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A B S T R A C T : 

In order to improve the performance of heuristic search for 
finding optimal solutions, two high level problem solving 
strategies, namely, subgoal ordering and goal augmentation, 
have been developed. The essence of these two strategies is 
to make explicit the knowledge embedded in a general prob­
lem formulation which can be used to constrain the solution 
search space. These two strategies have been incorporated 
into a methodology which we previously developed for 
automatically generating admissible search heuristics. The 
effectiveness of these strategies is demonstrated by the appli­
cation to robot opt imal task planning problems. 

1. Introduction 

In previous papers we have presented 
a general heuristic problem solving methodology. Recently, 
this methodology is augmented by two systematic problem 
solving strategies, namely, problem subgoal ordering and 
goal augmentation. This paper reports on these two stra­
tegies. 

Problem subgoal ordering is an important strategy used 
to reduce problem space search. Many different subgoal ord­
ering strategies have been reported before (|ErG82|, [Sus75j, 
[Tat75], fWal8l), [Sac77], [Das77]). However, in this paper we 
present a novel approach to subgoal ordering. In contrast to 
the previously proposed approaches, our approach is to 
preorder the problem subgoals systematically by reasoning 
on the problem formulat ion. The result of ordering is then 
imposed on the search control to constrain the search space. 

Goal augmentation is another problem solving strategy 
which systematically discovers goal information that is not 
explicitly represented but can be inferred from a given prob­
lem formulat ion. Augmentation can often reduce the-
ambiguity of the specified problem solving goals which 
enables more accurate estimation of the search heuristic. 

Our research on problem subgoal ordering and goal 
augmentation are both part of an effort to develop a general 
heuristic problem solving methodology. Previously, we 
achieved methods for systematically modeling problems and 
automatically generating admissible heuristics for A*- l ike 
best-first search algorithms (see [IrY85], [IrY87]). Currently, 
the subgoal ordering and the goal augmentation strategies 
have been integrated w i th the heuristic generation to con­
strain search through improving the tightness of the heuris-
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tie estimation. 

The rest of the paper is organised in the following way. 
A simple robot planning problem is introduced in section 2. 
Earlier problem subgoal ordering strategies are briefly 
reviewed in section 3. Our approaches to subgoal ordering 
and to goal augmentation are then presented in section 4 
and section 5 respectively. The integration of these problem 
solving approaches wi th the automatic search-heuristic gen­
eration is reported in section 6. A complete example is given 
in section 7 and the paper is finally summarised in section 8. 

2. A Robot Planning Problem 

To il lustrate our ideas, we introduce a robot navigation 
planning problem in this section. In the problem, there are 
three problem objects, one robot and two boxes (see Figure 
1). The robot is the only active agent which can change its 
own position as well as move other objects. The valid actions 
assumed in this problem setting are ( l ) the robot going to an 
object in the same room; (2)the robot going into a connected 
room; and (3)the robot pushing an adjacent box to a con­
nected room. 

The problem's in i t ia l state and goal state are described 
in Figure 1. The solution to be found is an opt imal sequence 
of actions for the robot to perform so that the ini t ial state 
can be transformed into a goal state wi th the least possible 
number of actions. Using our formal problem model, this 
problem can be specified as follows: 

(1) Three problem objects: robot, bozl and box3; 

(2) Two problem attr ibutes modeling relevant problem solv­
ing aspects, namely, the locations of problem objects in refer­
ence to the room configurations and the adjacency relations 
among problem objects; 
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(3) Functions which take an object and a state as parameter 
and return a value representing the status of the object in 
that state in certain aspects. This example uses two func­
tions, Inroom and Nextto. Inroom{objs) returns a room iden­
tif ier indicating in which room the object is located in the 
state #, while Neztto(obj,t) returns a set of objects adjacent 
to obj in the state s; 

(4) A goal formula specifying conditions which must be satis-
fied by any goal state, 

» 

(6) A set of problem rules modeling valid actions, the rules 
use the IF < precondition > THEN < postcondition > for­
mat. The precondition specifies what must be true for the 
rule to be applicable. The postcondition specifies the effects 
of the application of a rule. <t and s2 are used to represent 
the states before and after the application of a rule. We 
assume that if the status of an object w i th respect to a cer­
tain problem aspect is not in the postcondition part of a 
rule, then it is unaffected by the application of the rule. 

