Parallel Iterative .A* Search :
An Admissible Distributed Heuristic Search Algorithm

Shie-rei Huang
Artificial Intelligence Department
FMC Corporate Technology Center

1205 Coleman Ave., Box 580
Santa Clara, CA 95052

Abstract

In this paper, a distributed heuristic search
algorithm is presented. We show that the
algorithm is admissible and give an informal
analysis of its load balancing, scalability, and
speedup. A flow-shop scheduling problem has
been implemented on a BBN Butterfly Mul-
ticomputer using up to 80 processors to em-
pirically test this algorithm. From our exper-
iments, this algorithm is capable of achieving
almost linear speedup on a large number of pro-
cessors with a relatively small problem size.

1 Introduction

Best-first heuristic search algorithms, such as the .A* al-
gorithm, are one of the most important techniques used
to solve many problems in artificial intelligence and op-
eral ions research. A common feature of heuristic search
is its high computational complexity, which has signifi-
cantly limited its application in practical domains such
as flexible manufacturing, strategic planning, and man-
agement.

In the past decade, many parallel architectures have
been proposed and some of them are now commer-
cially available. Advances in parallel computer technol-
ogy have offered the potential to greatly speedup the
computations in general. Due to the combinatorial as-
pects of heuristic search, a very large scale of parallelism
can be potentially explored. However, the efficiency of
heuristic search algorithms mainly comes from the intel-
ligent guidance of heuristics. When implementing par-
allel heuristic search algorithms on commercial multi-
computers, researchers often face a tradeoff between the
faithfulness to global heuristics and the high communi-
cation cost which serializes and slows down the compu-
tation. Until recently, there was no easy solution to this
dilemma.

In this paper, we present a distributed best-first
heuristic search algorithm, Parallel lterative A* (PIA*).
We show that the algorithm is admissible, and we give
an informal analysis of its load balancing, scalability and
speedup. To empirically test the PIA* algorithm, a flow-
shop scheduling problem has been implemented on the
BBN Butterfly Multicomputer [BBN, 1985] using up to
80 processors. From our experiments, this algorithm is

Larry S. Davis
Computer Vision Laboratory
Center for Automation Research
University of Maryland, College Park
College Park, MD 20742

capable of achieving almost linear speedup on a large
number of processors with relatively small problem size.

We will assume the reader is familiar with the A* al-
gorithm [Hart et al., 19(58].

1.1 Related Work

Research in parallel heuristic search has been very active
recently. A* can be parallelized by storing the OPEN
list in global storage that is accessible to all processors
[Mohan, 1982]. Huang and Davis [1987] use queueing
theory to show that this approach can achieve almost
linear speedup to a certain number of processors. How-
ever, beyond that point, the speedup levels off suddenly,
no matter how many processor are used. Rao and Ku-
mar [1988] proposed a concurrent heap data structure for
organizing the global OPEN list. The new data struc-
ture allows processors to interleave operations on OPEN
and improves the speedup to some extent; however, con-
gestion near the root of the concurrent heap is still a
problem.

Kumar et al. [1988] propose another approach which
substitutes a shared BLACKBOARD for the global
OPEN list and let each processor maintain its own lo-
cal OPEN list, Unfortunately, the BLACKBOARD may
eventually become a bottleneck as the number of proces-
sors increases.

A distributed approach has also been tried by some
researchers. Early work is represented by Wah and Eva
Ma's MANIP [1981]. Anderson and Chen [1987] pre-
sented an algorithm to perform distributed best-first
search on hypercube multicomputers. To balance the
workload, they proposed to exchange a summary of the
cost distribution in the local OPEN lists of neighbor-
ing processors. Quinn [1987] presented four other imple-
mentations of the best-first search on hypercubes. These
four simple algorithms tried to either improve the useful
computation at each processor, or to improve the com-
munication cost, but failed to effectively improve both
at the same time.

