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Abstract

We address the problem of interpreting time-varying image
velocity fields generated by a moving binocular observer viewing a
stationary environment under perspective projection to obtain 3-D
information about the absolute motion of the observer (egomotion)
and the absolute depth of environmental surface points. We conduct
a numerical study of our algorithm (which involves solving non-
linear systems of equations) for best, random and worst case image
velocity error. As well, we investigate how good the initial guess for
the nonlinear system of equations has to be. Other results include the
presence of multiple solutions in time, how the algorithm performs
when the underlying assumptions it is based on are violated and the
effect of varying the spatial extent of the image points used, of vary-
ing the spatial baseline (separation of the left and right cameras) and
of varying the temporal extents of the image points used (effectively
varying the temporal baselines). As well, we investigate the use of
convergent/divergent as opposed to parallel stereo camera setups.

1 Introduction

In this paper we present an algorithm for computing the motion
and structure parameters that describe egomotion and environmen-
tal layout for a moving binocular observer viewing a stationary
environment This algorithm is an extension of the monocular algo-
rithm presented in [Barron ct al 87a]; the two coincide when the
left and right image sequences coincide and the temporal baselines at
each time are unknown. The binocular motion and structure parame-
ters are simply the monocular motion and structure parameters,!/, the
depth scaled ovulational observer velocity, , the observer's rota-
tional velocity and a, the normalized surface gradient of some planar
surface, plus*,, the absolute depth of some point on the surface.

Our algorithm reconstructs observer motion and environmental
structure by solving a nonlinear system of equations; each equation
relates image velocity at some image point, 7,(?‘,!'}, in either the left
or right image sequence to the underlying motion and structure
parameters in the left image sequence at the solution point, ¥,{P.r.

In general, monocular and binocular reconstruction have been
considered two separate problems. Monocular reconstruction typi-
cally involves solving systems of (nonlinear) equations relating
image velocity (and possibly its 1* and 2™ order spatial/temporal
derivatives) to the underlying motion and structure parameters
describing a surface in relative motion with an observer (see [Barron
84]). The classical stereo paradigm proposes that 3-D depth be
recovered by computing matching primitives in the left and right
images of a stereo pair, establish correspondence between the
appropriate primitives in the two images and then calculating 3-D
depth using simple trigonometry. [Barnard and Fischler 82], [Jenkin
84] and [Poggio and Poggio 84] provide surveys of some of the
current stereo techniques.

We believe that monocular and binocular vision have a lot in
common and can be solved in a unified way. The algorithm
presented in this paper is more in the favour of monocular recon-
struction algorithms that interpret image velocity fields, for example
[Longuet-Higgins and Prazdny 80] or [Waxman and Ullman 85] then
in the favour of the classical stereo paradigm described above. We
also interpret image velocities fields; but we do so by sampling the
image velocities at many discrete times in both left and right stereo
image sequences.
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[Waxman and Duncan 86] and [Waxman and Wohn 86] have
also proposed that left and right monocular image velocity fields can
be analyzed to compute depth. Their algorithm involves the compu-
tation of relative flow (or binocular difference flow). As such stereo
correspondence must still be computed. Some researchers, such as
[Kanatani 85] and [Aloimonos and Rigoutsos 86], have advocated a
correspondence-less approach for monocular reconstruction.

Only a few researchers have begun to address the use of tem-
poral information, such as temporal derivatives, in reconstruction
[Subbarao 86a], [Bandopadhay and Aloimonos 85]. We note that
others' use of temporal derivative information and our use of time-
varying image velocities are approximately equivalent; image velo-
city fields (at least locally) can be derived from one image velocity
and its 1* and/or 2nd spatial and temporal derivatives and vice-versa.
Indeed, image velocity fields are often used in the derivation of spa-
tial and temporal image velocity information [Waxman and Wohn
85].

