
Parallel Iterative .A* Search :
An Admissible Distributed Heuristic Search Algori thm

Shie-rei Huang
Artificial Intelligence Department

FMC Corporate Technology Center
1205 Coleman Ave., Box 580

Santa Clara, CA 95052

La r r y S. Davis
Computer Vision Laboratory

Center for Automation Research
University of Maryland, College Park

College Park, MD 20742

Abs t rac t
In this paper, a distributed heuristic search
algorithm is presented. We show that the
algorithm is admissible and give an informal
analysis of its load balancing, scalability, and
speedup. A flow-shop scheduling problem has
been implemented on a BBN Butterfly Mul
ticomputer using up to 80 processors to em
pirically test this algorithm. From our exper
iments, this algorithm is capable of achieving
almost linear speedup on a large number of pro
cessors with a relatively small problem size.

1 I n t r o d u c t i o n
Best-first heuristic search algorithms, such as the .A* al
gorithm, are one of the most important techniques used
to solve many problems in artificial intelligence and op
era! ions research. A common feature of heuristic search
is its high computational complexity, which has signifi
cantly limited its application in practical domains such
as flexible manufacturing, strategic planning, and man
agement.

In the past decade, many parallel architectures have
been proposed and some of them are now commer
cially available. Advances in parallel computer technol
ogy have offered the potential to greatly speedup the
computations in general. Due to the combinatorial as
pects of heuristic search, a very large scale of parallelism
can be potentially explored. However, the efficiency of
heuristic search algorithms mainly comes from the intel
ligent guidance of heuristics. When implementing par
allel heuristic search algorithms on commercial multi-
computers, researchers often face a tradeoff between the
faithfulness to global heuristics and the high communi
cation cost which serializes and slows down the compu
tation. Until recently, there was no easy solution to this
dilemma.

In this paper, we present a distributed best-first
heuristic search algorithm, Parallel Iterative A* (PIA*).
We show that the algorithm is admissible, and we give
an informal analysis of its load balancing, scalability and
speedup. To empirically test the PI A* algorithm, a flow-
shop scheduling problem has been implemented on the
BBN Butterfly Multicomputer [BBN, 1985] using up to
80 processors. From our experiments, this algorithm is

capable of achieving almost linear speedup on a large
number of processors with relatively small problem size.

We will assume the reader is familiar with the A* al
gorithm [Hart et a/., 19(58].

1.1 Related W o r k
Research in parallel heuristic search has been very active
recently. A* can be parallelized by storing the OPEN
list in global storage that is accessible to all processors
[Mohan, 1982]. Huang and Davis [1987] use queueing
theory to show that this approach can achieve almost
linear speedup to a certain number of processors. How
ever, beyond that point, the speedup levels off suddenly,
no matter how many processor are used. Rao and Ku
mar [1988] proposed a concurrent heap data structure for
organizing the global OPEN list. The new data struc
ture allows processors to interleave operations on OPEN
and improves the speedup to some extent; however, con-
gestion near the root of the concurrent heap is still a
problem.

Kumar et al. [1988] propose another approach which
substitutes a shared BLACKBOARD for the global
OPEN list and let each processor maintain its own lo-
cal OPEN list, Unfortunately, the BLACKBOARD may
eventually become a bottleneck as the number of proces
sors increases.

A distributed approach has also been tried by some
researchers. Early work is represented by Wah and Eva
Ma's MA NIP [1981]. Anderson and Chen [1987] pre
sented an algorithm to perform distributed best-first
search on hypercube multicomputers. To balance the
workload, they proposed to exchange a summary of the
cost distribution in the local OPEN lists of neighbor
ing processors. Quinn [1987] presented four other imple
mentations of the best-first search on hypercubes. These
four simple algorithms tried to either improve the useful
computation at each processor, or to improve the com
munication cost, but failed to effectively improve both
at the same time.