2 The Pl A* Algorithm

PIA* proceeds by repetitive synchronized iterations. At
each iteration, processors are synchronized twice to carry
out two different procedures: the node expansion proce-
dure and the node ftransfer procedure. Operations are
largely local to the processor in the node expansion

Huang and Davis 23

procedure and are completely local in the node trans-
fer procedure. Data structures in PIA* are distributed
to avoid bottlenecks. Node selection, node expansion,
node ordering and successor distribution operations are
fully parallelized by processors. Processors performing
searches which are not following the current best heuris-
tics are synchronized to stop as soon as possible to reduce
search overhead (the increase in the number of nodes
that must be expanded owing to the introduction of
parallelism). During processor synchronization, specu-
lative computations are contingently performed at each
processor, trying to keep processors always productively
busy, to reduce synchronization overhead. Unnecessary
communications are avoided as long as processors are
performing worthwhile search work to reduce communi-
cation overhead. A symmetric successor node distribu-
tion method is used to direct load balancing. Finally, the
correct termination of PIA* is facilitated by its iterative
structure.

A general scalable parallel architecture model is used
by us to describe P71 A* The architecture consists of
a set of processor-memory pairs which communicate
through an unspecified communication channel. The
communication channel can be realized using a shared
memory or by message parsing. Memory referencing
through local memory is completed in constant unit
time. A remote reference through the communication
channel, however, requires ()(logP) time under normal
balanced traffic, where P is the number of processors.
It is our belief that this architecture model is general
enough to subsume most scalable multicomputers which
are currently available commercially, such as the BBN
Butterfly [BBN, 1985], the Intel Hypercube [Intel, J986]
and the Connection Machine [llillis, 1985].

Because some forward references are required for us
to describe PIA* the reader may need to re-read this
section to understand this algorithm.

2.1 Data Stractures

In vach processor j, (wo lists are maintaited in its lo-
cal memory: the work list (WL}) and the reception hist
(#21.;). as shown in Fignre L 11L; is a priority gquene
and REL; is a simple list. At the beginning of each itera-
tion, WL; contains the sorted nodes awaiting expansion
by processor j, and RL; = . During the node expansion
procedure, successor hodes generated are distribmted Lo
RtL;. j=10...P— 1 usingasuccessor distribution algo-
rithim (o be described in Section 2.5,

Heneeforth, we will use 1WL;Y to denote the set of
nodes in the work list of processor j al the beginning
of iteration 7. T the snbseript is omitted, it means the
union of all P processors” work lists. That is,

r-1

W=y

j=n

IT the superscripd is omitled, it means for all iterations.
Similar notation will be used throughout Lhis paper.

fnitially, WL" = {s} and RL? = 9. As PIA* pro-
ceeds, 1LY i similar to a snapshot of the OPEN list in
A" but distributed.

24 Tools

I mendsiory nodes
XX 2R Gog o
expanded

I seccesscr nodes

Figure 1: Data Structures and Data Flow in PTA®

2.2 Tteration Threshold, Mandatory Nodes
and Speculative Nodes

A threshold # is associated with each iteration 7, with
1" = h(x). How t'*t! iz actually computed will he de-
seribed In the nexl section.

A node n € WL is defined to be a mandatory node il
S(n) <1t Let M7, whichiis a subset of 1VL7, e the set
ol all imandalory nodes. As we shall see later, all anda-
tory nodes will eventually be selected for expansion by
either A" or PTA" in the worst case, A node n € WL
i delined 1o he a speculatroe node i f(n)} > 1 Lot 87 bhe
the set of all speculative nodes. Then, WL = AU &Y.

Initially, A" = {s} and 8" = 8.

2.3 The Node Expansion Procedure

The node expansion procedure at each iteration i oper-
ates as follows. A processor j first expands all the nodes
from M/ and, by an algorithm to be described in Section
2.5, puts all the successor nodes generated into the re-
ception lists (RL). Then, as long as any other processor
is expanding a mandatory node, this processor contin-
ues to expand the best speculative node from S When
all the nodes from M' have been expanded, all proces-
sors synchronize for the node transfer procedure which
is described in Section 2.6.

In PLA successors generated by a node expansion
are not considered for expansion until the next itera-
tion; they are added to RL immediately after they are
generated.

The node expansion procedure also computes /'+'

and
broadcasts it to all processors. It is set to the maximum
of (a)/’, and (b)the minimum cost of (i)all successors
generated from nodes in M' and (ii)the nodes in .S".
Let Suc(-) be an operator which maps a set of nodes to
their successor nodes. Then, f' +' can be expressed as:
FHl = Jlra.r{!j.rraii:[f(rl] b € Sue(M YU SY). (ligl)
There is an efficient parallel method for computing
/'*'. For each processor j, a local constant Cj which
is the minimum cost of (a)all successors generated from
nodes in Mj and (h)the best node in Sj can be com-
puted during the node expansion procedure. Then, the
— I, can be computed in par-
1985] while
is then the maximum

minimum of Cj, j =0 P
allel in time O(logP) [Paige and Kruscal,
processors are synchronized; /'*'
off and the computed minimum.