There has been little or no error analysis in previous monocular
reconstruction work. Some researchers, such as [Waxman and Ull-
man 85], [Buxton et al 84], [Aloimonos and Rigoutsos 86], [Snyder
86] and [Subbarao 86b] have begun to consider the inherent insensi-
tivity of their algorithms for noisy input. Their reports usually con-
sist of a few runs of their algorithms with random noise in the input.

1.2 Underlying Assumptions

In order to relate a stereo spatio-temporal distribution of image
velgcity to the motion and structure parameters at some image point,
—I’.(?”.l}, we make 5 assumptions:

(a) 3-D objects in the environment are rigid. The rigidity assumption
ensures that the image velocity of an object's point is due entirely to
the point's motion with respect to the observer and not due to
changes in the object's shape.

(b) 3-D surfaces are planar. This local planarity assumption means
curved surfaces can treated as collections of adjacent planes.

(c) The observer rotates with a constant angular velocity for some
small time interval. This is called the fixed axis assumption [Webb
and Aggarwal81].

(d) All image velocities used in a particular calculation of motion
and structure are measured with respect to the same 3-D planar sur-
face. We call this the same surface assumption.

(e) The observer's translational velocity is constant with respect to
the scene frame of reference.

These assumptions allow us to design our algorithm so that we do
not have to solve point-to-point correspondence either in individual
left and right image sequences or between stereo images (1).

2 Algorithm Description
In this section, we present a brief description of our algorithm.
Complete details are given in [Barron 87].

2.1 Notation
We upe notation ¢ v and F,¢ ;0 to indicate a 3-D point meas-
ured at time 1 in left and right coordinate systems, X, and X,(x),
respectively. We use subscript i 1o refer to quantities that can be in
either the left or right coordinate systems. Equtuom“wnh guantitics
subscripted & &re interpreied in @ consistent way; ail quantitics are
ither { of » but Dot some gixture. Thus, X,(F,.t;n is the depth of
(1) in X, (1) coordinates, ¥,.(F,.1) is the image of Pyt ).

(1} Of course we must stifl sclve nurface correspondence, Le. group spatio-
tempora] distributions of image velocity Uit belong 10 the same planar surface.
See [Adiv 8] for one spprosch.



1.2 Physical Setup

We mode] the left and right observation points using right hand
coordinate systems ps in Longuet-Higgine and Prazdny [80].
Ux(U/, 11,.0+) in the translationsl velocity of the obssrver centered at
the origin of the coordinate system X, (1), (0,0,X,) is the Tine of pight in
Xy (1), opm{an, o0,ay) i the angular velocity of the observer. X,(:) and
i’,’(u) are rigidly connected, hence, ay=naw The center of the two
coordinate systems, the left and right observation points, are
separated by a spatial baseline Me;i=(s,,5,,2,) and X, (7) is rotated with
respect 10 XA1) by Re(b,.8:.%); ¢4 and & are Buler angles as defined
by Arfken (70, pp178-180] for a right-hand coordinate system. If
{9140, 83 )(0,0,0) left and right coordinate systems are parallel;
otherwise we have gither 2 convergent or a divergent stereo setup. In
addition to a spatial bascline, the observation point in either a left or
right sequence st X,() can be separated by a temporal baseline
B from Xete ). #:(0) is the inertial coordinate gystem.

2.3 The General Image Velocliy Equation

We can wrile an equation relating image velocity at a point
Y. (Pat73 to the binocular motion and strocture parametsrs st some
point? 5,4) A8

PF, Pt 0t 1= A, PPt AT Pu DRI 81,0}
- ¥ ¥
WY Pt X3Pt )
TP 00t 0 BB iPat 20
+ Ay @t Wl @31

where 7, ﬁnd 7, are 3-D points on the same planar sorface and gen-
erally f,( ,,,:)_{l",{?,.,:"]. In a left image sequence, ENACNEYE
teduces 10 V{Pa.t )t provided we use ¥a0,0,00, Rf=/ and note that
A0, the spatio-temporal baseline, is simply B, ). Complets
details conceming this equation are given in [Barron 87].

