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ABSTRACT 

Experience gained through building a causal network for 
interpretation of electromyographic findings has shown that 
probabilistic inference is a realistic possibility in networks of 
non-trivial size. The use of nodes with many internal states has 
made it possible to make a conceptually simple and compact 
representation of knowledge. "Deep knowledge" in the form of 
pathophysiological models are used to reduce the problem of 
estimating thousands of conditional probabilities to a 
manageble size. The network has built-in mechanisms that will 
detect when the network is confronted with a situation outside 
the limits of its own knowledge and it handles conflicting 
evidence in a simple and consistent way. 

INTRODUCTION 

In some medical expert systems, causal networks have 
proven themselves as a helpful tool in the organisation of the 
knowledge of a domain (for references see e.g. Szolovits 
1982). Concepts in the domain are represented as nodes in the 
network and their interaction is represented as causal links 
between the nodes. 

We have chosen electromyography (EMG), the diagnosis of 
muscle and nerve diseases through analysis of bioelectrical 
signals from muscle and nerve tissue, as our application 
domain. Out of 13 distinct types of knowledge, required to 
carry out an EMG examination, 7 can conveniently be 
represented in a causal network (Andersen et al. 1986). 

Only few expert systems have used a probabilistic 
approach, and to our knowledge none of the systems based on 
causal networks have exploited recent progress in algorithms 
for propagation of probabilistic evidence (Kim and Pearl, 1983; 
Pearl, 1986). 

This paper reports on experience gained by building a 
small, but non-trivial prototype expert system for EMG, using 
a causal probabilistic network, MUNIN * - MUscle and Nerve 
Inference Network. 

After outlining the functions and limitations of the prototype 
several issues will be discussed: 

* This work is supported in part by the EEC ESPRIT programme, project 
P599 

** Coincidentally, according to Norse mythology Munin is one of two 
ravens, whispering intelligence into the ear of the god, Odin. 

- the knowledge representations 
- the experience gained with knowledge acquisition and 

verification 
- the interaction of empirical (surface) knowledge and causal 

understanding as exposed in textbooks (deep knowledge) 
- handling of conflicting evidence 
- performance of the system, when confronted with evidence 
lying outside the knowledge of the network 

FUNCTIONS AND LIMITATIONS OF THE 
PROTOTYPE 

In earlier publications (Andersen et al. 1986, Andreassen 
et al. 1986) it was proposed that a causal network contains the 
information necessary for a unified approach to three of the 
main tasks of a medical expert system: diagnosing, planning of 
data acquisition, and explanation of the systems reasoning. In 
this paper we shall only deal with diagnosis, while 
implementation and some aspects of planning and explanation 
are considered by Jensen et al. (1987). At the beginning of a 
diagnostic session the disease node is initialised with a priori 
probabilities corresponding to the observed frequencies of the 
diseases in patients referred for EMG examinations (figure 1). 
The number of diseases is restricted to three, each with two to 
four states, corresponding to gradations and/or different 
varieties of the diseases. In addition the patient may be in one 
of the states normal (no disease with neuro-muscular 
symptoms) or other (a neuro-muscular disorder other than the 
three mentioned diseases), giving a total of eleven different 
"disease" states. An algorithm for propagation of evidence in 
causal networks was developed by Kim and Pearl (1983). The 
algorithm was adapted to this network and supplemented by a 
method for coherent initialisation of probabilities (Jensen et al. 
1987). 