Al though this problem appears to be simple, a heuristic 
state space search without subgoal ordering is very ineffi­
cient. To i l lustrate this, we use the automatically generated 
admissible heuristic function([IrY85|) to control the search in 
solving the problem. For this problem, 78 nodes are pro-
duced and 35 nodes are expanded for deriving an optimal 
solution wi th a length of 6 rules. 

On tracing the search tree generated in solving this 
problem, we find that the generated problem heuristic 
prefers to move the robot directly towards its own goal 
rather than moving the robot to first push the box, into 
room* This is due to the fact that the difference in the loca­
tions of the robot in any non-goal state and the goal state 
always dominates the similar difference for the boxx. The 

* if (or by) and rz(or ry) are variables which range over ors and room* 
respectively 

inherent ordering constraints between the two problem 
subgoals are not recognized and used in the heuristic estima­
t ion. Consequently, the robot is misled into going into the 
roomi directly. It is not unt i l the robot arrives at room4 that 
the task of moving the box{ is noticed. 

The ineffectiveness of the heuristic in this problem is 
due to the lack of knowledge about subgoal ordering con­
straints and the incompleteness of the goal specification. 
This motivates us to develop a systematic subgoal ordering 
approach and a goal augmentation approach. These two 
approaches reveal impl ic i t knowledge about a problem from 
its specification, and transform it into explicit problem con­
trol constraints to guide heuristic search. 

3 , P rev i ous S u b g o a l O r d e r i n g Strategies 

Subgoal ordering has been employed in many previous 
problem solving systems as a strategy for reducing search. 
These systems can be classified by the degree of commitment 
they make towards subgoal ordering, which reflects how 
early a decision is made on ordering problem subgoals, and 
how bold a hypothesis is made on the subgoal ordering con­
straints wi th a given amount of information. 

Among the early systems, GPS [Ern69] is the first to 
apply subgoal ordering to problem solving. In GPS, subgoals 
are arranged as the row headings in the Tabic of connection. 
The system does not start to achieve a subgoal heading for a 
certain row unt i l all subgoals heading higher rows are 
achieved. A total ordering is thus imposed on all problem 
subgoals, which represents the highest possible commitment 
towards subgoal ordering. This ordering task needs to be 
carried out by a user. 

Many other systems are also over-committed to subgoal 
ordering, although they operate in quite a different way from 
that of GPS. Systems like HACKER [Sus75|, INTERPLAN 
[Tat75|, WARPLAN [War74], first order subgoals arbitrari ly 
and perform a destructive re-ordering in case a protection 
constraint violation is detected. Systems like STRIPS |FiN71j 
and ABSTRIPS [Sac74] achieve subgoals in the order they 
are given and backtrack if the given order fails. Waldinger's 
system [Wal8l] proposes a goal regression strategy which 
amounts to "constructive subgoal re-ordering". 

NOAH [Sac77] is a system which makes "least commit­
ment" towards subgoal ordering. It f irst attempts problem 
subgoals in parallel (unless a sequential order constraint is 
imposed beforehand in the " S O U P " code). Several "cr i t ics" 
are then applied to detect and handle interactions among 
subgoals or to find and eliminate redundancies. 

Another distinctive approach is presented in [Das77], in 
which a subgoal is chosen to be achieved next if it least 
interferes w i th the subgoals already achieved. 

The subgoal ordering strategies of these systems either 
make too strong an in i t ia l commitment to subgoal ordering, 
wi thout making use of the knowledge of the inter-subgoal 
constraints at al l , or make a commitment to the ordering too 
late. The former results in too much backtracking while the 
latter results in much redundancy as well as conflicts in par­
t ia l problem solutions. Consequently, these strategies do not 
reduce search as effectively as expected. 

