMMAGE and DISCON use 
attr ibute values to form a number of possible partit ions, 
where each attr ibute value may be viewed as a maximally-
general discriminant concept of the object group it im­
plies. No discrimination or generalization is employed 
in this process. RUMMAGE does however, use gener­
alization to derive characterizations of object groups over 
those attributes not used in partit ioning the object groups. 
Wolff's MK10 does not form characterizations per «e, 
though it does generate conjunctive descriptions based on 
co-occurrences. 

A second dimension involves the method used to d i ­
rect search through the space of hypotheses. Some AI 
systems that learned from examples have used depth-first 
search to select hypotheses, others have used breadth-
first search, while st i l l others have non-exhaustive meth­
ods such as beam-search and best-first search. The non-
exhaustive methods require some evaluation function to 
order hypotheses, so the same search technique may give 
different results depending on the evaluation function it 
employs. Because of the l imited concept languages em­
ployed by each of the conceptual clustering systems dis­
cussed, there is exactly one maximally-specific concept 
description for any given object group, which is to say 
there is no (or only a degenerate) search occuring in most 
cases. Michalski and Stepp's CLUSTER/2 carried out 
a beam search in deriving maximally-general discrimi­
nant concepts, using evaluation functions supplied by the 
user (such as simplicity of class description). The for­
mation of maximally-specific characteristic descriptions in 
CLUSTER/2, as w i th all of the other systems, is deter­
ministic. 

Th i rd , one may distinguish between data-driven and 
mode-driven learning systems. In data-driven systems, 
the operators for moving through the space of hypotheses 
require data as input; thus, these data direct the search 

through the problem space. In model-driven systems, 
some other knowledge is used to generate new hypothe­
ses, and the data are used only in the evaluation stage. 
CLUSTER/2 , U N I M E M , GLAUBER, and MK10 employ 
data-driven characterization methods, while the remain­
ing systems can be viewed as model-driven systems (to 
the extent that they form characterizations). However, 
the "models" used by DISCON and RUMMAGE consisted 
only of a list of attributes that might be used in construct­
ing a classification scheme. 

A final dimension concerns whether ail observations 
are processed together, or whether they are handled one at 
a t ime. The first situation may be called non-incremental 
learning, and is plausible for modeling scientific data anal­
ysis. The vast majority of conceptual clustering systems 
(CLUSTER/2, DISCON, RUMMAGE, GLAUBER, and 
MK10) are all non-incremental learning systems. The sec­
ond situation may be called incremental learning, and is 
more plausible for modeling concept formation based on 
continuous interaction wi th one's environment. Of the ex­
isting conceptual clustering systems, only U N I M E M and 
IPP can be viewed as incremental learners. This dimen­
sion is associated w i th the entire conceptual clustering 
system, not only w i th the characterization component. 

B. Searching the Space of Aggregations 

As we have seen, conceptual clustering methods solve 
the aggregation problem as well as the characterization 
problem, suggesting another set of dimensions along which 
such methods may differ. In this case, two dimensions 
present themselves: 

• Search control. One can imagine a conceptual clus­
tering system systematically considering all possible 
groupings, evaluating them, and then selecting the 
best. However, none of the systems we have con­
sidered employ such an inefficient approach. Upon 
inspection, we find that CLUSTER/2 uses a hi l l -
cl imbing method to home in on an acceptable aggre­
gation, using characterization techniques to evaluate 
its choices. In contrast, the remaining systems carry 
out only degenerate searches (of depth one) through 
the aggregation space, since they select their group­
ings in a one-step process. 

• Nature of the operators. In order to understand 
why R U M M A G E , DISCON, and most other sys­
tems require only one-step searches, we must ex­
amine the operators they use to generate candidate 
groupings. RUMMAGE and DISCON both require 
a user-specified list of attributes and their values; 
by selecting an attr ibute, these systems automati­
cally generate a candidate grouping (one for each 
value of the attr ibute), which can then be evaluated. 
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GLAUBER, MK10, and UNIMEM/EPP all accom­
plish the same effect in a more data-driven manner. 
Only in CLUSTER/2 do we find a less constrained 
operator, which selects seed objects that may or may 
not lead to a useful characterization. 

C. Searching the Space of Hierarchies 

We have seen that unlike systems that learn from 
examples, conceptual clustering methods must also deter­
mine their own aggregations. However, there remains an­
other issue that distinguishes conceptual clustering from 
the task of learning f rom examples. In the latter, one 
is generally concerned w i th forming concepts at a single 
level, while conceptual clustering usually focuses on gener­
ating hierarchies of concepts. Some numerical taxonomy 
methods (the optimization techniques) generate only sin­
gle level groupings, but most methods arrive at some tree 
of groupings. 

