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Abstract 

Tools for building production systems encounter the 
problem of low performance, and many researchers are 
working on the improvements of performance of these tools. 
This paper proposes a distributed approach for inferring 
production systems. The resulting distributed production 
systems are expected to be built over distributed systems with 
broadcast capability, and production rules on different sites 
work in a cooperative way with only a few communications 
between them. Working memory on a local site is made visible 
to rules on remote sites. A tool for building distributed 
production systems, called DPS, has been implemented. DPS 
not only supports elegant constructs for expressing the capacity 
of distributed inference but also provides the facilities for 
building clusters of rules. With these facilities, DPS allows 
users to make the inference engine focus on a particular set of 
rules. This paper also describes the knowledge representation 
and other features about DPS. 

I. Introduction 

The development of tools for building rule-based systems 
has evolved in several directions. Consultation-based tools use 
the backward-chaining reasoning mechanism [1], together with 
questioning-and-answering facilities to achieve goals. Systems 
and tools with blackboard architecture [3,10,11] emphasize on 
the integration of complicated heuristic control and uncertain 
knowledge. There are also researches focusing on the 
architecture of forward-chaining reasoning mechanism, 
especially those derived from Rete algorithm [12,14]. 

The major advantages of production system tools such as 
OPS5 [5] and ORBS [4] are derived from the elegance, 
expressiveness and moderate complexity of their knowledge 
constructs. Users can create lists of attributes about concepts 
and a set of production rules each of which has condition 
elements to match against user-defined concepts, and actions to 
take when conditions are satisfied. The fact that condition 
elements of each rule join the relationship between concepts 
suggests more powerful expressiveness than other tools do. 
However, they pay for the expressive power of production 
rules. For example, OPS5 has to do more work on complex 
pattern-matching. Rete algorithm [6] for many-pattern 
/many-object pattern match problems was introduced to resolve 
the problem. Nevertheless, low performance is still a 
disadvantage of OPS5. So far, several approaches have been 
proposed to improve it, such as rewriting OPS5 into OPS83 
[9] in C, improving the inference mechanism of OPS5 by 
eliminating unnecessary matching and supporting more 
powerful constructs for building production rules [12], and 
introducing parallel architectures [14, 7] to exploit the 
parallelism of pattern-matching and rule-firing. 

In this paper, we propose a model for distributed 
processing of production systems. In this model, a production 
system, which can be constructed as a virtual integrated Rete 
network [6], is distributed over a distributed system or a local 
area network. Knowledge distribution is done by users. 
Subsystems on different sites are almost autonomous, and they 
can cooperate with each other. This greatly exploits the 
parallelism between subsystems since unrelated subsystems 
can run in parallel. A tool named DPS is constructed under this 
model. Moreover, we also support other features to improve 
the performance of production systems, including the split of 
Rete network on a single site into a cluster of subnets, 
object-based knowledge representation, and enhanced rule 
facilities. 

I I . Knowledge representation 

The attraction of expressive power of knowledge 
representation in OPS5 has a great influence on the scheme of 
knowledge representation of DPS. We found that one of the 
reasons that make OPS5 popular comes from the semantic 
meanings of production rules. Since a rule consists of a 
condition part (LHS) and an action part (RHS), a rule can join 
the relationship between different concepts described in LHS, 
and then execute responding actions in RHS. The 
representative manner and complexity of such rules are at 
similar level of human thoughts, and hence facilitates the work 
of knowledge engineering. 

In general, DPS has OPS5-like syntax of rules. In addition 
to the LHS and RHS, each rule of DPS may be given an 
attribute. When rules are interpreted, those with the same 
attribute arc constructed as a sub-Rete-network which is used 
to narrow the inference space during execution of the systems. 
Moreover, users are allowed to use a prefix "?" or "? 
site-name" in a condition element to represent a condition 
element which matches against the working memory on remote 
sites. Such condition elements arc called remote condition 
elements. This will be described later in more details. 

DPS allows users to define object-based concepts [15], 
i.e., each concept is described as a list of attributes and is 
associated with any number of methods which are invoked by 
passing messages to an instance (working memory element, or 
wme) of the concept. The following is an example to illustrate 
the general form of knowledge representation in DPS. 

(remote-site sensing-station) ; declare the remote sites 
(object manager name location situation) ; declare object "manager" 

;whose attributes include "name", "location" and "situation" 
(object store-house location material (status safe)) ; declare object 

; "store-house", "safe" is default value of "status" attribute 
(object material name stock property) ; declare object "material" 
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(method manager emergency (name cause) ; a method of "manager" 
( USP code for noticing and ; A method can be invoked 

solving emergent events )) ; by message-passing 
; Here "emergency" is a message name, "name" and "cause" 
; are arguments passed by the calling action. 

