
A Distr ibuted Approach for In ferr ing Production Systems

Ching-Chi Hsu, Shao-Ming Wu and Jan-Jan Wu

Department of Computer Science and Information Engineering
National Taiwan University

Taipei, Taiwan, ROC

Abstract

Tools for building production systems encounter the
problem of low performance, and many researchers are
working on the improvements of performance of these tools.
This paper proposes a distributed approach for inferring
production systems. The resulting distributed production
systems are expected to be built over distributed systems with
broadcast capability, and production rules on different sites
work in a cooperative way with only a few communications
between them. Working memory on a local site is made visible
to rules on remote sites. A tool for building distributed
production systems, called DPS, has been implemented. DPS
not only supports elegant constructs for expressing the capacity
of distributed inference but also provides the facilities for
building clusters of rules. With these facilities, DPS allows
users to make the inference engine focus on a particular set of
rules. This paper also describes the knowledge representation
and other features about DPS.

I. Introduction

The development of tools for building rule-based systems
has evolved in several directions. Consultation-based tools use
the backward-chaining reasoning mechanism [1], together with
questioning-and-answering facilities to achieve goals. Systems
and tools with blackboard architecture [3,10,11] emphasize on
the integration of complicated heuristic control and uncertain
knowledge. There are also researches focusing on the
architecture of forward-chaining reasoning mechanism,
especially those derived from Rete algorithm [12,14].

The major advantages of production system tools such as
OPS5 [5] and ORBS [4] are derived from the elegance,
expressiveness and moderate complexity of their knowledge
constructs. Users can create lists of attributes about concepts
and a set of production rules each of which has condition
elements to match against user-defined concepts, and actions to
take when conditions are satisfied. The fact that condition
elements of each rule join the relationship between concepts
suggests more powerful expressiveness than other tools do.
However, they pay for the expressive power of production
rules. For example, OPS5 has to do more work on complex
pattern-matching. Rete algorithm [6] for many-pattern
/many-object pattern match problems was introduced to resolve
the problem. Nevertheless, low performance is still a
disadvantage of OPS5. So far, several approaches have been
proposed to improve it, such as rewriting OPS5 into OPS83
[9] in C, improving the inference mechanism of OPS5 by
eliminating unnecessary matching and supporting more
powerful constructs for building production rules [12], and
introducing parallel architectures [14, 7] to exploit the
parallelism of pattern-matching and rule-firing.

In this paper, we propose a model for distributed
processing of production systems. In this model, a production
system, which can be constructed as a virtual integrated Rete
network [6], is distributed over a distributed system or a local
area network. Knowledge distribution is done by users.
Subsystems on different sites are almost autonomous, and they
can cooperate with each other. This greatly exploits the
parallelism between subsystems since unrelated subsystems
can run in parallel. A tool named DPS is constructed under this
model. Moreover, we also support other features to improve
the performance of production systems, including the split of
Rete network on a single site into a cluster of subnets,
object-based knowledge representation, and enhanced rule
facilities.

I I . Knowledge representation

The attraction of expressive power of knowledge
representation in OPS5 has a great influence on the scheme of
knowledge representation of DPS. We found that one of the
reasons that make OPS5 popular comes from the semantic
meanings of production rules. Since a rule consists of a
condition part (LHS) and an action part (RHS), a rule can join
the relationship between different concepts described in LHS,
and then execute responding actions in RHS. The
representative manner and complexity of such rules are at
similar level of human thoughts, and hence facilitates the work
of knowledge engineering.

In general, DPS has OPS5-like syntax of rules. In addition
to the LHS and RHS, each rule of DPS may be given an
attribute. When rules are interpreted, those with the same
attribute arc constructed as a sub-Rete-network which is used
to narrow the inference space during execution of the systems.
Moreover, users are allowed to use a prefix "?" or "?
site-name" in a condition element to represent a condition
element which matches against the working memory on remote
sites. Such condition elements arc called remote condition
elements. This will be described later in more details.

DPS allows users to define object-based concepts [15],
i.e., each concept is described as a list of attributes and is
associated with any number of methods which are invoked by
passing messages to an instance (working memory element, or
wme) of the concept. The following is an example to illustrate
the general form of knowledge representation in DPS.