The implication for our analysis of conceptual clus­
tering methods is clear - the search for aggregations and 
the search for characterizations are embedded wi th in a 
higher level search through the space of classification trees. 
Moreover, we can classify the existing clustering systems 
in terms of two additional dimensions. These are: 

• Direction of the search. Upon examining the existing 
conceptual clustering systems, we find that divisive 
(top-down) methods have been used by the majority, 
including CLUSTER/2, DISCON, and RUMMAGE. 
These systems start w i th a single class of obser­
vations, and proceed by subdividing the instances 
into classes, these classes into subclasses, and so 
for th. However, one can also imagine methods that 
begin w i th separate "classes* for each observation, 
jo ining these classes together to form larger classes, 
and jo in ing these classes in tu rn . Such bottom-up 
(agglomerative) methods have been used by a m i ­
nority of conceptual clustering systems, including 
GLAUBER and MK10. Other arrangements are also 
possible; for example, Mervis and Rosch (1981) have 
suggested an approach where one first forms classes 
of medium generality, and later forms both more 
general and more specific classes. U N I M E M / I P P 
behaves in roughly this manner and at any point in 
its processing classes of greater or lesser generality 
than existent classes may be added to the classifica­
t ion. 

• Search control. Conceptual clustering systems must 
somehow direct their search through the space of h i ­
erarchies. Upon examining the existing systems, we 
f ind that CLUSTER/2 , R U M M A G E , GLAUBER, 
and MK10 carry out only degenerate searches through 
this space. The reason is that their operators consist 
of techniques for finding optimal aggregations and 
characterizations. Search is involved at these lower 

levels, but the result is an optimal extension to the 
hierarchical tree. In contrast, DISCON has degener­
ate search schemes at these lower levels, but carries 
out a best-first search through the space of hierar­
chies. It accomplishes this through an exhaustive 
look-ahead process, evaluating entire sub-trees and 
preferring those containing fewer nodes. U N I M E M 
and IPP also carried out search at this level, enter­
taining multiple organizations (thus using a form of 
beam search); however, these organizations might be 
revised later in the search, so backup was allowed. 

Although these dimensions are similar to those presented 
for the characterization problem, it is important to note 
that the current dimensions are separate from those for 
characterization. For instance, CLUSTER/2 employed 
beam search to find maximally-general discriminant de-
scriptions, but employed only a degenerate search for de-
termining the best hierarchy. 

V . CONCLUDING REMARKS 

We have discussed the mechanics of a number of con­
ceptual clustering methods and defined dimensions which 
serve to clarify the differences and similarities between 
methods. Our bias has been that further work in con­
ceptual clustering is best facilitated by first understand­
ing these processes in terms of well-understood concepts. 
Following Michalski (1980), we have presented concep­
tual clustering as an extension of numerical taxonomy. 
Further, by framing conceptual clustering as a compo­
sition of aggregation and characterization processes, we 
have shown a relationship between conceptual clustering 
and methods of learning from examples. This dichotomy 
has led to a view of conceptual clustering processes as con­
ducting a three-tiered search: a search through a space 
of hierarchies; a search through a space of possible ag­
gregations; and a search through a space of conceptual 
descriptions. 

It is our view that explicating conceptual clustering 
as multi-layered search wi l l not only ease comprehension 
of existing methods, but facilitate work in a number of 
st i l l open problem areas.4 One problem concerns the task 
of clustering structured objects, where object descriptions 
allow relations to be represented between attr ibute val­
ues of an object. Vere's T H O T H system (Vere, 1978) is 
currently being investigated as a basis for a conceptual 
clustering system for structured objects. T H O T H discov­
ers a minimal set of generalizations which cover a given set 
of relational production instances, where each production 
instance is a (before) state - (after) state pair. Each state 
representation is equivalent to a structured object repre­
sentation. T H O T H traces out a hierarchical classification 

4 See (Langley and Carbonell, 1984; Michalski and Stepp, 1983b) for 
comprehensive diacuasioni of open problems in conceptual cluttering. 
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bottom-up and in many ways resembles an agglomerative 
approach to conceptual clustering. A second area of inter­
est to us concerns the problem of util izing information on 
the functionality of objects to aid the formation of useful 
clusters. An approach suggested in discussion by Nelson 
(1977) involves using domain-specific knowledge of object 
functionality to guide the search for possible aggregates, 
and to use perceptual information as the basis of char­
acterization. Distinct forms of knowledge may serve to 
guide the search for hierarchies. By distinguishing lev­
els of search we can more easily motivate and express the 
rules, heuristics, and descriptive languages, util ized at dif­
ferent levels. 
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