2 The PI A* A l g o r i t h m
PI A* proceeds by repetitive synchronized iterations. At
each iteration, processors are synchronized twice to carry
out two different procedures: the node expansion proce-
dure and the node transfer procedure. Operations are
largely local to the processor in the node expansion

Huang and Davis 23

procedu re and are c o m p l e t e l y loca l i n t he node t r a n s -
fer p r o c e d u r e . D a t a s t r u c t u r e s in PI A* are d i s t r i b u t e d
t o avo id b o t t l e n e c k s . N o d e se lec t i on , node e x p a n s i o n ,
node o r d e r i n g and successor d i s t r i b u t i o n o p e r a t i o n s are
f u l l y pa ra l l e l i zed by processors. Processors p e r f o r m i n g
searches w h i c h are n o t f o l l o w i n g the c u r r e n t best heur i s
t ics are s y n c h r o n i z e d to s t o p as soon as possib le to reduce
search ove rhead (t h e increase in the n u m b e r o f nodes
t h a t m u s t b e e x p a n d e d o w i n g t o the i n t r o d u c t i o n o f
p a r a l l e l i s m) . D u r i n g processor s y n c h r o n i z a t i o n , specu
l a t i ve c o m p u t a t i o n s are c o n t i n g e n t l y p e r f o r m e d a t each
processor, t r y i n g to keep processors a lways p r o d u c t i v e l y
busy, t o reduce s y n c h r o n i z a t i o n o v e r h e a d . Unnecessary
c o m m u n i c a t i o n s are avo ided as l o n g as processors are
p e r f o r m i n g w o r t h w h i l e search w o r k t o reduce c o m m u n i
c a t i o n ove rhead . A s y m m e t r i c successor node d i s t r i b u
t i o n m e t h o d i s used to d i rec t load b a l a n c i n g . F i n a l l y , t he
correct t e r m i n a t i o n of PI A* is f a c i l i t a t e d by i ts i t e r a t i v e
s t r u c t u r e .

A genera l sca lab le pa ra l l e l a r c h i t e c t u r e m o d e l is used
by us to descr ibe P1 A*. T h e a r c h i t e c t u r e consis ts of
a set of p rocesso r -memory pa i rs w h i c h c o m m u n i c a t e
t h r o u g h a n unspec i f ied c o m m u n i c a t i o n c h a n n e l . T h e
c o m m u n i c a t i o n channe l can be rea l ized us ing a shared
m e m o r y o r by message p a r s i n g . M e m o r y re fe renc ing
t h r o u g h loca l m e m o r y i s c o m p l e t e d in cons tan t un i t
t i m e . A r e m o t e reference t h r o u g h the c o m m u n i c a t i o n
channe l , however , requ i res ()(logP) t i m e u n d e r n o r m a l
ba lanced t ra f f i c , whe re P is the n u m b e r of processors.
I t is ou r be l ie f t h a t t h i s a r c h i t e c t u r e m o d e l is genera l
enough t o s u b s u m e m o s t sca lab le m u l t i c o m p u t e r s w h i c h
are c u r r e n t l y ava i lab le c o m m e r c i a l l y , such as the B B N
B u t t e r f l y [B B N , 1985], the I n t e l H y p e r c u b e [I n t e l , J986]
and the C o n n e c t i o n M a c h i n e [l l i l l i s , 1985].

Because some f o r w a r d references are requ i red for us
to descr ibe PIA*, t he reader m a y need to re - read th is
sec t ion t o u n d e r s t a n d th i s a l g o r i t h m .

2 . 3 T h e N o d e E x p a n s i o n P r o c e d u r e

The node expans ion p r o c e d u r e at each i t e r a t i o n i oper
ates as fo l l ows . A processor j f i rst e x p a n d s a l l the nodes
f r o m Mjl a n d , by an a l g o r i t h m to be descr ibed in Sect ion
2.5, pu t s a l l t he successor nodes genera ted i n t o the re
cep t i on l is ts (RL). T h e n , as l o n g as any o t h e r processor
is e x p a n d i n g a m a n d a t o r y node , t h i s processor c o n t i n
ues to e x p a n d the best specu la t ive node f r o m Sj'. W h e n
a l l t he nodes f r o m M' have been e x p a n d e d , a l l proces
sors s y n c h r o n i z e for the node t rans fe r p rocedu re w h i c h
is desc r ibed in Sec t ion 2.6.

In PLA successors gene ra ted by a node expans ion
are n o t cons idered for expans ion u n t i l the next i t e ra
t i o n ; t h e y are added to RL i m m e d i a t e l y a f ter t hey are
gene ra ted .

