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ABSTRACT 

This paper describes an approach to robot ic con­
t ro l that is patterned after models of human skill 
acquisit ion. The in tent is to develop robots 
capable of learn ing how to accomplish complex 
tasks using designer-supplied instructions and 
self induced practice. A simulat ion is presented 
in which a rule-based system supervises the train­
ing of a neural network and controls the opera­
t ion of the system du r ing the learning process. 
Simulat ion results show the interact ion between 
rule-based and network-based system compo­
nents du r ing various phases of t ra in ing and 
supervision. 

I N T R O D U C T I O N 
Neural networks have been shown to be very eff icient at 
learning f rom experience. However, there area number of 
problems to be overcome before they become useful com­
ponents of truly autonomous learning systems. Presently, 
t ra in ing data must be supplied by an outside operator who 
must closely supervise the learning process. Also, if the 
system conta in ing the neural network is required to per­
fo rm its task du r ing learning, a provision must be made to 
contro l its operat ion du r i ng this per iod. We have devel­
oped an automated approach to solving these problems in 
which a rule based system supervises the t ra in ing of a neural 
network and controls the operat ion of the system dur ing 
the learning process. The operat ion of this system exhibits 
propert ies which are similar to the stages of motor learning 
in humans in which cont ro l shifts f rom an expl ici t , verbally 
or iented representation to an impl ic i t reflexive representa­
t ion and execut ion. 

For a pre l iminary demonstrat ion of these concepts, a 
simulat ion has been constructed in which a two l ink ma­
nipulator is taught how to make a tennis-like swing. A 
schematic of this approach is i l lustrated in Fig. 1. The 
contro l system first determines how to make a successful 
swing using rules alone. It then teaches a neural network 
how to accomplish this task by having the network observe 

and generalize on the rule-based task execut ion. Fol lowing 
ini t ia l t ra in ing, a ru le based execution mon i to r evaluates 
the neural network performance, and re-engages rule-
based swing-maneuver contro l whenever errors due to 
changes in the manipulator or its operat ing envi ronment 
necessitate retra in ing of the network. The rule-based sys­
tem thereby ensures proper task complet ion whi le neural 
network re-learning takes place. The simulat ion shows the 
interact ion betweeen rule-based and network based system 
components dur ing various phases of t ra in ing and supervi­
sion. 

* This work was supported by the James S. McDonnell 
Foundation. 

PHASES OF S K I L L A C Q U I S I T I O N 

It is well known that humans pass through various levels of 
competence as motor skills are acquired. Fitts and Posner 
[1967] define three phases of skil l learning: 1) the cogni­
tive (early) phase, wherein a beginner tries to understand 
the task, 2) the associative ( intermediate) phase, where 
patterns of response emerge and gross errors are el imi­
nated, and 3) the autonomous (f inal) phase, when task 
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execution requires little cognitive control. Adams f 1971] 
defines two stages of motor learning: 1) the verbal-motor 
stage, where corrections are based on verbal descriptions 
of how well the task is being accomplished, and 2) the 
motor stage, where conscious behavior eventually becomes 
automatic, and attentional mechanisms pick out only those 
channels of information relevant to learning. Brooks 
[1986] points out that there are numerous structures in the 
brain associated with motor learning. Centers involved in 
emotion, attention, memory and motor control all partici­
pate. Within this system the cerebellum is particularly 
concerned with coordination and skill acquisition. Although 
it is not well understood at this time whether control of 
motor learning specifically passes between various struc­
tures in the motor system it is known, however, that fine 
motor control cannot be learned or executed without the 
participation of the cerebellum. 

The distinctions between various stages of motor learn­
ing and control are also found in more general cognitive 
skill acquisition and memory. Kupfermann [1985] differ­
entiates between reflexive and declarative memory and 
learning. Task execution based on reflexive memory and 
learning relate specific responses to specific stimuli. Learned 
functions appear automatic and require little or no thought. 
Declarative memory and learning can usually be expressed 
in verbal statements. Execution of tasks based on declara­
tive memory usually requires evaluation, comparison and 
inference. Most complex tasks attempted for the first time 
usually require some form of declarative reasoning. 

Anderson [1982] has modelled the transition between 
the cognitive and associative stagesofFittsand Posnerf 1967] 
as a knowledge compilation process whereby a more gen­
eral declarative form of task knowledge is converted into a 
specific procedural representation. During the transition 
from declarative to procedural processing, operational 
production rules become more condensed and task specific. 
In Anderson's model the final shift to the most autono­
mous form of processing is accomplished by fine tuning the 
selectivity of the problem solving search procedures. 