The use of a spatio-temporal distribution of image velocities
requires that we assumptions about the kinds of motion the
observer is undergoing. In this paper, we consider 2 specific types of
motion, aithough we emphasize that our trearment can be general-
ized to other motions as well. The 2 rypes of motion considered are:

Type 1: A vehicle is moving with constant translational velocity and
has & camera mounted on it that is rotating with constant angular
velocity.

Type 2: A vehicle with 8 fixed mounted camera is moving with con-
stant translational and angular velocity.

3 Experimental Technique

In this section we discuss the implementation of our algorithm
and present the details of our error analysis.

1.1 implementation

Newton's method is used to solve the systems of non-linear
equations, Since only 2 components of a are independent, we add an
extra alizgtion row to the Jacobian matrix, J, to ensure the com-

o is normalized; hence ! is a full zank 10 matrix. The 10* valus
of fy, the measured image velocities is then set to 1,

When & is kniown to be zero, i.e. in the case of pure ranslation
{type 1 and type 2 motions &re equivalent here} we can use a ™7
Jacobian instead of a 10510 ope. We compute a 107 Jacobian (the 3
columns corresponding to o sre not computed), We let the LU
decompokition of J chooae the bests 7 rows of 7, with the provision
that the normalization row ia always one of the chosen rows.

[Qu(i-f.r.: “HEE 1, 000

3.2 Error Analysis
We compute an efror vector, Afy which, when added to 7,
yields the perturbed input, i.e.
Torafetite. (3:2-)

For X% random case error @, we compute five random 2-com:
unit vecton, a,, j=1,...5, and then compute each i* component of Af,
n

Afiu

M“] .‘—:6.'., VB30 j=liemd, ixpa-L. (3.2-2)

We use ¥ in the calculation of ermor for vy, in1 Afyy. Afigy i8 0, ie.
we do not add error to the rormalization constant. Using af,, for ren-
dom error wé COMPUte Afurw = | 14fi | §;. We use forward and inverse
iteration on J @ to compute normalizgd best and worst case error
directions, &, and éy. We compute Af, =& Af,... 35 X% best case

scaled image velocity eror and &7, = éy A, 83 X% Worst case scaled
image velocity error. Both best and womt Afy are made 10 be the
same size as the random Afy, for comparison purposcs. A last fype of
error involves adding worst case ertor to the image velocities so that
the maximum etror in any image velocity is X %. We call this worst
case relutive emor.

We computy initial guess emor by adding X% randomn emor
individually to¥, o, 0 and X,.

4 Experimental Results

In this section, we present some preliminary results obtained
from testing our algorithm.

We consiger 3 motions: {1) ¥=(0,0,1000}, &,=(0.9,1), ©=(0.0,0) &nd
X;,=2000, (2} o is changed to 0,0.1,0 for type 1 motion and (3)
a>,=(0,0.1,0) for type 2 motion. The spatial baseline is=80,0,0) (meas-
ured at time 0) for a parallel setup, i.e. (0i.02.to)=(0,0,0). Motion 1
corresponds to pure observer translation towards a wall. Motions 2
and 3 correspond to an observer translating directly towards a wall as
he rotates his head to the right (type 1 motion) or moving towards
the wall while turning to the right (type 2 motion). These motions
are singular if all image velocities are measured at time 0. However
motion and structure can be recovered from a spatio-temporal distri-
bution of image velocity. We measure 4 image velocities at points,
(70,70) at time 0, (-30,70) at time r/4, (-30,-30) at time til and (70,-30) at
time 3</4, i.e. at the four corners of a square centered at the solution
point (20,20). Since we need 9 image velocities for our binocular
algorithm, we measure the y, image velocity component at (20,20) at
time t. The solution is computed for time 0. These image coordinates
are assumed to be measured on a 256x256 display device and so are
scaled by 256 to produce realistic /coordinates. Thus, (20,20) in pixels
is scaled to (0.078125,0.78125) in / coordinates. The viewing angle of
these points is computed as the maximum diagonal angle subtended
by the points, i.e. 33.05°. We call this the spatial extent The tem-
poral extent, written as 0-t, refers to the five times used, i.e. 0, t/4, r/2,
3//4 and / as above.