(remote-site sensing-station) ; declare the remote sites
(object manager name location situation) ; declare object "manager"

;whose attributes include "name", "location" and "situation"
(object store-house location material (status safe)) ; declare object

; "store-house", "safe" is default value of "status" attribute
(object material name stock property) ; declare object "material"

62 ARCHITECTURES AND LANGUAGES

(method manager emergency (name cause) ; a method of "manager"
(USP code for noticing and ; A method can be invoked

solving emergent events)) ; by message-passing
; Here "emergency" is a message name, "name" and "cause"
; are arguments passed by the calling action.

(p setting-store-house-status ; The third condition
(store-house material: <x> status: safe) ; element matches against
(material name: <x> property: volatile); the working memory on

? sensing-station ; remot site "sensing-
(circumstance temperature-in-house: > 35) ; station"

->
(modify store-house

status: dangerous
cause: temperature-too-high)

(focus emergent-ecent) ; Make the inference
; engine focus on rules

::: sensing-events) ; about emergent events.

(p emergency-manipulating
<person> (manager

name: <x>
location: <y>
situation: on-business)

(store-house location: <y>
status: dangerous
cause: <z>)

->
(send-message <person> emergency: <x> <z>)

; invoke the method associated with message
"̂emergency" to solve emergent events

::: emergent-event)

The RHS of a rule allows an action to invoke a LISP
procedure by message-passing. This procedure not only
accepts arguments passed from calling actions, but also uses as
variables the attributes in the matched wme. Compared with the
"call" action in OPS5 which demands the special treatment of
passed arguments, message-passing of DPS simplifies the use
of procedure calls. The RHS of a rule also allows actions to
control inference engine and manipulate working memory.

Rule Clustering

The ORBS production system [4] and blackboard systems
such as Hearsay-II [3, 8], HASP [11] and AGE [10] allow
rules to be grouped into related collections. There is generally a
pointer that designates the current collection. Only rules from
the current collection are allowed to match against working
memory. There are several attractive language properties of rule
clustering: it allows a complex space to be broken into more
understandable pieces; it tends to simplify rule debugging
because the debugging space can be narrowed to one rule
cluster instead of the whole rule base; and it allows the system
developer to reuse components (the rule clusters) found to be
useful in the past.

In DPS, a rule can be given an attribute at the field
indicated by the symbol":::". Rules with the same attribute are
grouped together. A subsystem on one site has a working
memory and a number of rules grouped into a number of
clusters, if needed. The inference engine may focus its
inference space on one or more rule clusters. The switching of
inference space among these clusters is guided by the selection
of appropriate rule attribute. Fig.l shows two rule clusters
mentioned above and the working memory they share on the
local site. When the rule setting-store-house is fired, the
execution of (focus emergent-event) changes the inference
space to the emergent-event cluster to manipulate emergent
events.

Furthermore, since systems like OPS5 and its various
derivatives use the Rete algorithm for the pattern match
function, part of the efficiency comes from sharing pattern
matching test which are identical among all the rules that have
the tests. However, the OPS5 Rete shares results of join tests
only if the patterns are the same starting from the first one.
Thus it is hard to get the benefits of shared tests. When a new
working memory element is created, all the beta join nodes of
satisfied tests should be modified. If later the working memory
element is removed, these beta nodes should be modified all
over again. It will be wasteful if very few of these rules are
fired during the addition-then-deletion of the same working
memory element.

Here, we allow the rules to be grouped into several
collections, only rules from the current collection are allowed to
match. In this way, the addition-then-dcletion of the same
woring memory element will not cause the beta-node
modification in other clusters. This tends to improve the
performance. An example is given later in section IV.

m. Distributed inference of production rules

In DPS, users at one site of a local area network can share
the knowledge resident on remote sites, and production rules
on different sites can interact with others according to the
shared knowledge. DPS is expected to provide elegant syntax
to express the distributed inference of production rules.