A quasi-neural model for the development of automatic 
processing accompanying skill acquisition has been pro­
posed by Schneider [1985] and Schneider and Detweiler 
[1987]. In this, model a shift in the control mechanism 
changes the gating of information vectors between visual, 
lexical, semantic, and motor processing units. In Schnei­
der's model the initial stage of cognitive processing in­
volves direct control of information between units. During 
practice, associative learning enables direct association of 
input/output vectors pairs and priority learning deter­
mines the transmission strength of these vectors between 
processing modules. A gradual transition from controlled 
to automatic processing occurs with practice. In the final 
and most automatic stage of skill acquisition, communica­
tion between processing units is not gated by the controller 
butisdetermined soley by the transmission strengths learned 
during the priority learning process. 

In the model presented by Anderson, knowledge repre­
sentations and functional architectures remain the same as 
the system goes through various stages of skill acquistion. 
In Schneider's model, the interconnections and process­
ing modules remain the same, but a change in the control 
of information flow between units causes the execution to 
shift from a serial to a more parallel processing mode. In 
this paper we explore the properties of a system in which 
both control and learning are shifted between two differ-
entfunctional architectures with differentrepresentations 
of the control problem. We shall use the terminology, 
declarative and reflexive control, patterned after Kupfer­
mann [1985] to describe the shift between knowledge-
based system and neural network control because it most 
nearly represents the differences between these two ap­
proaches. 

Because the rule base used for the control of the arm is 
quite task specific, the system described here corresponds 
most closely in its operation to the shift in Anderson's 
procedural phase represented by the rule-based system to 
an automatic phase represented by the neural network. We 
plan to implement in the near future a more complex rule-
based system which also exhibits the shift from a declarative 
representation to procedural processing in Anderson's 
terminology. In the work reported here, we made no 
attempt to optimize the design or performance of the 
individual knowledge-based system or neural network 
components but rather used simplified versions of both to 
highlight the properties of the integrated system. 

It is important to note that the shift of processing from 
controlled to automatic is a central component of the 
allocation of resources in human processing. Tasks initially 
learned declaratively become reflexive through repeti­
tion. In this way tasks performed most often are processed 
in a way that requires the smallest allocation of processing 
resources. However, when familiar tasks are attempted in 
novel situations, there must be a shift back into a declara­
tive form of processing in order to accomplish the task. For 
example, although one may become adroit at tying one's 
own necktie, tying someone else's necktie requires some 
thought due the change in perspective. The intent of the 
present research is to endow robots with a similar 
capability, combining reflexive and declarative forms of 
information processing for highly adaptive and dexter­
ous robotic control. 

INTEGRATING KNOWLEDGE-BASED 
SYSTEMS AND NEURAL NETWORKS 

Artificial neural networks and knowledge-based systems 
represent the desired reflexive and declarative forms of 
processing, respectively. Artificial neural networks exhibit 
characteristics of associative memory, pattern matching, 
generalization, and learning by example [Rumelhartand 
McClelland, 1986, Fahlman and Hinton,1987]. Insofar as 
they direcdy compute specific outputs in response to 
specific inputs, neural networks can be viewed as imple-
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meri t ing reflexive task knowledge. Knowledge-based 
systems have demonstrated the abil i ty to encode and exer­
cise expert knowledge w i th in l imi ted domains, provid­
ing a hierarchical software organization and explainable 
solutions [Charniak and McDermott ,1985] . The infer-
encing capabilities of these systems effectively implement 
declarative task knowledge. 

The cont ro l task chosen to illustrate the integration 
technique involves teaching a two-link manipulator how 
to make a tennis-like swing. The swing eventually wi l l 
become part of a higher-level task that involves str iking a 
ball to h i t a specific place on a wall. Presently, only the 
swing is considered. The manipulator, shown in Fig. 2, is 
composed of two cyl indrical l inks, each with a length of 1 
m and a radius of 0.1 m. The inner l ink, located between 
the shoulder and elbowjoints, has a mass of 1 kg, and the 
outer l ink mass varies between 0.5 and 1 kg in the 
simulations described below. Rotation of the shoulder and 
elbowjoints occurs in a vertical plane, against gravity. The 
overall task of the cont ro l system is to vary jo int torques 
over t ime such that the outer l ink moves f rom its vertical 
resting posit ion (po in t ing straight down) through an 
imaginary contact po int . The outer l ink is to strike the 
contact po in t at the l ink's mid-point , and at a specified 
angle (slope). A swing is deemed successful when the two 
swing-maneuver performance measures "Contact Posi­
t ion Error and Contact Slope Error" fall wi th in specified 
bounds. A more complete description of the system and its 
performance is given by Handelman et. al. [ 1989]. 