Using these methods the a priori distribution of diseases 
can be used to generate expectations for the pathophysiological 
changes caused by the diseases. The pathophysiological 
changes in a given muscle are described by eight 
pathophysiological nodes, MU.LOSS through 
DENERVATION, each of them with from two to nine states. 
Since almost half of the patients are "normal", the expectations 
for the pathophysiological nodes are largely normal. The 
pathophysiological nodes in turn generate expectations for the 
15 findings nodes through their causal links, either directly or 
through an intermediate node (MUP.CONCLUSION). 
MUP.CONCLUSION does not have a natural patho­
physiological interpretation. It only serves the purpose of 
integrating the information from the three findings 
MUP.AMPLITUDE, MUP.DURATION and MUP.POLY-
PHASIC. These three findings are all obtained from the same 
EMG test: analysis of Motor Unit Potentials. 
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Beyond the already mentioned reductions on the number 
of diseases, the prototype is also restricted in other ways: 
multiple simultaneous diseases are not considered and the 
network does not handle measurement of nerve signals, which 
are as important as measurement of muscle signals. 
Furthermore, it only considers findings from one muscle. The 
interesting interaction between the causal network and the 
ncuroanatomical knowledge, which has a mainly topological 
nature and is not readily represented in a causal network, is 
therefore not considered in this paper. The authors think that 
solutions to each of these problems can be found, without 
violating the rigorous probabilistic approach used for the 
prototype. 

The diagnostic task consists of adjusting the probabilities 
in all nodes as the findings are entered into the findings nodes. 
In figure 2 findings corresponding to a typical case of 
"moderate chronic axonal neuropathy" have been entered. A 
finding entered into a findings node is indicated by a broken 
horizontal 100% bar. The network correctly indicates a large 
probability for moderate to severe axonal neuropathy, it 
generates distributions for the pathophysiological nodes that are 
consistent with "moderate chronic axonal neuropathy" and 
offers predictions of the outcomes of the remaining findings, 
should the physician chose to perform the appropriate 
EMG-tests. 

REPRESENTATION OF UNCERTAIN 
KNOWLEDGE 

The medical knowledge is embedded in the causal 
network in three ways. Through the choice of the number and 
character of the nodes, through the assignment of causal links 
between the nodes, and since we have chosen a probabilistic 
approach, through the conditional probabilities associated with 
the causal links. 

As an example, consider the causal links from the disease 
node to the pathophysiological node, loss of motor units 
(MU.LOSS), which reflects the percentage of nerve fibres that 
still survive and reach the muscle. A motor unit is the muscle 
fibres, typically several hundred, that are innervated by one and 
the same nerve fibre. In figure 3 the conditional probabilities 
for MU.LOSS, given some of the states in the disease node are 
shown. 

The table states that 92% of all "normal" patients will have 
"no" loss of motor units, 5% "moderate" and 1% "severe" loss 
of motor units, while virtually nobody (0.1%) will have "total" 
loss of motor units. 2% will present with a different picture that 
can not be described in terms of "MU.LOSS"(see section on 
IGNORANCE AND CONFLICTS). 



Figure 3 The conditional probabilities P(MU.LOSS I 
DISORDER) for the states of MU.LOSS, given 5 different 
disorders. 

As can be seen from the second line, patients with "mild 
chronic axonal neuropathy" are much more prone to loss of 
motor units, with only 60% having "no" loss of motor units. 
Moderately and severely affected patients are even worse off. 

The last line "other" represents the expected loss of motor 
units, when something else but unknown is wrong with the 
patient. The relative lack of information is reflected in a 
relatively even distribution of the probabilities over all the 
possible states. Examples of how the conditional probabilities 
are acquired and verified are given in the next section of 
knowledge acquisition and verification. 

For the findings with continuous outcomes the 
probabilities are replaced by probability densities. In figure 4 
the conditional probability densities which are assumed to have 
a normal distribution are plotted for each of the states in 
MUP.CONCLUSION. 

Some of the nodes have more than one parent, i.e. there 
are two or more "parent nodes" with causal links to a "child 
node". Examples are "FORCE" and "ATROPHY" that both 
have MU.LOSS and MU.STRUCTURE as parents. This 
requires filling out a conditional probability matrix that 
specifies P(FORCE I MU.LOSS, MU.STRUCTURE) for all 
6x5x9 combinations of FORCE, MU.LOSS, and 
MU.STRUCTURE. From the point of view of knowledge 
acquisition it is not a trivial task to determine the 270 
conditional probabilities in this three dimensional matrix. 
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Figure 4 Conditional probability distribution fo r 



Once models have been developed for all nodes, we have 
tried to verify the network in two different ways. One way is to 
generate expectations corresponding to a single disorder. For 
example, the expectations corresponding to "moderate chronic 
axonal neuropathy" may be presented to a medical expert 
(figure 7) who is asked to identify discrepancies between his 
expectations and the expectations generated by the network. 
The other way of verifying the network is by entering findings 
typical of different diseases, and asking the medical expert to 
identify differences between the probabilities computed by the 
network and his own diagnosis. In figure 2 findings 
corresponding to a case of chronic axonal neuropathy were 
entered. In that case the probabilities computed by the network 
were satisfactory. 