There are two major reasons why DPS supports the
capacity of distributed computation. First, knowledge
distribution can be done by users. Since a single rule is the
grain-size of a predictable action sequence and knowledge
distribution should be based on knowledge, researchers who
worked on the exploitation of parallel production systems on
parallel computers [7] have found that it is difficult to
automatically distribute knowledge over processors. The
distributed system approach, allowing users to distribute
knowledge as they wish, can do better distribution of
knowledge with the guideness of users. Hence, it exploits
higher parallelism than the parallel approach on parallel
computers. Second, with appropriate distribution of
knowledge, systems written in DPS can solve distributed
problems with two forms of cooperation between working
sites: task-sharing and result-sharing [13]. Several nodes can
participate in a single job and partial results between nodes can
be shared to produce further results.

The distributed production systems built by DPS are
expected to be divided into several autonomous subsystems,
each of which resides on a single site and can proceed
match-action cycles concurrently with each other. DPS

Hsu, Wu,andWu 63

supposes only a few communications are needed among these
subsystems. In order to exploit the capability of distributed
inference easily, DPS supports several facilities as elegant as
possible. As an example shown in Fig. 2, users can build and
distribute rules on a nework which consists of sites X, Y, and
Z.

Fig. 2 Rules distributed over a network.
".." means "visible to"

" -...." means "invisible to"

The symbol "? " means the specified condition element is a
remote condition element which matches against working
memory on remote sites, and "? site " matches against the
working memory on the specified remote site. The
remove-local action is used to make the specified wme invisible
to the local site; and if the removed wme was created on
the same local site, then its effect is the same as that of
remove action, i.e., that wme is invisible to all sites. The
make action creates a new wme visible to all sites. The
make-local action is similar to make action except that the
visibility of the newly created wme is limited in the local site. It
is used to hide a private working memory from other sites. In
addition, the action part of a rule may also include a remote
method invocation by sending a message to the matched remote
wme. With these facilities, users can manage private and
shared working memory and respond to remote situations.

IV. Implementation

In general, DPS interpreter acts in matching-action cycles
like OPS5, but remote condition elements and additional tasks
must be considered. The system architecture of DPS is shown
in Fig.3. Working Memory (WM) collects data which
production rules will match against. Visible Remote Working
Memory contains data, received from remote sites, that satisfy
remote condition elements of rules on the local site. Remote
Condition Test is the set of condition elements extracted from
remote rules which match against WM on the current site. Let's
consider the example shown in Fig. 2. During the session of
rule interpretation on site Y, the remote condition element (B)
in rule r3 is broadcast to remote sites. Site X will receive
condition element (B) and then build it in Remote Condition
Test. Whenever a wme that satisfies (B) is newly created on
site X, it will be automatically transmitted to the Visible Remote
WM on site Y. This saves communications during the
execution of systems. WM Controller is responsible for
maintaining the consistency of data between the WM on the
local site and visible WMs on remote sites.

IV. 1 Rule clustering

In DPS, there is an activity pointer which designates the
current cluster. The initial value of the pointer is given by users
at the beginning of execution. Each time when the RHS actions
of a rule arc executed, it may cause some variation in working
memory. Since the working memory is shared by the clusters
on the site, new working memory elements should be known
to the noncurrent clusters. Here, we go around the problem
with a simple and clear approach.

DPS gives each cluster a last-time-tag, which records the
last working memory time tag for current cluster when
switching to another cluster. When later this cluster is selected
as the current cluster, it should match the working memory
elements since the one whose time tag is immediately greater
than last-time-tag. In this way, each cluster, when behaving as
the current cluster, knows the variation since it switched to
another cluster. Thus the addition-then-deletion of the same
working memory element may affect only current cluster
because noncurrent ones do not know the occurrence of
addition-then-deletion event. All they can see are the elements
exist in the working memory. For example, consider the two
clusters in Fig.4.

Fig. 4. An example of addition-then-delction of the same wme

64 ARCHITECTURES AND LANGUAGES

If current cluster is cluster2 and at first ruleS is fired, (i e
there exist working memory elements A and C that satisfies
condition elements (A) and (C).) then new working memory
elements D and C are added to working memory. Next, if rule6
is fired, working memory element B is added to working
memory. Finally, rule7 is fired and clusterl is selected to be the
current cluster. The working memory so far is shown in Fie
5(a).