(p setting-store-house-status ; The third condition 
(store-house material: <x> status: safe) ; element matches against 
(material name: <x> property: volatile); the working memory on 

? sensing-station ; remot site "sensing-
(circumstance temperature-in-house: > 35) ; station" 

-> 
(modify store-house 

status: dangerous 
cause: temperature-too-high) 

(focus emergent-ecent) ; Make the inference 
; engine focus on rules 

::: sensing-events) ; about emergent events. 

(p emergency-manipulating 
<person> (manager 

name: <x> 
location: <y> 
situation: on-business) 

(store-house location: <y> 
status: dangerous 
cause: <z>) 

-> 
(send-message <person> emergency: <x> <z>) 

; invoke the method associated with message 
"̂emergency" to solve emergent events 

::: emergent-event ) 

The RHS of a rule allows an action to invoke a LISP 
procedure by message-passing. This procedure not only 
accepts arguments passed from calling actions, but also uses as 
variables the attributes in the matched wme. Compared with the 
"call" action in OPS5 which demands the special treatment of 
passed arguments, message-passing of DPS simplifies the use 
of procedure calls. The RHS of a rule also allows actions to 
control inference engine and manipulate working memory. 

Rule Clustering 

The ORBS production system [4] and blackboard systems 
such as Hearsay-II [3, 8], HASP [11] and AGE [10] allow 
rules to be grouped into related collections. There is generally a 
pointer that designates the current collection. Only rules from 
the current collection are allowed to match against working 
memory. There are several attractive language properties of rule 
clustering: it allows a complex space to be broken into more 
understandable pieces; it tends to simplify rule debugging 
because the debugging space can be narrowed to one rule 
cluster instead of the whole rule base; and it allows the system 
developer to reuse components (the rule clusters) found to be 
useful in the past. 

In DPS, a rule can be given an attribute at the field 
indicated by the symbol":::". Rules with the same attribute are 
grouped together. A subsystem on one site has a working 
memory and a number of rules grouped into a number of 
clusters, if needed. The inference engine may focus its 
inference space on one or more rule clusters. The switching of 
inference space among these clusters is guided by the selection 
of appropriate rule attribute. Fig.l shows two rule clusters 
mentioned above and the working memory they share on the 
local site. When the rule setting-store-house is fired, the 
execution of (focus emergent-event) changes the inference 
space to the emergent-event cluster to manipulate emergent 
events. 

Furthermore, since systems like OPS5 and its various 
derivatives use the Rete algorithm for the pattern match 
function, part of the efficiency comes from sharing pattern 
matching test which are identical among all the rules that have 
the tests. However, the OPS5 Rete shares results of join tests 
only if the patterns are the same starting from the first one. 
Thus it is hard to get the benefits of shared tests. When a new 
working memory element is created, all the beta join nodes of 
satisfied tests should be modified. If later the working memory 
element is removed, these beta nodes should be modified all 
over again. It will be wasteful if very few of these rules are 
fired during the addition-then-deletion of the same working 
memory element. 

Here, we allow the rules to be grouped into several 
collections, only rules from the current collection are allowed to 
match. In this way, the addition-then-dcletion of the same 
woring memory element will not cause the beta-node 
modification in other clusters. This tends to improve the 
performance. An example is given later in section IV. 

m. Distributed inference of production rules 

In DPS, users at one site of a local area network can share 
the knowledge resident on remote sites, and production rules 
on different sites can interact with others according to the 
shared knowledge. DPS is expected to provide elegant syntax 
to express the distributed inference of production rules. 

There are two major reasons why DPS supports the 
capacity of distributed computation. First, knowledge 
distribution can be done by users. Since a single rule is the 
grain-size of a predictable action sequence and knowledge 
distribution should be based on knowledge, researchers who 
worked on the exploitation of parallel production systems on 
parallel computers [7] have found that it is difficult to 
automatically distribute knowledge over processors. The 
distributed system approach, allowing users to distribute 
knowledge as they wish, can do better distribution of 
knowledge with the guideness of users. Hence, it exploits 
higher parallelism than the parallel approach on parallel 
computers. Second, with appropriate distribution of 
knowledge, systems written in DPS can solve distributed 
problems with two forms of cooperation between working 
sites: task-sharing and result-sharing [13]. Several nodes can 
participate in a single job and partial results between nodes can 
be shared to produce further results. 