2.4 Synchronization

Let us digress here to discuss how processor synchroniza-
tion in the node expansion procedure can be efficiently
and correctly implemented. Essentially, what we need
is a barrier synchronization between processors. All of
the processors are required to meet at the barrier before
any are allowed to proceed. The barrier in our case is a
state in which each processor j has finished expanding
Mj. But, instead of unproductive waiting at the barrier,
a processor j continues to expand the best speculative
node from S; while waiting.

If a shared memory is available, the barrier synchro-
nization can be implemented by having a global variable
which counts the number of processors that are waiting
at the barrier. When all of the processors have arrived at
the barrier, the barrier can be removed. | his approach
requires atomic operations on a global variable and may
create a hot spot.

A better approach, called the butterfly barrier sug-
gested by Brooks Il [198(5], is to let each processor syn-
chronize with another processor pairwise at each of log P
stages in order to synchronize P processors. This ap-
proach removes the critical regions and hot spots with
desired scalability, and is suitable for message-passing
architectures, such as hypercubes, as well.

2.5 The Successor Distribution Algorithm

Successor nodes generated by a processor are put into
RL, j =0 P — 1, in a multiplex round-robin fashion.
More precisely, suppose that the most recent successor
node generated by processor j is added to RL. Then
the next successor node generated by processor j will
be added to RL,, when* k — (i+ 1 mod P). At each
iteration, processor j sends its first generated successor
to RLI

The advantage of this approach is that it is simple to
implement and its symmetric structure helps PLI at-
tain the desired load balancing (see Section 5.1). Since
the successors generated are not considered for expan-
sion until the next iteration, some optimization can be
made for message-passing architectures. Messages for
successor distribution can be asynchronous so that com-
putation and communication can be overlapped. For
architectures which require large communication setup
time, successor nodes generated can be distributed and
cached in local memory and not sent until an efficient
message size for the underlying architecture is reached.

2.6 The Node Transfer Procedure

After the node expansion procedure, each processor j
empties the nodes from RL; and inserts them into Il L;.,
to form a new priority queue for the next iteration. Note
that the node transfer procedure is completely local; no
communications between processors are required.

The relationship between WL™' and WL’ can be ex-
pressed as:

WL = (WL - M —SHYuSur(M US), (Eq2)
where ¥ € N is the set of speculative nodes which were
selected for expansion by processors in the node expan-

sion procedure at iteration i to use the otherwise idle
time for processor synchronization.

2.7 Termination

When a mandatory node is found to be a goal node by
a processor, a message can be broadcast to inform all
processors to terminate. If a speculative node is found to
be a goal node, this node is simply added to RL because
it may not be an optimal goal node.

PLA* can terminate, failing to reach a goal node, when
WLt =@ WL =@ ifand only if1VL;' =@, for all j =
0.... P— 1. This state can be recognized and broadcast to
all processors at the end of the node transfer procedure.

2.8 Summary

The PIA* algorithm can be summarized below:

WIL={shRL=®
loop until a goal node is reached or WL is empty
{ Start node expansion procedure }
for each processor]
expand all mandatory nodes from WL;,, and
add successors to RL using the multiplex
round-robin successor distribution algorithm:
while there is a processor expanding a
mandatory node
expand the best speculative node from WL,
and add successors to RL using the multiplex
round-robin successor distribution algorithm;
{ Start node transfer procedure }
for each processor j
insert all nodes from RLj to \\'Lj:
Mandatory nodes and speculative nodes are discrimi-
nated by comparing their cost to a threshold t. A node
nis a mandatory node if f(n) < t; otherwise, it is a
speculative node. Initially, / — h(s). Successive / values
are computed during the node expansion procedure by
(Fql) presented in Section 2.3.

3 Admissibility

H is well known Lhal if the henrigtie fouction b < & (the
shortest distance to a goal node), then A® is adniissible,
P1A" s alko adunssible ander the same conditions.