In clusterl, ruiel and rule2 are satisfied and added to
conflict set. According to the resolution strategy, rulel is fired
first and it adds element A to working memory. This causes an
instantiation of rule4 to be added to conflict set. Next, rule3 is
fired and element F is added to working memory. Finally,
rule2 is fired, and element A is deleted. The instantiation of
rule4 should be deleted from conflict set. Later when cluster2 is
selected as the current cluster, all it can see is working memory
element F (as in Fig. 5(b)). The addition-then-deletion of
working memory element A has no effect on cluster2. This
improves performance significantly when there are many
identical condition elements among the clusters.

IV.2 Distributed inference

The remote condition elements of rules are examined
during the time of rule interpretation. DPS interpreter creates a
special rule in the target site(s) for each remote condition
element. The syntax of a special rule is:

(p <special-name>
< the remote condition element>

-->
<send 1 <target-site> :<cluster> :<address of corresponding &mem node>
::: <remote-condition-test>)

Once the special rule is built, it can match against the
working memory on remote sites. If the special rule is fired by
a remote DPS system, then its RHS action is executed and the
result is sent back to the local site. When received by the local
DPS system, the matched data will be put into the Visible
Remote WM and then copied to the specified &mem node. This
makes Rete networks, which distributed over cooperating
sites, form a virtual integrated Rete network since there exist
virtual channels between special rules in target sites and &mem
node in the local site; i.e., local rules sense changes on remote
WM immediately after they occurred. For example, the rule,
which contains a remote condition element, in site-A:

(p remote-condition-example
(A)
<B)
? site-B (C)

--> ;

results in the Rete networks shown in Fig. 6.

If a firing rule causes an execution of "make-local"
("remove-local") action, the working memory element is added
to (removed from) working memory , and may trigger another
inference cycle. If the action is "make", which allow a new
working memory element to be visible to remote sites, then the
working memory element should be matched not only by the
rules in current cluster but also by the special rules in
remote-condition- test cluster on local site. This seems natural
because the working memory elements created by "make"
actions are visible globally and may be tested by some remote
rules. The "remove" action removes working memory elements
visible to remote sites, so it must be implemented in a special
way.

Fig. 6 (a) A cluster in sitc-A.
(b) The remote-condition-test cluster of site-B.

IV.3 Task scheduling

DPS system maintains a task queue on each site, which
orders the tasks generated by the inference engine and the
communication unit. We have four kinds of tasks. They are 1)
remote-test rule building, 2) message passing, 3) remote
deletion or modification of working memory element task, 4)
RHS actions of selected rules.

When interpreting a rule containing remote condition
elements, DPS interpreter creates a remote-test rule building
task for each remote condition element and puts them in the
task queue. When selected by the task scheduler, the task will
be sent to the communication unit and then the remote sites,
then executed by remote DPS interpreter. For the balance of
DPS system, rules in the execution set resulting from conflict
resolution are not evaluated immediately. They are grouped into
a task, put into the task queue and rated by the task scheduler.
They cannot be executed until selected by the scheduler. When
the communication unit receives a request for building a special
rule for remote condition element, the request is also treated as
a task and must be put into the task queue. Rules in the
remote-condition-test cluster are conditions received from
remote DPS systems, along with a RHS action which sends the
matched wme to a target site. If anyone of them is satisfied, its
RHS action should be executed immediately instead of being
put into the task queue, since the execution has no effect on the
local working memory.

IV.4 Consistency maintenance

Let's consider the previously mentioned example in Fig.
7. After rule rl on site X has fired, it may happen that the
condition parts of rule r2 on site X and rule r3 on site Y are
both satisfied, and rule r3 may remove wme B just before rule

Hsu,Wu,andWu 65

Fig. 7. Inconsistency occurs between site X and site Y

r2 fires. Here, inconsistency arises between working memory
on site X and site Y. Other situations may result in similar
inconsistency. DPS solves this problem by accessing the
shared working memory elements (wmes) via locks. Working
memory controller is responsible for the manipulation of locks
of wmes according the following disciplines.

