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Abstract 
We address the problem of interpreting time-varying image 

velocity fields generated by a moving binocular observer viewing a 
stationary environment under perspective projection to obtain 3-D 
information about the absolute motion of the observer (egomotion) 
and the absolute depth of environmental surface points. We conduct 
a numerical study of our algorithm (which involves solving non­
linear systems of equations) for best, random and worst case image 
velocity error. As wel l , we investigate how good the initial guess for 
the nonlinear system of equations has to be. Other results include the 
presence of multiple solutions in time, how the algorithm performs 
when the underlying assumptions it is based on are violated and the 
effect of varying the spatial extent of the image points used, of vary­
ing the spatial baseline (separation of the left and right cameras) and 
of varying the temporal extents of the image points used (effectively 
varying the temporal baselines). As wel l , we investigate the use of 
convergent/divergent as opposed to parallel stereo camera setups. 

1 In t roduct ion 
In this paper we present an algorithm for computing the motion 

and structure parameters that describe egomotion and environmen­
tal layout for a moving binocular observer viewing a stationary 
environment This algorithm is an extension of the monocular algo­
rithm presented in [Barron ct al 87a]; the two coincide when the 
left and right image sequences coincide and the temporal baselines at 
each time are unknown. The binocular motion and structure parame­
ters are simply the monocular motion and structure parameters,!/, the 
depth scaled ovulat ional observer velocity, , the observer's rota­
tional velocity and a, the normalized surface gradient of some planar 
surface, p lus * , , the absolute depth of some point on the surface. 

Our algorithm reconstructs observer motion and environmental 
structure by solving a nonlinear system of equations; each equation 
relates image velocity at some image point in either the left 
or right image sequence to the underlying motion and structure 
parameters in the left image sequence at the solution point, 

In general, monocular and binocular reconstruction have been 
considered two separate problems. Monocular reconstruction typi­
cally involves solving systems of (nonlinear) equations relating 
image velocity (and possibly its and order spatial/temporal 
derivatives) to the underlying motion and structure parameters 
describing a surface in relative motion with an observer (see [Barron 
84]). The classical stereo paradigm proposes that 3-D depth be 
recovered by computing matching primitives in the left and right 
images of a stereo pair, establish correspondence between the 
appropriate primitives in the two images and then calculating 3-D 
depth using simple trigonometry. [Barnard and Fischler 82], [Jenkin 
84] and [Poggio and Poggio 84] provide surveys of some of the 
current stereo techniques. 

We believe that monocular and binocular vision have a lot in 
common and can be solved in a unified way. The algorithm 
presented in this paper is more in the favour of monocular recon­
struction algorithms that interpret image velocity fields, for example 
[Longuet-Higgins and Prazdny 80] or [Waxman and Ullman 85] then 
in the favour of the classical stereo paradigm described above. We 
also interpret image velocities fields; but we do so by sampling the 
image velocities at many discrete times in both left and right stereo 
image sequences. 

* A l io , Canadian Instute for Advanced Research 

[Waxman and Duncan 86] and [Waxman and Wohn 86] have 
also proposed that left and right monocular image velocity fields can 
be analyzed to compute depth. Their algorithm involves the compu­
tation of relative flow (or binocular difference flow). As such stereo 
correspondence must still be computed. Some researchers, such as 
[Kanatani 85] and [Aloimonos and Rigoutsos 86], have advocated a 
correspondence-less approach for monocular reconstruction. 

Only a few researchers have begun to address the use of tem­
poral information, such as temporal derivatives, in reconstruction 
[Subbarao 86a], [Bandopadhay and Aloimonos 85]. We note that 
others' use of temporal derivative information and our use of time-
varying image velocities are approximately equivalent; image velo­
city fields (at least locally) can be derived from one image velocity 
and its 1* and/or 2nd spatial and temporal derivatives and vice-versa. 
Indeed, image velocity fields are often used in the derivation of spa­
tial and temporal image velocity information [Waxman and Wohn 
85]. 

There has been little or no error analysis in previous monocular 
reconstruction work. Some researchers, such as [Waxman and Ul l ­
man 85], [Buxton et al 84], [Aloimonos and Rigoutsos 86], [Snyder 
86] and [Subbarao 86b] have begun to consider the inherent insensi-
tivity of their algorithms for noisy input. Their reports usually con­
sist of a few runs of their algorithms with random noise in the input. 

1.2 Underly ing Assumptions 
In order to relate a stereo spatio-temporal distribution of image 

velocity to the motion and structure parameters at some image point, 
we make 5 assumptions: 

(a) 3-D objects in the environment are rigid. The r ig idi ty assumption 
ensures that the image velocity of an object's point is due entirely to 
the point's motion with respect to the observer and not due to 
changes in the object's shape. 
(b) 3-D surfaces are planar. This local planari ty assumption means 
curved surfaces can treated as collections of adjacent planes. 
(c) The observer rotates with a constant angular velocity for some 
small time interval. This is called the fixed axis assumption [Webb 
and AggarwaI81]. 
(d) A l l image velocities used in a particular calculation of motion 
and structure are measured with respect to the same 3-D planar sur­
face. We call this the same surface assumption. 
(e) The observer's translational velocity is constant with respect to 
the scene frame of reference. 
These assumptions allow us to design our algorithm so that we do 
not have to solve point-to-point correspondence either in individual 
left and right image sequences or between stereo images (1). 

2 A lgo r i thm Descript ion 
In this section, we present a brief description of our algorithm. 

Complete details are given in [Barron 87]. 