8x8 tables are used to display the output error for runs made by
varying two quantities, say temporal extent against image velocity
error. In this case table rows (from left to right) correspond to
increasing temporal extent while table columns (from top to bottom)
correspond to image velocity error.

Due to space limitations, we can only report a few of the results
we have obtained to date. Tables 4-la,b,c,d,e,f show the output error
for runs where temporal extent is varied from 0-0.3 to 0-1 in 8 equal
steps and image velocity error is varied from 0% to 14% in 0.2% steps
for random and worst case error directions for the three motions. The
L, condition numbers of the various Jacobian matrices are quite
large; the values vary from 300,000 to 3,000,000! This indicates unsta-
bility. All 100% output error values correspond to unsolved runs; all
other values, including those over 100%, correspond to solved runs.
We do not show best case error results as these are effectively 0%
(less than 0.2%). Indeed, even when maximum best case error was
49% the output error was only a few percent. These best case results
are quite good, especially when compared with random and worst
case output. The output error in the random cases is about 1/3 to 1/2
the output error in the worst case. As we can see, increasing the tem-
poral extent significantly reduces output error, time appears to

(2) Computing random image velocity error in this way prevents the error that
is added to the individual velocities from being too large relative to the magni-
tudes of the velocities, i.e. the error added to each image velocity pair depends
on the magnitude of that image velocity. Since the magnitudes of the various
velocities can vary greatly any technique for computing error that doesn't take
this into account may end up adding very large error to the smaller image velo-
cities.

(3) We note that the best and worst directions so calculated are for the initial
linear system of equations, MMg=fyg. It is possible that the actual best and wont
directions for the nonlinear system of equations are different, although we ex-
pect these directions to be quite close to the computed best and wont direc-
tions.
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incresse robustness for tese motions. The results indicate that worst
case error of m linde as 1.4% can produce ungsable output, if we
asgume only output emot that is less than 10%-20% is useful. It
soems we need image velocity measurements to be quite accurate,

The second experiment involves using perfect image velocity
dats and varying temporal extent from 0-0.3 to 0-1 as before while
varying initial guess error from 0% to t00% in 8 equal sweps for the 3
motions. All 100% output ermor values indicate unsolved runs while
0% output error indicates solved runs. For the 1 motion (Table 4-2a)
most runs soived even when the initial guess ermor was 100%. Motions
2 and 3 (Tables 4-2b and 4-2¢ respectively) exhibit multiple solu-
tions “*; all output erors not 0% or 100% represent solved runs where
the computed solution differs from the correct solution. For example,
using type 1 motion and a temporal extent of 0-0.9, we obiain two
muitiple solutions. The first occurs when an initial guess of (4.294% is
used and is specified as:

A ® & o
36016876 | 0032824 | 0294379 | -0.088051
45635191 _| -0.078043 626386 0,145430
467.118296_| 0425703 721709 0.022624

with X,,=1090.651. The output error is 4547%. This solution, plus the

comrect solution of Za(D),0,0.49%65759), @=(0,0,1} and ©=(0,0.1,0) produce
the same 4 1/2 image velocities at the five image points and times:

»o |y | ume ¥ LY
0 | 0|00 0.0279% 012799
.30 70 [ 0225 | -0.17983 0.15677
30 |30 [ 045 | 020409 | 0.07606
pi1 -30 | DATS | 004000 008645

20 | | os 511230 .

(The last v; component for (20,20) is not used.) Except for these com-
mon image velocities, the two flow fields are distinct.

A third experiment that investigaies the relationshup between
image velocity error and initial guess emror do¢s pot produce any
unexpected results; the two are usually independent. In most solved
cases where the output error did not depend on image velocity error
zlone it was impossible to tell how much of the error was due to
image velocity error and how much may have been due 1o the
existence of a multiple solution.