. Before a rule, whose condition part contains remote condition
elements, would fire, DPS has to request the write locks of
matched remote wmes if these wmes are to be changed by the
rule, and the read locks if these wmes are not to be changed.

. Read locks are shared, and many rules on different sites may
concurrently read a wme. Write locks are exclusive, and no
other rules may access a locked wme while its write locks is
held by a rule.

. DPS requests locks for a rule only when the LHS of this rule
is satisfied and its RHS is placed in the task queue.

. A rule can fire only after the involving locks are available, and
all locks held by a rule are released until the end of execution
of the rule.

. Write lock requests made to read-locked wme are queued until
all read locks are released.

. WM controller serves lock requests with first-come-first-
serve scheme.

. When the write lock of a wme is held by a rule, WM
controller refuses all lock requests made to the same wme
until the lock is released (since this wme is modified or no
longer exists). Hence, a rule task in the task queue is
canceled if one of lock requests made by it is refused.

. Modification of a shared wme is made visible to involving
remote sites.

These disciplines guarantee the consistency of visible WM
between cooperating sites.

V. Performance evaluation

Since DPS leaves the work of initial knowledge
distribution to users, the performance of DPS is conceivably
related to the way how users distribute their knowledge on
cooperating sites. According to our experiments, if an overall
production system is partitioned into n appropriate subsystems,
each of which excutes almost autonomously on one site with
only a few communications to/from other sites, then the
performance would approximate n times higher than that of the
original system that executes on a single site. However, if an

r2 r3 1 ratio
Fig. 8 performance speedup as a function of the ratio of

the number of remote-matching to the number
of total matching.

overall system is partitioned into subsystems in such a way that
rules on each site always match remote working memory
elements, and hence rules on different site can only fire
sequentially, then the performance would greatly degrade, even
worse than that of the original system that executes on a single
site. Fig.8 illustrates speedup and degeneration for the
performance of DPS, where x-axis means the ratio of the total
number of satisfied remote condition elements during execution
to the total number of satisfied condition elements, and n means
the number of subsystems. The curve marked 'n=l' is
illustrated as comparison. The values of threshold ratios rl and
r2 for curve 'n=2' and 'n=3' are closely related to
communication cost. The less the communications cost, the
higher the ratios are; hence, higher speedup would be achieved.

VI. Conclusion
In order to improve the performance of production

systems, a number of reseaches focus on the parallel
processing of production systems. In this paper, we propose
an approach for building distributed production systems. We
have attempted to show the development model used to build
DPS programs and the environment that surrounds the
language. One of the major objectives of DPS is to enhance
performance of production systems. DPS supports elegant
constructs for users to express the distributed inference of
production rules. Rules on different sites work in a cooperative
way and only a few communications are needed. Another
objective of DPS is to propose a model for distributed
inference. Since condition tests for remote condition elements
are built on remote sites during interpretation session,
communications needed in matching-action cycles are
minimized. In addition, DPS also supports facilities to split
inference engine on a local site into a number of subsets, each
of which would focus on the inference about a particular event.

The prototype of DPS system is now implemented in
Common Lisp on a HP LAN which connects three HP
9000/320 workstations. Due to the lack of efficient facilities to
support interprocess communication, communication cost has
influence on performance of this prototype. In current stage,
DPS does not consider the ability of dynamic migration of
knowledge. Users are required to divide the entire application
into partitions, and spread them on appropriate sites on a
distributed system. Inspite of this little inconvenience, DPS,
with elegant constructs and a powerful distributed inference
mechanism, is a useful tool for building distributed production
systems.

66 ARCHITECTURES AND LANGUAGES

References

[I] Buchnan,B.G. and Shortliffe, E.H., Eds, Rule-Based
Expert Systems , Addison Wesley, Reading, MA, 1984.

[2] Ensor, J.R. and Gabbe, J.D. "Transactional Blackboard",
Proc. of IJCAI, pp 340-344, Los Angles, 1985.