P1A* has a similar property found in A4* {Nilsson,
1980]: i.e.:

Lenana 1 Vi before fermmation, In' € WL such that
n' s on an epfemal path from s to a goal nede and
Jin') < [(s}

Proof: (By induction on the number of ilerations) Ini-
tially, 1LY = {5} and f(s) = h(s) < B (s) = f*(s).
Henee, s 15 the node #'. Assmne the lemma ig Lbrne
for all WL ¢ <k, and #¥ is a node, in WY which
is on an optimal path and f{ n*) < fris) 10 node
¥ was not expanded at iteration k. then node »f s
in W LA and the tenima is proved . 1T n* was ex-
panded al iteration & (n was not a goal nude; oth-
erwigse P1A* would have ierminated.), then, since
n* is on an optimal path, one of its successors n’
i ou an oplimal path. From (Eq2), node #' is in
W LK and

F Yy = g0 Y+ h(»'Y = ¢"(0') 4 h(n’) < f*(s).

Huang and Davis 25

(Q.E.D.)

From (Fqi), we know £+ > t*, for every i. Moreover,
#F1 = " if and only if there is a node n € Sue(Af')
with f(n) < ' {Noie that this node » will he expancted
al weration i 4+ 1), Beeanse we normally assuime the are
cosl in the state-space graph is positive, this siluation
caunol happen forever. Thus:

Lemma 2 Yi 0t > 10 qud Jin such that #1H™ > F

Toshow PPTA® is adimissible, we need Lo prove another
mmportant property of 21 A*,

Lemmua 3 Vi before termination, 11 < f*(s).

Proof: (Byv induction on the mmmnber of iterations) In-
tially, 1" = f(x) < f*{x). Assume ' < f‘&s}. for
all i < k. We know (540 > 08) o4 = g% ey
fr+l < (%) by the induction hypothesis and ihe
lenyma is proved. If 5+ > 1% then. from (Liyl).
Y = min{ f(n) [» € Sue(MFYUSF). By Lemnia
1. the set A U &# IWVEY has a node n with
Sty < f(s) s =traightforward to see that this s
also trne for the set ¥ = Sue(M)USY (coe Lhe proof
of Lennna 1); el there s al least one node 1 € ©
such that f(n) < f*(5). Therefore, t*+! < f*(5).

(Q.1.D.)

By Lenuna 2. the threshold will eventually approach
=) af fH(«) is finite. By Lema 3, the threshold will
pever exceed (s} hefore termination, Therelore, 77.4*
will terpmnate by Buding an optimal pathf there is one.
That is, we have proved:

Thoeovem ¥ Algovithm PIAY s admissible.

4 Comparison of PIA* to 4"

Somw inleresting, relationships exist between P7TA* and
AT Hoag well known that any node nowith f{n) < f*(s)
will eventually be seleeted Tor expansion by 4", A node
nowilth fin) = f*(s} may or may not he expanded by
A" depending on when the first goal node is reached.
Howrver, in the worst caze A4® will expand all nodes n
with fin} < f*(s). We have shown that # < f*(s).
Because a mandatory node noin PIA° has f(n) < fF,
fln) < f(s). for all n € A7, That is:

Obscrvation 1 Al mandatory noedes e PIA* will be
cxpanded by A" and PIAT m the worst case.

In practice, PP1.4* may expand more nodes or fewer
nades than 4™, This plienomenon 1= similar (o the par-
allct scarch anomalics discovered previously {Lai and
Salini, 1984][Quinn and Deo, IDRlii. These anomalies
can hecome noticeable when Lhere are mmany nodes with
cost. equal 1o f*(s).

llerestingly. at the last iteration of PIAY, somwe
mandatory nodes n, f(n) < J*(5), which would he al-
wavs expanded by A*, ay nol be expanded by P14
when 21,17 terminales with an opthinal solution path.
Thix benign anomaly of PIA* is analogons 1o the find-
ing by Mero [Meor, 1984] that the costs of ancestors can
be wsed Lo construct a more informied cost function that
will always dominate A*’s cost function.

26 Tools

When only one processor is used to run PI/A* no
speculative nodes would he expanded at each iteration,
and obviously processor synchronization is not required.
Pl A* then proceeds very similarly to A* except that the
order of the node expansion may he different because a
successor generated by P/ A* is not immediately consid-
ered for expansion. However, from Observation |, we
know:

Observation 2 Pl A* using a single processor perforins
1he saint number of node expansions as A* in the worst
case.

That is, PIA* using one processor can perform as well
as.A*.