2.1 Notation 
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We consider 3 motions: 
is changed to 0,0.1,0 for type 1 motion and (3) 

a>,=(0,0.l,0) for type 2 motion. The spatial baseline is=80,0,0) (meas­
ured at time 0) for a parallel setup, i.e. (0i.02.to)=(O,O,O). Motion 1 
corresponds to pure observer translation towards a wall. Motions 2 
and 3 correspond to an observer translating directly towards a wall as 
he rotates his head to the right (type 1 motion) or moving towards 
the wall while turning to the right (type 2 motion). These motions 
are singular if all image velocities are measured at time 0. However 
motion and structure can be recovered from a spatio-temporal distri­
bution of image velocity. We measure 4 image velocities at points, 
(70,70) at time 0, (-30,70) at time r/4, (-30,-30) at time til and (70,-30) at 
time 3</4, i.e. at the four corners of a square centered at the solution 
point (20,20). Since we need 9 image velocities for our binocular 
algorithm, we measure the y, image velocity component at (20,20) at 
time t. The solution is computed for time 0. These image coordinates 
are assumed to be measured on a 256x256 display device and so are 
scaled by 256 to produce realistic /coordinates. Thus, (20,20) in pixels 
is scaled to (0.078125,0.78125) in / coordinates. The viewing angle of 
these points is computed as the maximum diagonal angle subtended 
by the points, i.e. 33.05°. We call this the spatial extent The tem­
poral extent, written as 0-t, refers to the five times used, i.e. 0, t/4, r/2, 
3//4 and / as above. 

8x8 tables are used to display the output error for runs made by 
varying two quantities, say temporal extent against image velocity 
error. In this case table rows (from left to right) correspond to 
increasing temporal extent while table columns (from top to bottom) 
correspond to image velocity error. 

Due to space limitations, we can only report a few of the results 
we have obtained to date. Tables 4-la,b,c,d,e,f show the output error 
for runs where temporal extent is varied from 0-0.3 to 0-1 in 8 equal 
steps and image velocity error is varied from 0% to 1.4% in 0.2% steps 
for random and worst case error directions for the three motions. The 
Lm condition numbers of the various Jacobian matrices are quite 
large; the values vary from 300,000 to 3,000,000! This indicates unsta-
bility. A l l 100% output error values correspond to unsolved runs; all 
other values, including those over 100%, correspond to solved runs. 
We do not show best case error results as these are effectively 0% 
(less than 0.2%). Indeed, even when maximum best case error was 
49% the output error was only a few percent. These best case results 
are quite good, especially when compared with random and worst 
case output. The output error in the random cases is about 1/3 to 1/2 
the output error in the worst case. As we can see, increasing the tem­
poral extent significantly reduces output error, time appears to 

(2) Computing random image velocity error in this way prevents the error that 
is added to the individual velocities from being too large relative to the magni­
tudes of the velocities, i.e. the error added to each image velocity pair depends 
on the magnitude of that image velocity. Since the magnitudes of the various 
velocities can vary greatly any technique for computing error that doesn't take 
this into account may end up adding very large error to the smaller image velo­
cities. 
(3) We note that the best and worst directions so calculated are for the initial 
linear system of equations, It is possible that the actual best and wont 
directions for the nonlinear system of equations are different, although we ex­
pect these directions to be quite close to the computed best and wont direc-
tions. 
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In the fifth experiment, we also wary the relative orientation of 
the left and right cameras by varying 02 to have values (in radians) of 
-0.5, -0.25, -0 .1. -0.05,0.05,0.1,0.25 and 0.5. and* , remain the 
orientation involves a simple rotation about the X2 axis. Again, rela­
tive worst case image velocity error of 0-1.4% and a fixed temporal 
extent of 0-1 are used. Results for the l* motion (Table 4.5) show 
that both convergent and divergent stereo setups yield smaller output 
error than for the original parallel setup; the closer the setup becomes 
to being parallel, the worst the output error. 

Another result not included in this paper for lack of space 
shows that image velocity error caused by violation of the underlying 
assumptions produces less output error than similarly scaled random 
and worst case image velocity: it seems that violation of the various 
assumptions is less important than the accuracy of the input image 
velocities. 

5 Conclusions 
We have formulated a binocular reconstruction algorithm that 

uses a stereo spatio-temporal distribution of image velocities in left 
and right stereo image sequences but does not require point-to-point 
correspondence be solved in either the individual image sequences or 
between stereo image pairs. We have demonstrated that the addition 
of a temporal distribution of image velocity may increase the numer­
ical stability of the solution technique. In addition, it allows us to 
analyze flow fields that may not be analyzable at one time. As well, 
increasing spatial extent can improve the algorithm's performance. 
Other results suggest that convergent/divergent stereo setups can 
give better results than parallel stereo setups and that increasing the 
spatial baseline can have a similar effect. In all cases, we are effec­
tively increasing the spatio-temporal extent. Unfortunately, the 
greater the spatio-temporal extent the more likely the algorithm's 
underlying assumptions wi l l be violated in realistic situations. We 
are able to report the existence of multiple solutions, a fact that is 
apparently overlooked by most other researchers. Our results indi­
cate mat reconstruction techniques are quite sensitive to input image 
velocity error (1.4% maximum input error in the image velocities 
wi l l be very difficult to obtain) but relatively insensitive to initial 
guess error. We believe that this is the main stumbling block that 
reconstruction algorithms have to overcome before we can consider 
this part of machine vision solved. 

We are investigating the relationship between error in image 
velocities and error in the spatio-temporal derivatives of the flow 
fields [Barron et al 87b] and the improvement gained when a least 
squares formulation is used. These and other results wi l l be reported 
in future papers. 
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