AN EXPLANATION-BASED APPROACH
TO GENERALIZING NUMBER *

Jude W. Shavlik*
Gerald F. DedJong

Coordinated Science Laboratory
University of lllinois
Urbana, IL 61801 USA

ABSTRACT

An approach to generalizing number in explanation-based
learning is presented. Generalizing number can involve generalizing
such things as the number of entities involved in a concept or the
number of times some action is performed. This issue has been
largely ignored in previous explanation-based learning research.
Instead, other research has focused on changing constants into
variables and determining the general constraints on those variables.
In the approach presented, generalization to N is triggered by the
detection of inference rules of a specified syntactic form. When one
is found, it is extended into the rule that results from an arbitrary
number of repeated applications of the original rule. If the
preconditions of the extended rule are met, the results of multiple
applications of the original rule are immediately determined. There
is no need to apply the underlying rule successively, each time
checking if the preconditions for the next application are satisfied.

I INTRODUCTION

This paper addresses the important issue in explanation-
based learning of generalizing number. Generalizing number can
involve generalizing such things as the number of entities
involved in a concept or the number of times some action is
performed. This issue has been largely ignored in previous
explanation-based learning research. Instead, other research has
focused on changing constants into variables and determining the
general constraints on those variables.

Consider the LEAP system [I]. The system is shown an
example of using NOR gates to compute the boolean AND of two
OR's. It discovers that the technique generalizes to computing
the boolean AND of any two inverted boolean functions.
However, LEAP cannot generalize this technique to allow
constructing the AND of an arbitrary number of inverted
boolean functions using a multi-input NOR gate. This is the case
even if LEAP's initial background knowledge were to include
the general version of DeMorgan's Law and the concept of
multi-input NOR gates. Generalizing the number of functions
requires alteration of the original examples explanation. This
generalization cannot be performed using their goal regression
algorithm alone.

Ellmans system [2] also illustrates the need for
generalizing number. From an example of a four-bit circular
shift register, his system constructs a generalized design for an
arbitrary four-bit permutation register. A design for an N-bit
circular shift register cannot be produced. As Ellman points out.
such generalization, though desirable, cannot be done using the
technique of changing constants to variables.

Many other explanation-based generalization algorithms
[3-6] also cannot alter the structure of their explanations. No
additional objects nor inference rules can be incorporated into
the explanation. These algorithms work by changing constants
in the observed example to variables with constraints. Another
algorithm [7] allows for the elimination of easily-reconstructed

* This research was partially supported by the National Science Foundation
under grant NSF 1ST 85 11542.

" University of lllinois Cognitive Science/Artificial Intelligence Fellow.

236 KNOWLEDGE ACQUISITION

details. However, extensive augmentation of the explanation can
be often required to produce the appropriate concept.

Many important concepts require generalizing number. For
example, physical laws such as momentum and energy
conservation apply to arbitrary numbers of objects, building
blocks-world towers requires an arbitrary number of repealed
stacking actions, and setting a table involves an arbitrary
number of guests. This paper presents an explanation-based
approach to the problem of "generalizing to N.”

Il AN APPROACH

Observations of repeated application of a rule or operator
may indicate that generalizing the number of rules in the
explanation may be appropriate. However, alone this is
insufficient. To be conducive to number generalization there
must be a certain recursive structural pattern. That is. each
application must achieve preconditions for the next. For
example, consider stacking blocks. The same sort of
repositioning of blocks occurs repeatedly, each building on the
last. We adopt the vocabulary of predicate calculus to
investigate this notion of structural recursion. The desired form
of structural recursion is manifested as repeated application of
an inference rule in such a manner that a portion of each
consequent is used to satisfy some of the antecedents of the next
application. Figure 1 illustrates the concept of repeated rule
application.