Discrepancies between the network and the medical 
experts lead to revision of the model parameters and 
occationally to revision of inaccurate or incomplete models. 
Occationally, it may even be necessary to modify the structure 
of the network, adding or deleting states or nodes. The current 
version of the network represents the third major revision. In 
our hands the revision process has so far been "benign", with 
improvement in performance for each revision and without 

unexpected side-effects of revisions. When the network is 
expanded to handle a range of clinically realistic cases, a more 
formal testing involving a number of clinical experts is 
planned. 

IGNORANCE AND CONFLICTS 

Even if a dedicated effort is made by the builders of the 
MUNIN system to collect and describe a large number of 
diseases to the system, there will still be a residual number of 
diseases that arc either unknown or incorrecdy described to the 
system. How should the system behave when confronted with 
a disease unknown to it? If there is a disease known to the 
system that fits the findings of the case poorly, although with a 
better fit than all other diseases, then Bayesian systems tend to 
give a strong statement in favour of the disease with the least 
poor fit. To avoid this behaviour we have introduced the state 
"other", both in the disease node and in some of the 
pathophysiological nodes. In figure 8 a set of findings have 
been entered. The network is confused by these findings (so 
are the authors), and the network indicates its reservations by 
giving "other" a high probability. 
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The network may also get confused at the 
pathophysiological level, if conflicting findings are entered. In 
figure 9 MU. STRUCTURE receives input from 
TA.CONCLUSION supporting "very large" and from 
"MUP.CONCLUSION" supporting "very small". 
MU.STRUCTURE states its confusion by assigning a high 
probability to "other". There are two interpretations of the 
"other" state. Maybe the findings entered into the network 
faithfully represents the states of the muscle, although this 
would be very difficult to imagine from a medical point of 
view. In that case a "hole" in the knowledge of the network has 
been uncovered and one or more of the models in the network 
will have to be modified. It may even be necessary to add new 
states to excisting nodes, to add new nodes or to add new 
causal links. 

The alternative interpretation is that erroneous findings 
have been entered. Generally, the appearance of "other" in a 
node signals that conflicting and possibly erroneous input has 
been given to the network. 

Whichever interpretation is correct the situation is handled 
in a reasonable way. Once the status of MU.STRUCTURE is 
"other", it does not lend support to any disease. Basically, the 
node is largely ignored until the conflict is resolved. 

CONCLUSION 

A network for the interpretation of EMG finding has been 
constructed. We expect a network of this type to be an 
important building block in an expert system for EMG. 
Although the network is small and in its current form has only 
limited functions, it has allowed us to reach a number of 
conclusions: 

1) With present algorithms for propagation of evidence in 
causal probabilistic networks, probabilistic inference is a 
feasible approach. Since the computation time of the algorithms 
is increasing approximately linearly with the number of states 
in the network, we expect that probabilistic inference can also 
be used in networks considerably larger than the current 
network. 

2) The shift from nodes with only two states (yes,no) to 
nodes with multiple states has given a conceptual simplicity 
that makes knowledge acquisition and verification easier. It 
also makes the knowledge representation very compact. 

3) The use of "deep knowledge" in the form of models 
has reduced the almost intractable problem of estimating 
thousands of probabilities to the much more tractable problem 
of adjusting a much smaller number of model parameters. The 
models have the added virtue that they can be explained 
through pathophysiological reasoning similar to the reasoning 
done by an expert. 

4) Lack of knowledge in the system and conflicting 
evidence is handled in a simple and consistent way by adding 
the state "other" to some of the nodes. This way the network 
can signal, when it reaches the limits of its knowledge. 
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