As we have already seen in experiment [, increasing temporal

extent can reduce cutput emor. The fourth experiment investgates
what happens when spatial extent is vatied from 7° to 70° (the full
image} for & fixed emporal extent of 0-t. A spatial extent of 8° is
computed by fimt calculating yz(;x * and then using image
velocities messured at (y,y) at time O, {~y,y) at time 0.25, (—y.—y) &t
time 0.5, (y, -y) at time 0.75 and (9,0) &t time 1. The solution point for
this experiment was changed to (0,0). The !* motion is used and rela-
tive worst case image velocity eror is varied from 0-14%. The
resulta {Table 4 4a) show that increasing spatial extent increased out-
put error in most cases. When o, was changed 1o {0.707107,0,0.707407)
results (Table 4.4b) showed a slight improvement in output emor for
increasing spatial extent. Previous resulis with our monocular algo-
rithm [Barron et al §7a] showed a bener improvement with increas-
ing spatial exrent. We also investigate what happens when the spa-
tial baseline #is varied: s, values of -1000, -800, -80, -8, 8, 80, 800
and 1000 are used. », and s, remain 0; only horizontal disparity is
used. Because o, is 0.1, -r; values cause the right camera to move
away from the planar surface (relative to the left camera) thus result-
ing in U,>T, while +s, has the opposite effect, i.e. T,<Z,. Relative
worst case image velocity error ig varied from 0-1.4% and a fixed
temporal extent of 0-1 is used. Results (Table 4-4c) for the 3* motion
show that ss U.'s value increases relative to U} output error is
reduced. Incressing the spatiai bascline does help provided the
incresses caupe the right camera to move faster end closer to the
plane.
{4) [Swbbarso ad Woxman 85] show uniqueness of the monocular motion and
stoctars parmmeters over dme, Their resuls also holds when binocular Sow
ficlds wre wsed, However, by both cases wniquencss holds only when the whole
Bow Seld is sgalyzed.
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In the fifth experiment, we also wary the relative orientation of
the left and right cameras by varying 0, to have values (in radians) of
-0.5,-0.25,-0.1.-0.05,0.05,0.1,0.25 and 0.5. ; .and*, remain {J; the
orientation involves a simple rotation about the X, axis. Again, rela-
tive worst case image velocity error of 0-1.4% and a fixed temporal
extent of 0-1 are used. Results for the /* motion (Table 4.5) show
that both convergent and divergent stereo setups yield smaller output
error than for the original parallel setup; the closer the setup becomes
to being parallel, the worst the output error.

Another result not included in this paper for lack of space
shows that image velocity error caused by violation of the underlying
assumptions produces less output error than similarly scaled random
and worst case image velocity: it seems that violation of the various
assumptions is less important than the accuracy of the input image
velocities.

5 Conclusions

We have formulated a binocular reconstruction algorithm that
uses a stereo spatio-temporal distribution of image velocities in left
and right stereo image sequences but does not require point-to-point
correspondence be solved in either the individual image sequences or
between stereo image pairs. We have demonstrated that the addition
of a temporal distribution of image velocity may increase the numer-
ical stability of the solution technique. In addition, it allows us to
analyze flow fields that may not be analyzable at one time. As well,
increasing spatial extent can improve the algorithm's performance.
Other results suggest that convergent/divergent stereo setups can
give better results than parallel stereo setups and that increasing the
spatial baseline can have a similar effect. In all cases, we are effec-
tively increasing the spatio-temporal extent. Unfortunately, the
greater the spatio-temporal extent the more likely the algorithm's
underlying assumptions will be violated in realistic situations. We
are able to report the existence of multiple solutions, a fact that is
apparently overlooked by most other researchers. Our results indi-
cate mat reconstruction techniques are quite sensitive to input image
velocity error (1.4% maximum input error in the image velocities
will be very difficult to obtain) but relatively insensitive to initial
guess error. We believe that this is the main stumbling block that
reconstruction algorithms have to overcome before we can consider
this part of machine vision solved.