5 Analysis and Experimental Results

In this section, we will give an informal analysis of the
load balancing, scalability, and speedup of PI A* Exper-
imental results will be also shown to support the analy-
sis.

To empirically test the PIA* algorithm, a three-
machine flow-shop scheduling problem was implemented
on a BBN Butterfly Multicomputer. The three-machine
flow-shop scheduling problem is to schedule a given set
of jobs on three machine's such that the span of time
to finish all of the jobs is minimized. The lower bound
function described by Ignall and Schrage [1965] was used
as the cost function f. We ran a 12 job problem using 5,,
10, 20, :30, 10, 50, (50, 70 and SO processors on a Butterfly
and compared their results. We could not run this prob-
lem on a single processor because of insufficient memory
available on one Butterfly processor. The experimental
results are summarized in Table |I. The detailed experi-
mental results can be found in [Huang and Davis, 1981)].

Table 1: Summary of £1.4% Experinental Resnlis

#hror # Nordes

Rl Tatbary Spe=culnbive T Total”

5 IRYEH tIn? 11404

10 103y T 12793

mn TN g 1480,

1] T2 Ay 1]

40 fdnl 4617 19128

1] TROL L [K1EES

fid] [72 HArtN ! 1194

Tt [H] U Y

i [HII3 n FANIR

FVroe | Flin | Tineisoc) | Spoetup | BHceney

5 35 4881 na 1™
1{r At 2147 (] I 11
20 i 11 K3 6 1.n3
Al a5 i hh “arn 123
LT} @ hohy A h | nz
Hh o AT Bl 7 FTNS
G} 33 3 N Lo
T an 40 ol I
Bl 23 360 rii | RS

"Mandatory nodes plus speculative nodes
"Assumed

5.1 Load Balancing

Load balancing is one of the main factors determining
the efficiency of a parallel algorithm. Processors not only
have to be kept busy but also have to be busy on pro-
ductive work a high percentage of the time in order to

attain good load balancing and to obtain almost linear
speedup.

One of the main features that contribute to the load
balancing of the PIA* algorithm is its symmetric struc-
ture. Each processor in PIA* maintains the same type
of data structures, executes the same type of operations,
and interacts with other processors in the same envi-
ronment. By symmetry principle, probabilistically, the
nodes tend to distribute evenly both in number and in
cost among processors. In Figure 2, we plot, from our ex-
periments, the total number of nodes expanded at each
processor, and the number of nodes left in the work list
at each processor when 70 processors were used. The
distribution is very even among processors.

At each iteration of PIA*, there are two synchronized
procedures: the node expansion procedure and the node
transfer procedure. We will study the load balancing of
these two procedures respectively.

700
T T L Je I LY
800 .
g 500 finnl size of e work list
L] a1 aach procassor
g 400 4
1 total fiumber of nodes axpanded

m‘j /ltmpm

OO . e e e e b s et e et e
]
100 4— . — —
0 20 40 60 80
proowesor id
Fignre 2: Load Distribution in 70 Processors

511 Load Balancing in the Node Expansion

Procedure*®

Processors are kept almost constantly busy in the node
expansion procedure because the speculative computa-
tion is performed additionally at each processor to use
the waiting time for processor synchronization. This ar-
rangement has been very effective in our experiments.
As we can see from Figure 2, the total number of nodes
expanded was nearly constant at each of the 70 proces-
sors.

Rut, how productive is the speculative computation
at each iteration? If MP is evenly distributed among
all processors, then very few speculative nodes will be
selected for expansion. We have argued above' that this
is generally so probabilistically, owing to the symmetric
structure of the PIA* algorithm. A speculative' node
selected for expansion by a processor is the best node
available to this processor's work list at that time. At
each iteration, any speculative node n with flv) < f*(*)
can become a mandatory node at one of the subsequent,
iterations, and will eventually be expanded by A* as well.
Hence, the speculative computation which expands this
type of speculative nodes is also productive.

In our experiments (see Table 1), the total number
of speculative nodes expanded tended to increase when
more processors were used; but the total number of nodes
(mandatory nodes and speculative nodes) expanded did
not tend to increase (The zigzagging is attributed to the
parallel search anomalies). Furthermore, the total num-

ber of iterations tended to decrease as more processors
were used (see Table I). These results empirically show
that most of the speculative computation performed was
productive in our experiments.