Cule 3
CRule 1

Rale 5

desired revuls
Figore). Repested Rule Application

Consider inference rule 1. Notice that the consequent of
this inference rule can be used 10 parially satisfy the
antecedents of another application of the rule (via the predicate

Plx,_yyo--- ,x,-_,’.z“.....z,,y,_,_,...-.y,-_u)

and
ROX, g peeer e Ximgpo T goee X prZgenss 2y
and
LY CHI T T
and
T(xl.l"“"xi.ﬂ'zl"" .Z”)
and
Viel..... g Yo =0 lx e X g R g
Zprrer 2 ¥impgee-- 2 Yirrg)
iy
P X gonee X pZaeenorZpYigeere Yig) (1)

P), as illustrated in figure 1. The antecedents of this rule
involve three qualitatively different types of variables. (The
differences between the three types will become clear when the
extended version of this rule is described.) Predicate P involves
all three types of variables, while predicate R specifies a
necessary relationship between the (i-1)th and ith collection of
x 's.* Predicate S constrains the (i-I)th collection of x's and
predicate T constrains the uh collection. Lastly, the uh collection
of y s are partially defined by terms in the (i-1)th application.

Chaining together several applications of rule 1 produces
rule le.

P(Io_l.....Iop.zu....,Z‘.yoll.-...yn#)
and
el ..., n
REX _yaeene Xy pe Xy gne Xy poZpeene 2g)
and
S(xd,_,_,.....xj-,_’.z.’,.....z,,)
and
Tlx, goe X, e z,)
and
Vi€l ... g Yo, =F,n)
—
Plx, gi- Xy psZaueersZpg¥nte-vs Vng) (1¢)
where
Flt) sl dxpp-...xep. X110 --4. g Zpvsan Zur¥odo-- - Yoy)
FJ“)!I ’l-\-‘—lJ,|--.-\-l'l)ixl.lv--<ux|_’vzr ---- L

Fili—1).... F,u-11 fori >1

In this extended inference rule all references to the y; for
i >0 are eliminated and the z0 terms remain unchanged from one
application of the original rule to the next. Hence, besides the
initial situation, all that needs to be specified for an arbitrary
number of applications of rule 1 is a sequence of x, j terms. The
predicates R. S. and T place constraints on possible sequences of
x s. In particular, the predicates S and T constrain which terms
can be members of the sequence, while predicate R specifies the
relationship between successive members of the sequence.

The general form of a sequence is shown below. It consists
of an ordered collection of p-ary vectors.

CXpde - - Xup > CXa, - X1p > L ST Y

Il SOME EXAMPLES

Two simple examples that concretely illustrate the above
procedure are presented below.

A. Blocks World

Imagine an explanation-based learning system that deals
with the blocks world. Assume that in the course of its
operation this system has to determine the position of the top of
block which is resting on a table. Also assume that in the course
of doing this it produces an explanation structure that can be
transformed into rule 2 below. (Figure 2 illustrates this rule.)
This rule is in a form that matches rule 1. Rule 2e is the
extended form of rule 2. (In these rules, all terms beginning
with a ? are universally quantified variables.)

{AND (Yposition ?object; 1 ?y,-1)
(On Z0b ject, ?0b ject,)
(= 7y (+ (height Pobject,) ?y._1}))
—
(Yposition 7ob ject, 7y;) 2
' Although not done here for reasons of clarity, the approach presented can

be extended to situations where there are relations among the (i-k)w through the
ith collections.

Ypositinn, e
Mock helght;

Yposition; _y = i

Figure 2. Determining the Y-Position of a Block

In rule 2e the sequence is made explicit. For all consecutive
pairs of sequence elements, the first must be on the second. In
addition, the function +' is introduced. This recursive function
has two arguments: a sequence of numbers and a "seed" number.
It maps these into a single number - the sum of all the numbers.
The function derived-sequence takes a sequence and a unary
function and maps them into another sequence - the one which
results from applying the function to each member of the
original sequence.

" (Sequence 75) and (nitislElement 2ob jecr, 75)
apd
{Yposition %ob ject |, ?y,) and (FinzlGlement Pob ject, 75}
and
{({Member ?j ?s) and (Member 2k ?1) snd (Successor 2§ 2k 75
~(On 7k 2j 1

and
(= ?y, (+* (derived-sequence {sub-seguence ?s 1 n) height) ?y,))
—_—
{Yposition Pob ject, y,) (2e)

The extended rule can be used to find the y -position of a
block supported by several other blocks when the y -positions of
the underlying blocks are not directly known. All that needs to
be known is the heights of each block and the y-position of the
table top (or the y-position of one intervening block). In this
case the extended rule is obtained from an example that involved
no repeated actions nor structures.