The distributed production systems built by DPS are 
expected to be divided into several autonomous subsystems, 
each of which resides on a single site and can proceed 
match-action cycles concurrently with each other. DPS 
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supposes only a few communications are needed among these 
subsystems. In order to exploit the capability of distributed 
inference easily, DPS supports several facilities as elegant as 
possible. As an example shown in Fig. 2, users can build and 
distribute rules on a nework which consists of sites X, Y, and 
Z. 

Fig. 2 Rules distributed over a network. 
".." means "visible to" 

" -...." means "invisible to" 

The symbol "? " means the specified condition element is a 
remote condition element which matches against working 
memory on remote sites, and "? site " matches against the 
working memory on the specified remote site. The 
remove-local action is used to make the specified wme invisible 
to the local site; and if the removed wme was created on 
the same local site, then its effect is the same as that of 
remove action, i.e., that wme is invisible to all sites. The 
make action creates a new wme visible to all sites. The 
make-local action is similar to make action except that the 
visibility of the newly created wme is limited in the local site. It 
is used to hide a private working memory from other sites. In 
addition, the action part of a rule may also include a remote 
method invocation by sending a message to the matched remote 
wme. With these facilities, users can manage private and 
shared working memory and respond to remote situations. 

IV. Implementation 

In general, DPS interpreter acts in matching-action cycles 
like OPS5, but remote condition elements and additional tasks 
must be considered. The system architecture of DPS is shown 
in Fig.3. Working Memory (WM) collects data which 
production rules will match against. Visible Remote Working 
Memory contains data, received from remote sites, that satisfy 
remote condition elements of rules on the local site. Remote 
Condition Test is the set of condition elements extracted from 
remote rules which match against WM on the current site. Let's 
consider the example shown in Fig. 2. During the session of 
rule interpretation on site Y, the remote condition element (B) 
in rule r3 is broadcast to remote sites. Site X will receive 
condition element (B) and then build it in Remote Condition 
Test. Whenever a wme that satisfies (B) is newly created on 
site X, it will be automatically transmitted to the Visible Remote 
WM on site Y. This saves communications during the 
execution of systems. WM Controller is responsible for 
maintaining the consistency of data between the WM on the 
local site and visible WMs on remote sites. 

IV. 1 Rule clustering 

In DPS, there is an activity pointer which designates the 
current cluster. The initial value of the pointer is given by users 
at the beginning of execution. Each time when the RHS actions 
of a rule arc executed, it may cause some variation in working 
memory. Since the working memory is shared by the clusters 
on the site, new working memory elements should be known 
to the noncurrent clusters. Here, we go around the problem 
with a simple and clear approach. 

DPS gives each cluster a last-time-tag, which records the 
last working memory time tag for current cluster when 
switching to another cluster. When later this cluster is selected 
as the current cluster, it should match the working memory 
elements since the one whose time tag is immediately greater 
than last-time-tag. In this way, each cluster, when behaving as 
the current cluster, knows the variation since it switched to 
another cluster. Thus the addition-then-deletion of the same 
working memory element may affect only current cluster 
because noncurrent ones do not know the occurrence of 
addition-then-deletion event. All they can see are the elements 
exist in the working memory. For example, consider the two 
clusters in Fig.4. 

Fig. 4. An example of addition-then-delction of the same wme 
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If current cluster is cluster2 and at first ruleS is fired, (i e 
there exist working memory elements A and C that satisfies 
condition elements (A) and (C).) then new working memory 
elements D and C are added to working memory. Next, if rule6 
is fired, working memory element B is added to working 
memory. Finally, rule7 is fired and clusterl is selected to be the 
current cluster. The working memory so far is shown in Fie 
5(a). 

In clusterl, ruiel and rule2 are satisfied and added to 
conflict set. According to the resolution strategy, rulel is fired 
first and it adds element A to working memory. This causes an 
instantiation of rule4 to be added to conflict set. Next, rule3 is 
fired and element F is added to working memory. Finally, 
rule2 is fired, and element A is deleted. The instantiation of 
rule4 should be deleted from conflict set. Later when cluster2 is 
selected as the current cluster, all it can see is working memory 
element F (as in Fig. 5(b)). The addition-then-deletion of 
working memory element A has no effect on cluster2. This 
improves performance significantly when there are many 
identical condition elements among the clusters. 