We are investigating the relationship between error in image
velocities and error in the spatio-temporal derivatives of the flow
fields [Barron et al 87b] and the improvement gained when a least
squares formulation is used. These and other results will be reported
in future papers.
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- 00 100, 000 000 0W 0 000 000 000 GO0
NC0.00100.00 10000 3 57 100,00 100.00 100 00 100.00( 100 DX 100 00 100 50 100 D0 16000 100,00 100 00 100 goo DOQ GO0 000 DO 000 000 400
100 00 10000 10000 10000 10000 Q.00 00¢ Q.00
10000 10000 100060 000 10000 0.00  0.0G 10000
Table 4 1¢ {Z* motion Raadom) Table 4 1d (2% motion Wonm) Q00 J0000 10000 0.00 10M00 10000 1DGU0  0.00
100,00 10C 00 100.00 10000 10000 DOC 10000 10000
000 000 000 OO0 000 Q00 00 QO3 000 O00 000 00D 000 OOQ OO0 O 32 69 10000 10000 100.00 100.00 0000 (0000 Q.00
1700 1395 1195 978 EBS 765 653 623] | 1709 1395 1195 978 B85 785 651 62 10000 _000 1060 10000 100.09 IO INT0 F278
]g.:lg,gg ;jo,llnz 1697 1544 13.46 1211 1015] | 2799 2298 2002 1697 1544 1346 [211 1901 Table 4.2¢ (3" motion (nitial Guess}
| . 2227 1968 17.10 1552 14.65] 100.00 160.00 25.15 2227 19.6B 17,10 i5.52 14
- - - . .52 14 ; 00 Cco0 D00 OO 000 O
100.00100.00 tOG.00 2644 2335 2122 1974 17.39| [I00.00 100.00 100,00 26.44 23155 21.27 1974 17 ?g g% g_& 287 2,22 200 219 'I.g"f)
100.001D0.00 £0000 100.00 100.00 2522 2224 2009| [100.00 100.00 100,00 10000 1DA.C0 2522 2224 20 I71T 598 61% 540 476 443 470 449
100.00100.00 100.00 10000 100.00 100.00 2426 23.21| {100.00 100.00 100.00 100,00 10000 100.00 24.26 2321 574 046 93 Bl T2 6% TS58 13l
1C.00100.00 100,00 160.05 100.00 100,00 100.00 24.47! {100.00 100.00 100.00 100.00 100.00 10D 00 100.00 24 47 722 1428 1219 1296 104 990 9 863
993 1B21 17.53 1576 1442 12% 1227 1311
. 1L.20 2409 23468 1917 2002 5B 1615 140
Tabls 4.1¢ (3 motion Rodom) Table 4.1f (3 motoa Worm) 13.59_ 2541 2513 2697 1944 1814 2127 66
000 000 00 090 000 000 O Tibe A% (Varyng o)
00 O oM 000) | D00 000 000 000 000 000 0O0F COD
173 205 287 1M 376 186 185 378 | 201 200 363 448 L3 L1l 048 C& 0m 000 ok % o o 1% o
330 395 549 368 7MY 164 36 792 | 150 405 6B6 BY? 273 ZIB L4 13 106 096 224 321 615 34z 232 158
496 S83 189 5S40 1247 534 SW 250| | se 51 975 e 4 3 258 2 159 157 321 485 74R S§16 391 265
647 752 1040 704 1738 696 495 758 7W 766 1234 2092 526 424 340 17 194 142 423 733 NT76 142 A4 A6
791 923 1214 861 225 532 As0 D4| | 900 932 1469 832 646 523 420 3N 301 247 574 BT 1358 KOS 540 447
920 1051 MOY 1011 W46 1067 1000 29.59| [1053 1090 1632 364 162 613 498 193 321 299 745 1073 1159 j054 171 419
1060 1231 1576 1035 3693 1145 1143 3676 {1199 1239 1576 4R76 LT T.41 575 4SS 444 339 781 1417 1651 1176 B4 497 ]
Table 4.5 (Varying 47}
Table 4.4x (Varyiog Spatial Extest) Twble 4.db (Varyrng Sparin] Extent)
Barron, Jepson, and Tsotsos 825