An important task for a system that generalizes number is
to loosen the preconditions of a rule as far as possible while still
maintaining the veracity of the rule. Also, as much guidance as
possible should be provided so that a problem solver can most
easily determine when a rule is both applicable and appropriate.

Imagine using rule 2e in a backward-chaining fashion. If a
problem solver is to find the y -position of an object it needs to
choose a sequence that satisfies the specified constraints. This
task is simplied if the preconditions are specified in terms of sets
or bags'. rather than sequences. In this case, there is no need to
test each permutation of a given collection of elements. If a bag
satisfies the rules preconditions, then any sequence derived from
that bag suffices. Other derivable properties, such as the
cardinality of the bag or the length of the sequence, might also
usefully constrain a problem solver.

One case where it is easy to specify the preconditions in bag
terms occurs when there are no inter-element constraints (i.e.,
predicate R in rule 1 is not used). If an inter-element predicate
does appear in the preconditions, the properties of that predicate
determine how loosely the preconditions can be expressed. For
example, if R is an equivalence relation (that is. R is reflexive,
symmetric, and transitive), then the elements must form an
equivalence class, a property that is order independent.

In the above example, R is (the atransitive version of) On.
In bag terms, rule 2e requires a collection of elements where.
(i) except for one element {object0,). every element is on one and
only one other element, (ii) except for possibly one element
(?object,). every element has one and only one element on it,
and (iii)lhe sum of the heights of all elements other than
object , plus the y -position of object , equals ?y, . If a bag with
these properties is obtained, the necessary sequence can easily be
constructed.

A hag (or multi set) is an unordered collection of elements in which an
element can occur more than once.

Shavlik and DeJong 237

B. Digital Circuit Design

The second example involves a simplified version of citeuit
design. Figure 3 shows two flip-flops. When the clock is pulsed,
the input of a Aip-flop is passed to its oulpul. provided its select
Jine is on. Assume lhat from observing the connection of 1wo
Hip-flops. a learning sysiem derives rule 3. That is. it determines

Inpuf — Bl —_—

output joutput

| |

mlect select

(Ouipwt YFF, _, Pvalue *time;_,)
and
{Connected ?FJ, _y 7FF,)
Figure 3. Two Flip-Flo ant
gure WORUFTIOR lecied 7FF,)
uoed
(= “time, {increment ?time, 1)
-—

(Ouynn 2FF, Pvalue 2time,) (3)

that if Lwo Aip-flops are connected together and the select line of
the first ix on. after the next clock pulse the current output of
Lhe first flip-flop becomes the second’s output. Rule 3 is also of
the form of rule 1. The exiended form of ruie 3 is rule e
{Nolice that all of the select lines are required Lo be on.) In
constructing lhis rute, knowledge about repeated incrementing is
used Lo define Py, in terms of the number of fip-flops connected.
The new ruie can be used Lo build such things as a delay line and
can lead 10 the concept of an A -bit shift register.

{Sequence ?s) ane {InitialElement ?F ¥, ?s }
and
(Qutput ?FF, 2value 7time) and (FinalElement 7¥F, 75 }
and
({Member ?j 75) and {Member 7k 7+) ans (Successor 7} 7k 75 }
— (Connected 2k 7))
and
({Member ?; 75) = (Selected 7))
and
(~ ?rime, (+ (length 75) Zime ,))
—

(Output ?FF, ?value ?time, } (3e)

IV RELATED WORK

Several other approaches to generalizing number have been
recently proposed. Prieditis [8] has outlined plans for a system
which leams macro-operators representing sequences of repeated
STRIPSHike operators. While we agree very much with the
spirit of Prieditis' work, we feel that STRIPS-ike operators
impose unwarranted restrictions. For ore thing, our use of
predicate calculus allows generalization of repeated structure
and repeated actions in a uniform manner. In the FERMI system
[9], cyclic pattems are recognized using empirical methods and
the detected repeated pattern is generalized using explanation-
based leaming techniques. However, unlike the techniques
presented in this paper, the rules acquired by FERMI are not
guaranteed to always work. After a significant amount of work,
a leamed problem-solving strategy may terminate
unsuccessfully. A third system. Physics 101 [10. 11], differs
from the above two approaches in that the need for augmenting
explanation structures is motivated by an analytic justification
of an example's solution and general domain knowledge. In a
sample problem, information about number, localized in a single
physics formula, leads to a global restructuring of a specific
solution's explanation. However. Physics 101 takes advantage
of properties of mathematical calculations. To be a broad
solution of the generalizaton to N problem. non
mathematically-based domains must also be handled.