The node expans ion p r o c e d u r e also c o m p u t e s / ' + 1 and
b roadcas ts i t to a l l processors. I t is set to the m a x i m u m
o f (a) / 7 , and (b) t h e m i n i m u m cost o f (i) a l l successors
genera ted f r o m nodes in M i and (i i) the nodes in .S''.
L e t Suc(-) be an o p e r a t o r w h i c h m a p s a set of nodes to
t h e i r successor nodes . T h e n , f ' + 1 can be expressed as:

T h e r e i s an e f f ic ient pa ra l l e l m e t h o d for c o m p u t i n g
/ ' + I . For each processor j , a loca l c o n s t a n t C j w h i c h
i s t he m i n i m u m cost o f (a) a l l successors genera ted f r o m
nodes in Mj and (h) t h e best node in Sj can be c o m
p u t e d d u r i n g the node e x p a n s i o n p r o c e d u r e . T h e n , the
m i n i m u m of Cj, j ; = 0 P — I, can be c o m p u t e d in par
a l le l i n t i m e O (l o g P) [Pa ige and K r u s c a l , 1985] w h i l e
processors are s y n c h r o n i z e d ; / , + 1 i s t h e n the m a x i m u m
o f f a n d t he c o m p u t e d m i n i m u m .

24 Tools

2.4 S y n c h r o n i z a t i o n

Let us digress here to discuss how processor synchroniza-
tion in the node expansion procedure can be efficiently
and correctly implemented. Essentially, what we need
is a barrier synchronization between processors. Al l of
the processors are required to meet at the barrier before
any are allowed to proceed. The barrier in our case is a
state in which each processor j has finished expanding
Mj. But , instead of unproduct ive wai t ing at the barrier,
a processor j continues to expand the best speculative
node from S j while wai t ing.

If a shared memory is available, the barrier synchro
nization can be implemented by having a global variable
which counts the number of processors that are wai t ing
at the barrier. When all of the processors have arrived at
the barrier, the barrier can be removed. I his approach
requires atomic operations on a global variable and may
create a hot spot.

A better approach, called the butterfly barrier sug
gested by Brooks I I I [198(5], is to let each processor syn
chronize w i th another processor pairwise at each of log P
stages in order to synchronize P processors. This ap
proach removes the cri t ical regions and hot spots wi th
desired scalabil i ty, and is suitable for message-passing
architectures, such as hypercubes, as well.

2.5 T h e Successor D i s t r i b u t i o n A l g o r i t h m

Successor nodes generated by a processor are put into
RLj, j = 0 P — 1, in a multiplex round-robin fashion.
More precisely, suppose that the most recent successor
node generated by processor j is added to RLj. Then
the next successor node generated by processor j wi l l
be added to RLk, when* k — (i+ 1 mod P). At each
i terat ion, processor j sends its first generated successor
to RLj.

The advantage of this approach is that it is simple to
implement and its symmetr ic structure helps PLI at
tain the desired load balancing (see Section 5.1). Since
the successors generated are not considered for expan
sion unt i l the next i terat ion, some opt imizat ion can be
made for message-passing architectures. Messages for
successor d is t r ibut ion can be asynchronous so that com
putat ion and communicat ion can be overlapped. For
architectures which require large communicat ion setup
t ime, successor nodes generated can be distr ibuted and
cached in local memory and not sent unt i l an efficient
message size for the underly ing architecture is reached.

2.6 T h e N o d e T r a n s f e r P r o c e d u r e

After the node expansion procedure, each processor j
empties the nodes from RLj and inserts them into II L j.,
to form a new pr ior i ty queue for the next i terat ion. Note
that the node transfer procedure is completely local; no
communications between processors are required.

The relationship between WL i+1 and WL i can be ex
pressed as:

. (Eq2)
where is the set of speculative nodes which were
selected for expansion by processors in the node expan-
sion procedure at i terat ion i to use the otherwise idle
t ime for processor synchronizat ion.

2.7 T e r m i n a t i o n

When a mandatory node is found to be a goal node by
a processor, a message can be broadcast to inform all
processors to terminate. If a speculative node is found to
be a goal node, this node is simply added to RL because
it may not be an opt imal goal node.

PLA* can terminate, fai l ing to reach a goal node, when
if and only if for all j =

0.... P— 1. This state can be recognized and broadcast to
all processors at the end of the node transfer procedure.