5.1.2 Load balancing in the Node Traunsfer
Procedurc

Heach WL, j=0-..P— 1, is maintained as a heap
[Horowitz and Salni, 1978], then the time taken for a
processor j Lo finish the node transfer procedure is pro-
portional to RL;log(H L; + RL;), where 7?-_1.: is Lhe
number of nodes in RE; and -ﬁ'—r: i the number of nodes
m W L; before the node transfer proceditre is executed.

Therefore, the load balancing of the node transfer pro-
cedure depends on how uniform the —hﬁ,_j-'s amd the 11_'5;'9
are,

Obhservation 3 [R]; ~ RL;} < P.i# .

Proof: By the multiplex rowndrobin algorithny, the
numbers of successors received by RL; and RI;
from a processor can differ at most by 1. There

are P processors: hence, |RL; — RLA < P i # j.
(Q.E.D.)

The multiplex round-robin algorithm for the successor
distribution has a deterministic worst case which is in-
dependent of the problem size but can grow linearly with
the number of processors. The probability of the worse
case occurring is very low as the number of processors
increases. In fact, when the a priori characteristics of
a problem instance are unavailable, because of the sym-
metry, the expected maximum difference of RLj*s should
be close to zero.

Let us consider Figure 2 again. Recause the total num-
ber of nodes expanded and the final size of the work list
at each processor are very uniform, we expect that the
size of RLj's before the node transfer procedure should
be approximately uniform at each iteration. Note that
each processor at each iteration only expanded less than
10 nodes on the average (about 200 nodes expanded in
over 20 iterations) to obtain this load balancing.

5.2 Scalability

Computational requirements for most interesting combi-
natorial search problems grow very quickly with prob-
lem size. It is not difficult to find problems which can
use millions of processors for the PIA* algorithm, (‘an
the PI A* algorithm scale accordingly provided that the
underlying multicomputer is scalable? Fxcept for the
successor distribution and the processor synchronization,
operations in PI/A* are completely local. Ry using tlu
butltrflu - barrier suggested by Brook IIl [1080], proces-
sor synchronization can scale very well with increased
numbers of processors.

Successor distribution is accomplished by the help of
a reception list at each processor. Since reception lists
are accessed by all processors, a legitimate concern would
be whether contention for them would lead to significant
degradation or a bottleneck. An equal number of recep-
tion lists and processors exists, and each processor has
equal probability of placing a node on any reception list.
Recause if is a simple list structure, a reception list can

Huang and Davis 27

be protected with a very short critical region. We ex-
pect that contention for the reception lists >y processors
will not be a problem in practice and its seriousness does
not increase with the number of processors. In [Huang
and Davis, 1989], we use elementary queueing theory to
support this expectation.

5.3 Speedup

Since P1A* proceeds iteratively, we will analyze the
speedup in a single iteration to project, the overall
speedup. Speedup for P processors is normally defined
as the ratio of execution time using one processor and
that using P processors; i.e.,

3

Sp(P) = %—

Let us define 11", = T4y and Wp = P« Tp as the total
amount of work required when using one processor and
P processors respectively. Assume that the same set of
nodes are expanded in W,, and Wp,. Then, to compare Wq,
and lip, we note that a fraction of W,, f IV,, 0 </ < 1,
is the work to add successors to RL. When P > | pro-
cessors are used, the same amount of work is converted
to nonlocal successor distribution operations. Provided
that an assumed scalable multicomputer is used to run
PLA*, is converted to f.H, < cqlogP in Hp,
where cq is a constant which depends on the efficiency
of the communication network in the underlying multi-
computer. In addition, \Yp also contains the computa-
tion cost for processor synchronization. Assuming the
butterfly barrier is used, each processor needs to run
log P stages and in each stage communicates with an
other processor. The total cost can then be expressed as
C2Plog2 P, where c, is another constant. Therefore, we
can express H'p as:

Wp =l —)W+ fill e log P+ e P l(;g? P
and the speedup is:
1[)
(=)+ fe |0g]-7+:_a£rlf;f52