238 KNOWLEDGE ACQUISITION

V CONCLUSION

Most research in explanation-based leaming involves
relaxing constraints on the entities in a situation, rather than
generalizing the number of entities themselves. This paper
presents an approach to generalizing to N in explanation-based
leaming. Generalization is triggered by the detection of rules of
a certain syntactic form (i.e.. rule 1), and a technique for
extending these rules is presented. The extended versions are
modified so that a problem solver can efficiently apply them.
This involves attempting to expression the preconditions for
these rules in terms of order-independent data structures such as
sefs and bags. If the preconditions of the extended rule are met.
the results of multiple applications of the underlying rule are
immediately determined. There is no need to apply the rule
successively, each time checking if the preconditions for the next
application are satisfied.

A first computer implementation of the ideas presented
here has been developed. The BAGGER system [12] analyzes
explanation structures and attempts to construct inference rules
of the form of rule 1. When one is found, it is extended into the
rule that results from an arbitrary number of repeated
applications of the original rule. This system is being tested on
problems from various domains, including the blocks world,
digital circuit design, and mathematical problem solving.

REFERENCES

1. T. M. Miichell, S. Mahadeven and L. 1. Steinberg, "LEAP: A
LeammgAppnenhoeforVLSI ! Proceedm s of the Ninth
Internat/ona/Jomt Conference on Artificial Intelligence, Los

CA, August 1985, pp. 573-580.

2. T. Elman, "Generalizing Logic Clrcult by Analyzing
Proofs of Correcness," roceed/ngsofth inth International
Joint Conference on Artificial Intelligence, Los Angeles, C

985, pp.

3. RFersPFHartemiNJNllsson "Leaming and Executing
Generalized Robat Plans," Artificial Inte/l/gence 3, (1972), pp.
251-288.

4. T. M. Mitchell, R Keller and S. Kedar-Cabelli, "Explanation-
Bosd Generallzahon A Unrfylng View," Machine learning I, 1
(January 1986), pp. 4

5 R J ad S \V Bennett, "A Domain |

E><planahorHE’:asedlvIooney Genaralzer" Proceedin softhem

Conference %75 Artificial Intel//gence hiladelphia, PA, August

986, pp. 95

6. P. Rosertloom and J._Laird, "Mapping. Explanation-Based
Generalization into Soer," Proceed/n SO the Nat/onal Conference'’
%1A5rét/7f/01al Intell/gence Philadelphia, PA, Augusl 1986, pp.

7. G.F. De ardRJMoonez"EManauon-BasedL An
%I}gmativ iew," Machine Learning I, 2 (April 1986), B% 145

8. A E Priediis, " of Algorithms from Week Methods,"
Proceed/ngs of the International Meeting on Advances in
learning, Les Arcs, Switzerland, 1986, pp. 37-52.

9 P and J. G. Carbonell, "The FERMI System. Inducing
Ilterative from E>?enenoe" Proceedings of the
Nat/ona/ Conference on Artiricial Intelligence, Philadelphia, PA,
August 1986, pp. 490495.

10. J. W. Shavik and G. F. , "Building a Model of
Leaming Classical Mechanics," roceed/ngs ofthe Seventh Annual
Conference of the Cogn/t/ve Science Society, Irvine, CA, August
1985. pp. 351-355.

1. JW. ShaMk and G. F. Dejong, "Analyzing Variable
Cancellations to Generalize bolic Mathematical Calculations,”
Proceedings ofthe Third IEEE’ Conference on Artificial
IntelllgenceAppI/cat/ons Orlando, FL, February 1987

12 J.W. Shavik and G. F. , "BAGGER An EBL
Extends and atons" Proceed/nc)_ozgat(i)'e the
I;/g%;onal Conference on AmflCIa/ Intel//gence WA, July