IV.2 Distributed inference 

The remote condition elements of rules are examined 
during the time of rule interpretation. DPS interpreter creates a 
special rule in the target site(s) for each remote condition 
element. The syntax of a special rule is: 

(p <special-name> 
< the remote condition element> 

--> 
<send 1 <target-site> :<cluster> :<address of corresponding &mem node> 
::: <remote-condition-test>) 

Once the special rule is built, it can match against the 
working memory on remote sites. If the special rule is fired by 
a remote DPS system, then its RHS action is executed and the 
result is sent back to the local site. When received by the local 
DPS system, the matched data will be put into the Visible 
Remote WM and then copied to the specified &mem node. This 
makes Rete networks, which distributed over cooperating 
sites, form a virtual integrated Rete network since there exist 
virtual channels between special rules in target sites and &mem 
node in the local site; i.e., local rules sense changes on remote 
WM immediately after they occurred. For example, the rule, 
which contains a remote condition element, in site-A: 

(p remote-condition-example 
(A) 
<B) 
? site-B (C) 

--> ; 

results in the Rete networks shown in Fig. 6. 

If a firing rule causes an execution of "make-local" 
("remove-local") action, the working memory element is added 
to (removed from) working memory , and may trigger another 
inference cycle. If the action is "make", which allow a new 
working memory element to be visible to remote sites, then the 
working memory element should be matched not only by the 
rules in current cluster but also by the special rules in 
remote-condition- test cluster on local site. This seems natural 
because the working memory elements created by "make" 
actions are visible globally and may be tested by some remote 
rules. The "remove" action removes working memory elements 
visible to remote sites, so it must be implemented in a special 
way. 

Fig. 6 (a) A cluster in sitc-A. 
(b) The remote-condition-test cluster of site-B. 

IV.3 Task scheduling 

DPS system maintains a task queue on each site, which 
orders the tasks generated by the inference engine and the 
communication unit. We have four kinds of tasks. They are 1) 
remote-test rule building, 2) message passing, 3) remote 
deletion or modification of working memory element task, 4) 
RHS actions of selected rules. 

When interpreting a rule containing remote condition 
elements, DPS interpreter creates a remote-test rule building 
task for each remote condition element and puts them in the 
task queue. When selected by the task scheduler, the task will 
be sent to the communication unit and then the remote sites, 
then executed by remote DPS interpreter. For the balance of 
DPS system, rules in the execution set resulting from conflict 
resolution are not evaluated immediately. They are grouped into 
a task, put into the task queue and rated by the task scheduler. 
They cannot be executed until selected by the scheduler. When 
the communication unit receives a request for building a special 
rule for remote condition element, the request is also treated as 
a task and must be put into the task queue. Rules in the 
remote-condition-test cluster are conditions received from 
remote DPS systems, along with a RHS action which sends the 
matched wme to a target site. If anyone of them is satisfied, its 
RHS action should be executed immediately instead of being 
put into the task queue, since the execution has no effect on the 
local working memory. 

IV.4 Consistency maintenance 

Let's consider the previously mentioned example in Fig. 
7. After rule rl on site X has fired, it may happen that the 
condition parts of rule r2 on site X and rule r3 on site Y are 
both satisfied, and rule r3 may remove wme B just before rule 
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Fig. 7. Inconsistency occurs between site X and site Y 

r2 fires. Here, inconsistency arises between working memory 
on site X and site Y. Other situations may result in similar 
inconsistency. DPS solves this problem by accessing the 
shared working memory elements (wmes) via locks. Working 
memory controller is responsible for the manipulation of locks 
of wmes according the following disciplines. 

. Before a rule, whose condition part contains remote condition 
elements, would fire, DPS has to request the write locks of 
matched remote wmes if these wmes are to be changed by the 
rule, and the read locks if these wmes are not to be changed. 

. Read locks are shared, and many rules on different sites may 
concurrently read a wme. Write locks are exclusive, and no 
other rules may access a locked wme while its write locks is 
held by a rule. 

. DPS requests locks for a rule only when the LHS of this rule 
is satisfied and its RHS is placed in the task queue. 

. A rule can fire only after the involving locks are available, and 
all locks held by a rule are released until the end of execution 
of the rule. 

. Write lock requests made to read-locked wme are queued until 
all read locks are released. 

. WM controller serves lock requests with first-come-first-
serve scheme. 

. When the write lock of a wme is held by a rule, WM 
controller refuses all lock requests made to the same wme 
until the lock is released (since this wme is modified or no 
longer exists). Hence, a rule task in the task queue is 
canceled if one of lock requests made by it is refused. 