The above equation shows how the communication
overhead introduced by successor distribution opera-
tions, and the processor synchronization overhead would
affect the speedup of PIA* Since only simple opera-
tions are required for successor distribution, the frac-
tion f should be very small for most heuristic search
problems. The significance of processor synchronization
overhead is inversely proportional to %—,‘: i.e., the syn-
chronization overhead is less significant if each processor
expands more nodes at each iteration. For exponential
search problems, we argue that there are normally many
mandatory nodes at each iteration. Consider the 20-city
Traveling Salesman Problem as an example. The size
of the search state space is 20!. Assuming a 32-bit in-
teger is used to represent the cost of a state, there are
at most 2% different- cost values. Then, on the average,
there are over 10° states assigned the same cost value!
The speedup, based on the execution time taken when 5
processors were used, is shown in Table 1. On the aver-
age, fewer than 10 nodes were expanded at each iteration

Sp(P)y =

28 Tools

when more than GO processors were used (see [Huang and
Davis, 1989]). Overall, only about 14000 nodes were ex-
panded in total in every experiment. The problem size
was chosen so that the benchmarking time was reason-
able to measure, and it was just barely enough to effec-
tively utilize 80 processors. Prom our analysis, PlA*
similar to most other parallel algorithms, will perform
better for problems with larger problem sizes.

As a comparison, we implemented the same problem
using the central queue approach on the same machine.
The timing and speedup results are summarized in Table
2. The maximum speedup was less than 3 and the execu-
tion time had no sign of improvement when we increased
the number of processors to 50.

Because of memory limitations, we were unable to
obtain the speedup of PLA* based on A* running on
a single processor of Butterfly in Table 1; however, a
small problem was tested to compare actual running
times of PLA* and A* The result is shown in Table
3. The speedup of PLA* in Table 3 is based on A*
In our implementations, the run time performance of
PLA* using one processor is very close to A* if both
algorithms expand the same number of nodes. The to-
tal number of nodes expanded depends on when a goal
node is reached, and it can vary widely if there are many
nodes with cost equal to the optimal solution cost. Also
from Table 3, the parallelization overhead of P1A* is
not significant for this small problem size. (Note that
when more than one processor are used, remote memory
reference has been reported to be about 5 times more
expensive than local memory reference on Butterfly.)

Table 2: Experimental Results for the Central Queue
Approach ((Cf. Table 1)

#Troc Timetsec) Spreedy, Em(;enc)-

1 Ao 1]

2 1510 | 115 ([

3 [N 200 T

1 1118 0N 0Ny

5 s n 9 Ts 1} 5

10 A anl [{IIN

20 1y 251 IRE!

1] tnan uTh .

A0 111 ¢ s noy

al) 1y s 250 1k

Table 3: Performance Comiparison of P1AY and A4*
I‘“.
FNoders Expanded T Tine{gec)
Ba2 KIEE!
Prrat
oo #Nodes Bxpandaol Tietsee 1 | Gpecdun?”

] TiD Ty Tk
o nh 200 173
3 nnl 1 35 a0
4 Nt 1 fm3 AT
5 | U KA 114

"Compared to A*

6 Concluding Remarks and Future
Research
We have presented a distributed best-first heuristic

search algorithm, PLA* We proved the algorithm is
admissible and gave an informal analysis of its load bal-

ancing, scalability and speedup. A (low-shop schedul-
ing problem was chosen to implement the PLA* algo-
rithm on the BBN Butterfly Multicomputer using up to
SO processors. The experimental results were encour-
aging. It seems that this algorithm can achieve almost
linear speedup on a large number of processors with a
relatively small problem size. We expect this algorithm
can be efficiently implemented on a large class of scalable
mult icomputers and can solve a variety of combinatorial
optimization problems. However, because PIA* has not
been extensively tested on many types of problems and
mult icomputers, its actual limitations and advantages
have yet to be* more carefully evaluated in future tests.
The PLA* algorithm uses roughly the same amount
of memory as A*. A* often fails to solve an exponential
search problem because it runs out of space very quickly.
Although PLA* can effectively use the combined mem-
ory of a loosely-coupled multicomputer, it is also vul-
nerable to the memory shortage problem when trying to
solve large exponential search problems. We are devel-
oping a linear space variant of PIA* and investigating
an implementation on the Connection Machine, further
results will be published in a sequel to this paper.

7 Acknowledgements

The authors would like to deeply thank Richard Korf
who reviewed and critiqued early drafts of this paper.
Vipin Kumar's comments on our early versions of Pl A*
have been very valuable to us. Special thanks to Perry
Thorndyke and N. S. Sridharan who encouraged and
supported this research.

References

[Anderson and Then, 1987] Anderson, S. and Then, M.
C, Parallel branch-and-bound algorithms on the hy-
pereube, in Hypercube Multiprocessors 1987, M. 1.
Heath, ed SIAM Press, Philadelphia, PA, 1987.