2.8 S u m m a r y

The PI A* a lgor i thm can be summarized below:

l o o p until a goal node is reached or WL is empty
{ Start node expansion procedure }
f o r each processor]

expand all mandatory nodes from WL j ;, and
add successors to RL using the multiplex
round-robin successor distribution algorithm:
w h i l e there is a processor expanding a

mandatory node
expand the best speculative node from WLj

and add successors to RL using the multiplex
round-robin successor distribution algorithm;

{ Start node transfer procedure }
f o r each processor j

insert all nodes from RLj to \ \ 'L j :

Mandatory nodes and speculative nodes are discrimi
nated by comparing their cost to a threshold t. A node
n is a mandatory node if f(n) < t; otherwise, it is a
speculative node. In i t ia l ly , / — h(s). Successive / values
are computed dur ing the node expansion procedure by
(Fq I) presented in Section 2.3.

Huang and Davis 25

When only one processor is used to run PI A*, no
speculative nodes would he expanded at each i terat ion,
and obviously processor synchronizat ion is not required.
PI A* then proceeds very similar ly to A* except that the
order of the node expansion may he different because a
successor generated by PI A* is not immediately consid
ered for expansion. However, from Observation I, we
know:

O b s e r v a t i o n 2 PI A* using a single processor perforins
1he saint number of node expansions as A* in the worst
case.

Tha t is, PIA* using one processor can perform as well
as.A*.

5 Analysis and Exper imen ta l Results
In this section, we wi l l give an informal analysis of the
load balancing, scalabil i ty, and speedup of PI A*. Exper-
imental results wi l l be also shown to support the analy
sis.

To empir ical ly test the PI A* a lgor i thm, a three-
machine flow-shop scheduling problem was implemented
on a BBN Butterf ly Mul t icomputer . The three-machine
flow-shop scheduling problem is to schedule a given set
of jobs on three machine's such that the span of time
to finish all of the jobs is minimized. The lower bound
funct ion described by Ignall and Schrage [1965] was used
as the cost function f. We ran a 12 job problem using 5,,
10, 20, :30, 10, 50, (50, 70 and SO processors on a Butterf ly
and compared their results. We could not run this prob
lem on a single processor because of insufficient memory
available on one Butterf ly processor. The experimental
results are summarized in Table I. The detailed experi
mental results can be found in [Huang and Davis, 1981)].

"Mandatory nodes plus speculative nodes
''Assumed

5.1 L o a d B a l a n c i n g

Load balancing is one of the main factors determining
the efficiency of a parallel a lgor i thm. Processors not only
have to be kept busy but also have to be busy on pro
ductive work a high percentage of the t ime in order to

26 Tools

attain good load balancing and to obtain almost linear
speedup.

One of the main features that contr ibute to the load
balancing of the PIA* a lgor i thm is its symmetric struc
ture. Each processor in PIA* maintains the same type
of data structures, executes the same type of operations,
and interacts w i th other processors in the same envi
ronment. By symmetry pr inciple, probabil ist ical ly, the
nodes tend to distr ibute evenly both in number and in
cost among processors. In Figure 2, we plot , f rom our ex
periments, the tota l number of nodes expanded at each
processor, and the number of nodes left in the work list
at each processor when 70 processors were used. The
dist r ibut ion is very even among processors.

At each i terat ion of PIA*, there are two synchronized
procedures: the node expansion procedure and the node
transfer procedure. We wi l l study the load balancing of
these two procedures respectively.

5 .1.1 L o a d B a l a n c i n g i n t h e N o d e E x p a n s i o n
Procedure*

Processors are kept almost constantly busy in the node
expansion procedure because the speculative computa
tion is performed addit ional ly at each processor to use
the wai t ing t ime for processor synchronization. Th is ar
rangement has been very effective in our experiments.
As we can see from Figure 2, the tota l number of nodes
expanded was nearly constant at each of the 70 proces
sors .

Rut, how product ive is the speculative computat ion
at each iteration? If MP is evenly distr ibuted among
all processors, then very few speculative nodes wi l l be
selected for expansion. We have argued above1 that this
is generally so probabil ist ical ly, owing to the symmetric
structure of the PI A* a lgor i thm. A speculative1 node
selected for expansion by a processor is the best node
available to this processor's work list at that t ime. At
each i terat ion, any speculative node n w i th f(v) < f * (*)
can become a mandatory node at one of the subsequent,
i terations, and wi l l eventually be expanded by A* as well.
Hence, the speculative computat ion which expands this
type of speculative nodes is also productive.