. Modification of a shared wme is made visible to involving 
remote sites. 

These disciplines guarantee the consistency of visible WM 
between cooperating sites. 

V. Performance evaluation 

Since DPS leaves the work of initial knowledge 
distribution to users, the performance of DPS is conceivably 
related to the way how users distribute their knowledge on 
cooperating sites. According to our experiments, if an overall 
production system is partitioned into n appropriate subsystems, 
each of which excutes almost autonomously on one site with 
only a few communications to/from other sites, then the 
performance would approximate n times higher than that of the 
original system that executes on a single site. However, if an 

r2 r3 1 ratio 
Fig. 8 performance speedup as a function of the ratio of 

the number of remote-matching to the number 
of total matching. 

overall system is partitioned into subsystems in such a way that 
rules on each site always match remote working memory 
elements, and hence rules on different site can only fire 
sequentially, then the performance would greatly degrade, even 
worse than that of the original system that executes on a single 
site. Fig.8 illustrates speedup and degeneration for the 
performance of DPS, where x-axis means the ratio of the total 
number of satisfied remote condition elements during execution 
to the total number of satisfied condition elements, and n means 
the number of subsystems. The curve marked 'n=l' is 
illustrated as comparison. The values of threshold ratios rl and 
r2 for curve 'n=2' and 'n=3' are closely related to 
communication cost. The less the communications cost, the 
higher the ratios are; hence, higher speedup would be achieved. 

VI. Conclusion 
In order to improve the performance of production 

systems, a number of reseaches focus on the parallel 
processing of production systems. In this paper, we propose 
an approach for building distributed production systems. We 
have attempted to show the development model used to build 
DPS programs and the environment that surrounds the 
language. One of the major objectives of DPS is to enhance 
performance of production systems. DPS supports elegant 
constructs for users to express the distributed inference of 
production rules. Rules on different sites work in a cooperative 
way and only a few communications are needed. Another 
objective of DPS is to propose a model for distributed 
inference. Since condition tests for remote condition elements 
are built on remote sites during interpretation session, 
communications needed in matching-action cycles are 
minimized. In addition, DPS also supports facilities to split 
inference engine on a local site into a number of subsets, each 
of which would focus on the inference about a particular event. 

The prototype of DPS system is now implemented in 
Common Lisp on a HP LAN which connects three HP 
9000/320 workstations. Due to the lack of efficient facilities to 
support interprocess communication, communication cost has 
influence on performance of this prototype. In current stage, 
DPS does not consider the ability of dynamic migration of 
knowledge. Users are required to divide the entire application 
into partitions, and spread them on appropriate sites on a 
distributed system. Inspite of this little inconvenience, DPS, 
with elegant constructs and a powerful distributed inference 
mechanism, is a useful tool for building distributed production 
systems. 
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Appendix: Syntax specifications of DPS 

system ::= 
[ remote-spec] 
object-declaration 
[ method-declaration ] 
production-rules 

remote-spec ::= 
(remote-site list-of-sitenames) 

list-of-sitenames ::= 
sitename [ list-of-sitenames] 

object-declaration ::= 
(object ob-name list-of-attributes) 

list-of-attributes ::= 
art-spec [ list-of-attributes ] 

att-spec ::= 
attname: I (attname: default-value) 

method-declaration ::= 
(method ob-name methodname ([ list-of-parameters ]) 
(lisp code)) 

list-of-parameters ::= 
paraname [ list-of-parameters ] 

production-rules ::= 
( p rulename 

LHS 
—> 

RHS 
;:; rule-attribute) 

LHS ::= 
list-of-condition-elements 

list-of-condition-elemetns ::= 
[ ce-var ] condition-element 
[ list-of-condition-elemcnts 1 

ce-var ::= 
< varname > 

RHS ::= 
list-of-actions 

Iist-of-actions ::= 
action [ list-of-actions ] 

action ::= 
(make-optr new-wme) I 
(wm-optr matched-wme) I 
(sendmsg matched-wme message) 

make-optr ::= 
make I make-local 

wm-optr ::= 
remove I remove-local I modify 

new-wme ::= 
number I ob-name [ list-of-attribute-values ] 

matched-wme ::= 
pointer [ list-of-attribute-values ] 

pointer ::= 
number I ce-var 

message ::= 
msgnamc [ list-of-arguments ] 

list-of-arguments ::= 
arg [ list-of-arguments ] 

list-of-attribute-values ::= 
[ attname; ] value [ list-of-attribute-values ] 
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