[BBN, 1985] BBN Laboratories, Butterfly Paralld Pro-
ce ssor Overview, Holt, Heranek and Newman, Cam-
bridge, Massachusetts, Dec. 1985.

[Hrook 111, 1980] Hrook Ill, E.D., The butterfly barrier
International Journal of Parallel Programming, vol.
15, no. |, August 1986.

[Mart et al., 1908] Mart, PL., Nilsson, N.J. and
Raphael, H., .4 formal basis for the heuristic deter-
mination of minimum cost paths, IEEE Trans. Sys-
tems, Science and Cybernetics, SSC-42, no. 2, 1968,
pp. 100 107.

[Hillis, 1985] Hillis. D., The Connection Machine, Cam-
bridge, MA, MIT Press, 1985.

[Horowitz and Sahni, 1978] Horowitz, 10. and Sahni, S,
Fundamentals of Compute r Algorithms, Rockville,
MI), Computer Science Press, 1978.

[Huang and Davis, 1987] Huang, S. and Davis L. S., .4
tight uppe r-bound for the speedup of paralld best-first
branch-and-bound algorithms, Technical Report, CS-
TR-1852, Computer Science Department, University
of Maryland, College Park, April 1987.

[Huang and Davis, 1989] Huang, S. and Davis L S,
PLA*: an admissible distribute d he urtstic searrh algo-
rithm, Technical Report, CS-1 R-2233 Computer Sci-
ence Department, University of Marvland, College
Park, April 1989.

[ignall and Schrage, 1965] Ignall, E. and Schrage. L.,
Application of the branch and bound technique to some
flow-shop sche duling problems. Opus. Res., 13, no 3,
1965, pp 100-112.

[Intel, 1980] intel PSC System Overview, Intel Scien-
tific Computers, 1980.

[Kleinrock, 1975] Kleinrock, L., Queueing
Theory, Vol 7, New York: Wiley, 1975.

[Kumar et al, 1988] Kumar, V., Ramesh K. and Rao,
V. N., Paralld heuristic search of state-space graphs
a summary of results, in Proceedings of the 1988
National Conference on Artificial Intelligence, August
1988.

[Lai and Sahni, 1081] Lai, T. Il. and Sahni, S., Anoma-
lies in parallel branch-and-bemnd algorithms, Comm.
ACM, vol 27, 198 I, pp. 59-1-002.

[Mero, 1984] Mero, L , A heuristic search algorithm with
modifiable estimate, Artificial Intelligence 23, 1, May
1984, pp. 13-27.

[Mohan, 1982] Mohan, .)., .4 study in parallel computa-
tion - the Pwveling Salesman Problem, Technical Re-
port CMP-('S-82-130, ('omputer Science Department,
Carnegie-Mellon University, August, 1982.

[Nilsson, 1980] Nilsson, N. J., Principles of Artificial In-
telligence, Palo Alto, CA, Tioga Press, 1980.

[Paige and Kruscal, 1985] Paige, R. C. and Kruskal, C.
P., Parallel algorithms for shortest path problems, in
Proc hit |I. Conf. on Parallel Processing, August 1985,
pp. 14-20.

[Pearl, 1984] Pearl, J.,
Reading, MA, 1984.

[Quinn and Deo, 1980] Quinn, M. J. and Deo, N., An
upper bound for the speedup of parallel branch-and-
bound algorithms, HIT, vol 0, no. I, March 1980).

[Quinn, 1987] Quinn, M. J., Imple menting best-first
branch-and-bound algorithms on hypercubc multicom-
puters, in Hypercuhe Multiprocessors 1987, M. T.
Heath, ed., SIAM Press, Philadelphia, PA, 1987.

[Rao and Kumar, 1988] Rao, Y. N. and Kumar, Y ,
Concurrent access of priority que ues, |ILLP Trans, on
Computers, vol 37, no. 12, Dec. 1988, pp. 1057-1005.

[Wall and Lva Ma. 1984] Wall, H. \Y. and Kva Ma, Y.
\\., MAXIP- A multicompute r architecture for solv-
ing combinatorial e rtre mum-se arch problems, IEEE,
Trans, on Computers, vol 33, May 1984, pp. 377-390.

Systems:

Heuristics, Addison-Wesley,

Huang and Davis 29