[3] Erman, L.D., Hayes-Roth, F., Lesserr, V.R. and Reddy,
D.R., "The Hearsay-II Speech-Understanding System:
Integrating knowledge to solve uncertainty", Computing
Surveys, Vol.12, pp 213-253, 1980.

[4] Fickas, S. "Design Issues in a Rule-Based System",
ACM SIGPLAN, Vol. 20, pp 208-215, 1985.

[5] Forgy, C, OPS5 User's Manual , Dep. of computer
science, CMU, 1981.

[61 Forgy, C, "Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem", Artificial
Intelligence, Vol. 19, pp 17-37, 1982.

[7] Ishida, T. and Stolfo, S.J., "Towards the Parallel
Execution of Rules in Production Systems Programs",
Proc. of IEEE Internaional Conf. on Parallel Processing,
pp 568-575, 1985.

[8] Lesser, V.R. and Corkill, D.D. "Functionally accurate
cooperative distributed systems", IEEE Trans, on
System, Man, Cybernetics, Vol. SMC-11, No.l, pp
81-96, Jan. 1981.

[9] Neiman,D. and Martin, J., "Rule-Based Programming in
OPS83", AI Expert, Premier, 1986, 54-65.

110] Nii, H. P. and Aiello, N.,"AGE(attempt to generalize): A
Knowledge-Based Program for Building Knowledge-
Based Programs", Proc. of IJCAI, pp 645-655, Toyko,
Japan, 1979.

[I I] Nii, H. P., Feigenbaum, E. A., Anton, J. J. and
Rockmore, A. J., "Signal-to-symbol transformation:
HASP/SIAP case study", AI Magazine, Vol. 3, No. 2,
pp 23-35, 1982.

[12] Schor, M. I., Daly, T.P., Lee, H. S. and Tibbitts, B.R.,
"Advances in Rete Pattern Matching", Proc. of AAAI, pp
226-234, Philadelphia, 1986.

[13) Smith, R.G. and Davis, R., "Frameworks for
Cooperation in Distributed Problem Solving", IEEE
Trans, on system, man, and cybernetics, Vol. SMC-11,
No. 1, Jan. 1981.

[14] Stolfo, S.J. and Miranker, D.P., "DADO: A Parallel
Processor for Expert Systems", Proc. of IEEE
International Conf. on Parallel Processing, pp 74-82,
1984.

[151 Tocoro, M. and lshikawa, Y., "An Object-Oriented
Approach To Knowledge Systems", Proc. of the
international Conf. on Fifth Generation Computer
Systems, pp 623-631, Tokyo, Japan, 1984.

Appendix: Syntax specifications of DPS

system ::=
[remote-spec]
object-declaration
[method-declaration]
production-rules

remote-spec ::=
(remote-site list-of-sitenames)

list-of-sitenames ::=
sitename [list-of-sitenames]

object-declaration ::=
(object ob-name list-of-attributes)

list-of-attributes ::=
art-spec [list-of-attributes]

att-spec ::=
attname: I (attname: default-value)

method-declaration ::=
(method ob-name methodname ([list-of-parameters])
(lisp code))

list-of-parameters ::=
paraname [list-of-parameters]

production-rules ::=
(p rulename

LHS
—>

RHS
;:; rule-attribute)

LHS ::=
list-of-condition-elements

list-of-condition-elemetns ::=
[ce-var] condition-element
[list-of-condition-elemcnts 1

ce-var ::=
< varname >

RHS ::=
list-of-actions

Iist-of-actions ::=
action [list-of-actions]

action ::=
(make-optr new-wme) I
(wm-optr matched-wme) I
(sendmsg matched-wme message)

make-optr ::=
make I make-local

wm-optr ::=
remove I remove-local I modify

new-wme ::=
number I ob-name [list-of-attribute-values]

matched-wme ::=
pointer [list-of-attribute-values]

pointer ::=
number I ce-var

message ::=
msgnamc [list-of-arguments]

list-of-arguments ::=
arg [list-of-arguments]

list-of-attribute-values ::=
[attname;] value [list-of-attribute-values]

Hsu, Wu, and Wu 67