Ernst et al. [ErG82] developed a procedure, DGBS, to 
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mechanize the GPS approach. DGBS represents a reasonable 
commitment towards problem subgoal ordering. It tries to 
detect inherent problem subgoal ordering constraints so that 
they can be put in order properly before the problem solving 
actually starts. However, DGBS is very inefficient in its con­
struction of the Table of connection. The procedure has to 
process all the problem operator instances in i t ia l ly, instead 
of just considering problem operator schemes as usually 
given in a problem specification. This may cause DGBS to be 
computationally intractable when tackling a problem with a 
few operator schemes but a large number of operator 
instances. Another problem wi th DGBS is that it cannot 
guarantee a correct ordering. When the 'superfluous opera­
tor constraint" is violated, and the table of connection is in 
a diagonal form, the system is unable to order subgoals 
properly. 

The key weakness of all these previous subgoal ordering 
approaches is their inabil i ty to properly reveal and make use 
of the relationship between problem operator structures and 
problem subgoal orderings. As wil l be shown later, our 
research result presents an improvement on this issue over 
these approaches. 

4 . A Sys temat ic A p p r o a c h to Subgoa l O r d e r i n g 

If a problem goal is represented by a predicate formula 
in a conjunctive normal form, then we can conceive every 
conjunct as a problem subgoal. There are usually interac­
tions between such subgoals which determine the natural 
order of achieving them in solving a problem and these 
interactions are called subgoal ordering constraints. 

Many types of ordering constraints may exist among 
problem subgoals. We are mainly interested in one such 
type. However, we discuss two more types of constraints 
below to intuit ively motivate the th i rd type of constraint, 
which we use for ordering subgoals. 

(1) A subgoal g2 cannot be achieved before a subgoal g{ 

m any problem solution. There could be two possible situa­
tions. One is when, if g2 is satisfied first, then all those rules 
which can achieve g{ wil l not be applicable unless g2 is des­
troyed. The other is when, if g2 is satisfied first, then any 
rule which can achieve gl wi l l force the violation of g2 as a 
side effect of that rule. 

The subgoal ordering constraint in the robot planning 
example is an instance of the first si tuat ion; if we achieve the 
subgoal for the robot first, then when we turn to achieve the 
subgoal for boxu we wi l l have to retract the established 
subgoal for the robot. 

An example of the second situation is the following. 
Suppose our goal is to have clothes washed and dried. The 
actions we can use are 'wash clothes in a washer' and 'dry 
clothes in a dryer'. If we achieve the dry ' subgoal first, then 
although we can sti l l 'wash clothes in a washer' to satisfy 
the other subgoal, the 'dry ' subgoal would be wiped out 
because the clothes become wet after washing. 

(2) Subgoals g1 and g2 cannot be achieved simultaneously 
by the application of a single rule. For instance, in our robot 
planning example, the robot cannot get into roomA while the 
boz) is pushed into room6. 

(3). A subgoal g1 must be achieved before a subgoal g2 in 
any problem solution in which both are satisfied. This con­

straint is actually a conjunction of the constraints (1) and 

(2). 
These three subgoal ordering constraints are intuit ively 

clear. However, it is not intuit ively clear how one can sys­
tematically detect these constraints from a problem formula­
t ion. In order to automate the process of detecting these 
kinds of constraints from the basic problem formulation and 
to order problem subgoals systematically, we have developed 
relations and procedures. In the following, the proposed 
approach and the results are presented. First we introduce 
some notations: 

• G represents the goal condition formula which is a 
ground predicate formula specifying the desired state of 
affairs for a problem. gt represents a subgoal condition 
formula which is a conjunct in the goal condition formula. 
SG is the set of all subgoal condition formulas of G. 

is a subset of problem states satisfying g1. 

is used to denote the resulting state of the applica­
tion of the rule to state s. 
•preck and postk are the precondition formulas and 
postcondition formulas for the rule Rk respectively. 
•problem solution path: a sequence of states 
such that 8j is an ini t ia l state, sn is a goal state, and for 
every state there is a rule which can 
transform s1, into s1-1. 
• o partial solution path in a problem solutton path 

In order to explicitly represent the relation between the 
problem rule specifications and subgoal ordering constraints, 
we give the following definitions. 