In our experiments (see Table I) , the total number
of speculative nodes expanded tended to increase when
more processors were used; but the total number of nodes
(mandatory nodes and speculative nodes) expanded did
not tend to increase (The zigzagging is at t r ibuted to the
parallel search anomalies). Furthermore, the total num

ber of i terations tended to decrease as more processors
were used (see Table I) . These results empir ical ly show
that most of the speculative computat ion performed was
productive in our experiments.

The mult ip lex round-robin algor i thm for the successor
d istr ibut ion has a deterministic worst case which is in
dependent of the problem size but can grow linearly with
the number of processors. The probabi l i ty of the worse
case occurr ing is very low as the number of processors
increases. In fact, when the a prior i characteristics of
a problem instance are unavailable, because of the sym
metry, the expected max imum difference of RLj*s should
be close to zero.

Let us consider Figure 2 again. Recause the total num-
ber of nodes expanded and the final size of the work list
at each processor are very un i form, we expect that the
size of R L j ' s before the node transfer procedure should
be approximately uni form at each i terat ion. Note that
each processor at each i terat ion only expanded less than
10 nodes on the average (about 200 nodes expanded in
over 20 iterations) to obtain this load balancing.

5.2 Scalabi l i ty
Computat ional requirements for most interesting combi
nator ial search problems grow very quickly wi th prob
lem size. It is not difficult to find problems which can
use mil l ions of processors for the PIA* a lgor i thm, ('an
the PI A* a lgor i thm scale accordingly provided that the
underlying mul t icomputer is scalable? Fxcept for the
successor d istr ibut ion and the processor synchronization,
operations in PI A* are completely local. Ry using tlu
butltrflu barrier suggested by Brook I I I [1080], proces
sor synchronization can scale very well w i th increased
numbers of processors.

Successor d is t r ibut ion is accomplished by the help of
a reception list at each processor. Since reception lists
are accessed by all processors, a legit imate concern would
be whether contention for them would lead to significant
degradation or a bottleneck. An equal number of recep
tion lists and processors exists, and each processor has
equal probabi l i ty of placing a node on any reception list.
Recause if is a simple list structure, a reception list can

Huang and Davis 27

be protected w i th a very short cr i t ical region. We ex
pect that contention for the reception lists l>y processors
wi l l not be a problem in practice and its seriousness does
not increase w i th the number of processors. In [Huang
and Davis, 1989], we use elementary queueing theory to
support this expectat ion.

5.3 S p e e d u p

Since P1A* proceeds iteratively, we wi l l analyze the
speedup in a single i terat ion to project, the overall
speedup. Speedup for P processors is normally defined
as the rat io of execution t ime using one processor and
that using P processors; i.e.,

Let us define 11', = T1 and WP = P • TP as the total
amount of work required when using one processor and
P processors respectively. Assume that the same set of
nodes are expanded in W,, and WP,. Then, to compare Ws,
and l i p , we note that a fraction of W,, f IV,, 0 < / < 1,
is the work to add successors to RL. When P > I pro-
cessors are used, the same amount of work is converted
to nonlocal successor d is t r ibut ion operations. Provided
that an assumed scalable mul t icomputer is used to run
PLA*, is converted to f.H, • c1 log P in HP,
where c1 is a constant which depends on the efficiency
of the communicat ion network in the underly ing mu l t i
computer. In addi t ion, \Yp also contains the computa
tion cost for processor synchronizat ion. Assuming the
butterfly barrier is used, each processor needs to run
log P stages and in each stage communicates wi th an
other processor. The total cost can then be expressed as
C 2Plog 2 P, where c2 is another constant. Therefore, we
can express H'p as:

and the speedup is:

The above equation shows how the communicat ion
overhead introduced by successor d is t r ibut ion opera
tions, and the processor synchronization overhead would
affect the speedup of PI A*. Since only simple opera
tions are required for successor d is t r ibut ion, the frac
tion f should be very small for most heuristic search
problems. The significance of processor synchronization
overhead is inversely proport ional to i.e., the syn
chronization overhead is less significant if each processor
expands more nodes at each i terat ion. For exponential
search problems, we argue that there are normal ly many
mandatory nodes at each i terat ion. Consider the 20-city
Traveling Salesman Problem as an example. The size
of the search state space is 20!. Assuming a 32-bit in-
teger is used to represent the cost of a state, there are
at most 232 different- cost values. Then, on the average,
there are over 108 states assigned the same cost value!
The speedup, based on the execution t ime taken when 5
processors were used, is shown in Table 1. On the aver
age, fewer than 10 nodes were expanded at each i terat ion

when more than GO processors were used (see [Huang and
Davis, 1989]). Overal l , only about 14000 nodes were ex
panded in tota l in every experiment. The problem size
was chosen so that the benchmarking t ime was reason
able to measure, and it was just barely enough to effec
t ively uti l ize 80 processors. Prom our analysis, PI A*,
similar to most other parallel algori thms, wi l l perform
better for problems w i th larger problem sizes.

As a comparison, we implemented the same problem
using the central queue approach on the same machine.
The t im ing and speedup results are summarized in Table
2. The max imum speedup was less than 3 and the execu
t ion t ime had no sign of improvement when we increased
the number of processors to 50.

Because of memory l imi tat ions, we were unable to
obtain the speedup of PLA* based on A* running on
a single processor of Butter f ly in Table 1; however, a
small problem was tested to compare actual running
times of PLA* and A*. The result is shown in Table
3. The speedup of PLA* in Table 3 is based on A*.
In our implementat ions, the run t ime performance of
PLA* using one processor is very close to A* if both
algori thms expand the same number of nodes. The to-
tal number of nodes expanded depends on when a goal
node is reached, and it can vary widely if there are many
nodes wi th cost equal to the opt imal solution cost. Also
f rom Table 3, the parallelization overhead of P1 A* is
not significant for this small problem size. (Note that
when more than one processor are used, remote memory
reference has been reported to be about 5 times more
expensive than local memory reference on Butterf ly.)

Table 2: Exper imental Results for the Central Queue
Approach ((Cf. Table 1)

"Compared to A*

6 Conc lud ing Remarks and Future
Research

We have presented a distr ibuted best-first heuristic
search a lgor i thm, PLA*. We proved the algor i thm is
admissible and gave an informal analysis of its load bal-

28 Tools

ancing, scalabil i ty and speedup. A (low-shop schedul
ing problem was chosen to implement the PLA* algo
r i t hm on the BBN Butter f ly Mul t icomputer using up to
SO processors. The experimental results were encour-
aging. It seems that this a lgor i thm can achieve almost
linear speedup on a large number of processors wi th a
relatively small problem size. We expect this a lgor i thm
can be efficiently implemented on a large class of scalable
mult icomputers and can solve a variety of combinator ial
opt imizat ion problems. However, because P I A * has not
been extensively tested on many types of problems and
mult icomputers, its actual l imi tat ions and advantages
have yet to be* more carefully evaluated in future tests.

The P L A * a lgor i thm uses roughly the same amount
of memory as A* . A* often fails to solve an exponential
search problem because it runs out of space very quickly.
Al though PLA* can effectively use the combined mem
ory of a loosely-coupled mul t icomputer , it is also vul
nerable to the memory shortage problem when t ry ing to
solve large exponential search problems. We are devel
oping a linear space variant of PI A* and investigating
an implementat ion on the Connection Machine, fu r ther
results wil l be published in a sequel to this paper.

7 Acknowledgements
The authors would like to deeply thank Richard Korf
who reviewed and crit iqued early drafts of this paper.
Vipin Kumar 's comments on our early versions of PI A*
have been very valuable to us. Special thanks to Perry
Thorndyke and N. S. Sridharan who encouraged and
supported this research.

References
[Anderson and Then, 1987] Anderson, S. and Then, M.

C, Parallel branch-and-bound algorithms on the hy
pereube, in Hypercube Multiprocessors 1987, M. 1.
Heath, ed S IAM Press, Philadelphia, PA, 1987.

[B B N , 1985] BBN Laboratories, Butterf ly Para l ld Pro-
ce ssor Overview, Holt, Heranek and Newman, Cam
bridge, Massachusetts, Dec. 1985.