D e f i n i t i o n : gt precedes g} m a problem solution path P i ff 
there exists a partial solution path in P which 
satisfies: 

D e f i n i t i o n : gt and g, are said to be both achieved in a 
problem solutton path P iff there is a partial solution path 

in P such that 

D e f i n i t i o n : u < " is a binary relation over SG. g, <g} iff 

means that for any rule in the problem, if the 
rule can transform a state, say s, to a new state in which 
both g, and g, are true, then s must satisfy g,. 

The relation appears to be complicated because of 

the quantifiers used. However, to construct *-", only pattern 
matching and variable binding are needed. A procedure 
called SOC (Subgoal Ordering Constraints) has been 

developed to construct <. A loose upper bound for the com­
plexity of this procedure is ( where m, n, and k 
are the cardinalities of the set of problem objects, the set of 
problem aspects and the set of rules, respectively. 
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into the goal sequence is the sub goal 
(2) and G2 is the sub goal (1). This ordering complies wi th 
the constraints inherent in problem specifications. 

5 . G o a l A u g m e n t a t i o n 

In a problem formulat ion, goals are often not specified 
completely in the sense that many things are left as "don ' t 
care". Therefore, more than one state can be a candidate 
goal state. However, as far as opt imal i ty is concerned, only 
some of them can actually qualify to be goal states. 

For the robot planning configuration in our example, 
for instance, assume the goal is simply that 
Inroom(box)=roomfi. It appears that the Robot can be 
anywhere in the goal state. However, if an opt imal path is 
pursued, three other conditions also need to be satisfied. 
These conditions are (1) the Robot is in rooms (2) the 
Robot is adjacent to only the boxu and (3) no object is next 
to the box2. The first condition and the th i rd condition are 
the immediate consequences of achieving the given goal, 
namely, Inroom(boxi)=room^, while the second condition is 
a necessary precondition for achieving the given goal and is 
invariant over the rule tha t achieves the goal. 

This reasoning can be used to augment every com­
ponent goal derived by the subgoal ordering. We have pro­
ven two properties of goal augmentation. The properties are: 
(1) every state which satisfies the original component goal 
condition and which is on an opt imal solution path, also 
satisfies the augmented goal condition, (2) the number of 
nodes expanded during the search for the opt imal solution 
path with the augmented component goal is no more than 
that with the original component goal. Proofs are omitted 
for consideration of space. In the following, we give the 
algorithm for the augmentation of all component goals of a 
goal sequence. 
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In this algorithm, step (0) finds the first component 
goal which is not already satisfied in the init ial state. The 
algorithm achieves the augmentation of each component goal 
Gk mainly in steps (3)-(6). For every subgoal g, in the com­
ponent goal Gk, every rule R} is checked to see whether it is 
applicable in a state in which the subgoal g, is not satisfied, 
and whether its application to such a state can satisfy Gk 

and all those component goals preceding Gk in the goal 
sequence. If rule passes the test, then besides the com­
ponent goal condition formula Gk, all its preconditions 
which are unaffected by the application of the rule and all 
its postconditions are true in the state resulting from the 
application of R,;. These preconditions and postconditions 
are conjoined into AUG;. If more than one rule passes the 
test, then the conditions derived from different rules are dis­
joined and stored in AUGt. The disjunction of all the 
AUG,'s is the total augmentation which is finally conjoined 
with the component goal Gk in step (6). A loose upper 
bound of the complexity of the procedure AUGMENT is 

where m, n, and k are the cardinalities of the 
set of problem objects, set of problem aspects and set of 
rules. Since usually only a few rule schemes are related wi th 
each possible subgoal in a problem, the computation of the 
goal augmentation is often very efficient. 

We again use our robot planning problem to illustrate 
the algorithm. From the subgoal ordering, we derived a goal 
sequence with two component goals, namely, 

• • I n t e g r a t i o n o f Subgoa l O r d e r i n g , G o a l 
A u g m e n t a t i o n a n d Heur is t ic E s t i m a t i o n 

In our previous research, we proposed a methodology 
for determining a general and admissible heuristic function 
h($) for best-first search (see [IrY85], [IrY87]). According to 
this methodology, for each state s, h(s) returns an under­
estimated minimum cost for the path from * to the goal set. 
In this section, we show that subgoal ordering and goal aug­
mentation can be naturally incorporated into heuristic esti­
mation. The new heuristic estimation is tighter than the ori­
ginal one while the admissibility and monotonicity is sti l l 
preserved. We first explain the original heuristic function 
and then describe the integration of subgoal ordering, goal 

augmentation and heuristic estimation. 

The original heuristic function h(s) is derived as fol­
lows: The problem is first transformed into k simplified 
problems, where k is the number of problem objects whose 
status in the state a is different f rom that in the goal state. 
Each simplified problem contains only one object in its prob­
lem space, with all specifications concerning other objects 
suppressed. The minimum cost for the optimal path in each 
simplified problem is then either derived by conducting an 
exhaustive search in this small space, or simply retrieved 
from the store of previous derivation results. 

Although the derived cost in any simplified problem 
can be taken as the heuristic for the original problem, 
further derivations are made to get a tighter heuristic esti­
mation. Three functions are evaluated. The first gives the 
maximum value of all the minimum costs for solving the 
simplified problems. The second is the sum of all the 
minimum costs divided by the maximum number of objects 
affected by any operator in the original problem model. The 
th i rd is the same as the second except that the objects which 
are affected by all operators are excluded from consideration. 
The maximum of the three computation results is taken to 
be the final value of h(s) for the state s. 

The search heuristic described above assures admissibil­
ity and monotonicity. However, the heuristic does not incor­
porate the knowledge of interactions among problem 
subgoals and is very sensitive to the completeness of the goal 
specification. In the following, we describe a a new heuristic 
function which incorporates subgoal ordering knowledge and 
goal augmentation. 

We first denote the component goal sequence generated 
by subgoal ordering to be the sequence after 
the augmentation t o b e a n d the goal 
sequence for heuristic estimation to be 

In the search process for the problem solution, for any 
state s being evaluated, we define an effective goal subse­
quence G, which is the remaining sequence of component 
goals to be fulfil led relative to state s. Formally, 

The new heuristic function can now be informally 
defined. When a state, say s, is to be evaluated, the prob­
lem is decomposed into k simplified problems as before, 
where k is the number of problem objects which do not have 
the. same status in s and in all the component goals of the 
effective goal subsequence G. In the simplified problem for 
an object o, the effective goal subsequence is relaxed such 
that only the specification about the status of a is retained 
in each of the elements of the sequence. The cost of the 
opt imal solution path passing through each of the elements 
of this simplified sequence is then determined. The final 
value of the new heuristic A+ (s) is the maximum of the three 
values computed in the same way as before. 

The heuristic function h+($) is also admissible and 
monotonic. Furthermore, it provides consistently tighter 
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heuristic estimation than the original function h(s). The 
proof is omitted. Wi th the new heuristic function, the 
search becomes very efficient. As can be seen from Figure 
2(a), for the problem given in Figure 1, without subgoal ord­
ering and goal augmentation the search can go astray for a 
long time before it touches the right path. For this problem, 
78 nodes are produced and 35 nodes are expanded for deriv­
ing an optimal solution with length of 6 rules. However, as 
shown by Figure 2(b), with subgoal ordering and goal aug-
mentaion, the heuristic value discriminates against the 
misleading path at the very outset. The search tree gen­
erated for this problem contains only 13 nodes, of which 6 
modes are expanded. 
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Finally, we incorporate the above results into the 
heuristic generation and conduct the heuristic search to solve 
for the optimal solution path. The effectiveness of the search 
heuristic is greatly improved. Using the original methodology 
without subgoal ordering and goal augmentation, 321 nodes 
are generated and 138 nodes expanded. However, w i th the 
new methodology, 140 nodes are generated and 60 nodes 
expanded. 

s. Summary 

This paper is a contribution to the development of a general 
methodology for automated heuristic problem solving. We 
have presented an improved procedure for subgoal ordering 
and a novel procedure for goal augmentation. We then out­
lined a procedure to integrate these two strategies w i th our 
previous methodology of automatic generation of admissible 
search heuristic. The combined package is a new methodol­
ogy of general problem solving. 
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