[Hrook I I I , 1980] Hrook I I I , E.D., The butterfly barrier
Internat ional Journal of Parallel Programming, vol.
15, no. I, August 1986.

[Mart et al., 1908] Mart, P L . , Nilsson, N.J. and
Raphael, H., .4 f o rma l basis f o r the heuristic deter
minat ion of min imum cost paths, IEEE Trans. Sys
tems, Science and Cybernetics, SSC-42, no. 2, 1968,
pp. 100 107.

[Hil l is, 1985] Hill is. D., The Connection Machine, Cam
bridge, MA , M I T Press, 1985.

[Horowitz and Sahni, 1978] Horowitz, 10. and Sahni, S.,
Fundamentals of Compute r Algori thms, Rockvil le,
M l) , Computer Science Press, 1978.

[Huang and Davis, 1987] Huang, S. and Davis L. S., .4
tight uppe r-bound f o r the speedup of para l ld best-first
branch-and-bound algorithms, Technical Report, CS-
TR-1852, Computer Science Department, University
of Mary land, College Park, Apr i l 1987.

[Huang and Davis, 1989] Huang, S. and Davis L S.,
P L A * : an admissible distribute d he urtstic searrh algo
r i thm, Technical Report, CS-1 R-2233 Computer Sci
ence Department, University of Marv land, College
Park, Apr i l 1989.

[ignall and Schrage, 1965] Ignall , E. and Schrage. L.,
Application of the branch and bound technique to some
flow-shop sche duling problems. Opus. Res., 13, no 3,
1965, pp 100-112.

[Intel , 1980] intel PSC System Overview, Intel Scien-
tific Computers, 1980.

[Kleinrock, 1975] Kleinrock, L., Queueing Systems:
Theory, Vol 7, New York: Wiley, 1975.

[Kumar et al, 1988] Kumar, V., Ramesh K. and Rao,
V. N., Pa ra l l d heuristic search of state-space graphs
: a summary of results, in Proceedings of the 1988
National Conference on Art i f ic ia l Intelligence, August
1988.

[Lai and Sahni, 108 l] Lai, T. I I . and Sahni, S., Anoma
lies in parallel branch-and-bemnd algorithms, Comm.
A C M , vol 27, 198 I, pp. 59-1-002.

[Mero, 1984] Mero, L , A heuristic search algorithm with
modifiable estimate, Art i f ic ia l Intelligence 23, 1, May
1984, pp. 13-27.

[Mohan, 1982] Mohan, .)., .4 study in parallel computa
tion - the Pwveling Salesman Problem, Technical Re
port CMP- ('S-82-130, ('omputer Science Department,
Carnegie-Mellon University, August, 1982.

[Nilsson, 1980] Nilsson, N. J . , Principles of Ar t i f i c ia l In
telligence, Palo A l to , C A , Tioga Press, 1980.

[Paige and Kruscal, 1985] Paige, R. C. and Kruskal, C.
P., Paral lel algorithms fo r shortest path problems, in
P roc hit I. Conf. on Parallel Processing, August 1985,
pp. 14-20.

[Pearl, 1984] Pearl, J . , Heuristics, Addison-Wesley,
Reading, M A , 1984.

[Quinn and Deo, 1980] Qu inn , M. J. and Deo, N., An
upper bound fo r the speedup of parallel branch-and-
bound algorithms, HIT, vol 0, no. I, March 1980).

[Quinn, 1987] Qu inn , M. J . , Imple menting best-first
branch-and-bound algorithms on hypercubc mult icom-
puters, in Hypercuhe Multiprocessors 1987, M. T.
Heath, ed., S IAM Press, Philadelphia, PA, 1987.

[Rao and Kumar , 1988] Rao, Y. N. and Kumar, Y ,
Concurrent access of pr ior i ty que ues, I L L P Trans, on
Computers, vol 37, no. 12, Dec. 1988, pp. 1057-1005.

[Wall and Lva Ma. 1984] Wal l , H. \Y. and Kva Ma, Y.
\\ ., M A X I P - A multicompute r architecture f o r solv
ing combinator ial e rtre mum-se arch problems, IEEE,
Trans, on Computers, vol 33, May 1984, pp. 377-390.

Huang and Davis 29