Figure 3 shows a block diagram of the control ler used 
to accomplish this task. Three levels of a control ler task 
hierarchy are def ined: low-level reflexes, a reflex 
modulator , and an execution moni tor . On the lowest 
level (the innermost loop in the block diagram), each 
j o i n t is endowed wi th simple reflexes that command 
torque as a funct ion of angular position and velocity. 
The term "ref lex" is borrowed f rom human motor control 
and is meant to represent c i ther a simple posit ion or force 
servo system. It is believed that many human voluntary 
motions involve the modulat ion of reflexes [Stein and 
Capady,1988]. Therefore the midd le loop of Fig. 3 is used 
to provide the low-level reflex loops wi th time-varying gains 
and commands needed to carry out the swing maneuver. 
Finally, the execution mon i to r supervises various phases of 

Figure 2. Two-Link Manipulator 

reflex modulat ion learning.These levels of the control ler 
hierarchy are described in detail below. 

Rule-Based Swing Reflex Modulator 
On the lowest level, each j o i n t reflex acts as a hybr id 
posi t ion/ torque servomechanism. The two available re­
flexes are 1) spring-like position contro l wi th j o i n t angle 
and angular velocity feedback, and 2) constant torque 
control . Reflex gain and command modulat ion is used to 
generate the manipulator swinging mot ion . Implemented 
in the middle feedback loop of Fig. 3, modulat ion is accom­
plished using either rules, a neural network, or both, de­
pending on the mode of operat ion. Table 1 presents the 
rules used to execute a rule-based swing. The rules are 
invoked by a cyclic goal-directed search through a 
knowledge base of parameters, rules, and procedures in 
much the same way that aircraft emergency procedures are 
executed by Handelman and Stengel [1988,1989]. The 
rules were obtained by the contro l system designer 
through trial and error. No explicit knowledge of the dy­
namics was used in this process. A single base torque is used 
and is scaled for each j o i n t by an appropriate parameter. 

Network-Based Swing Ref lex Modulator 
Neural-network-based reflex modulat ion is performed 
with a CMAC (Cerebellar Model Ar t icu lat ion Control ler) 
network module developed by Albus [1975]. A CMAC is 
used to encode impl ici t ly, through learning, the 
sensorimotor relationships represented explicidy by the 
swing-maneuver rules of Table 1. The CMAC module is a 



perceptron-l ike table look-up technique for reproducing 
functions w i th mu l t ip le i npu t and ou tpu t variables over 
part icular regions of the funct ion space. A CMAC can 
learn by example, and its mapp ing scheme provides a u t o 
matic generalization ( in terpolat ion) between inpu t states, 
so that similar inputs produce similar outputs. 

The CMAC network modules are used to imp lement a 
reflexive swing maneuver. Wi th the CMAC properly trained, 
input values representing the manipulator state cause the 
CMAC to ou tpu t gains and commands to the low-level 
reflexes that ult imately move the manipu la tor in to the next 
task-dependent area of the manipulator state space. The 
resultant manipu la tor state then defines new inpu t values 
which, in tu rn , produce CMAC outputs that again "push" 
the manipulator in to the nextdesired state. Thus, after the 
CMAC network has been trained, rules ini t iate a network-
based swing by " th row ing" the manipu la tor in to an area of 
the manipulator state space recognized by the network. 
The network then reflexively executes the swing 
maneuver. When the manipu la tor f inally enters a conf igu­
rat ion recognized by rules as conc lud ing the swing maneu­
ver, the rules disengage the CMAC network and once again 
take over reflex modu la t ion responsibil ity. T ra in ing and 
supervision of CMAC reflex modu la t ion are per formed by 
the execution mon i to r . 

Rule-Based Execut ion Mon i to r 
The execut ion mon i to r is entirely rule-based, and imple­
ments three Swing Modes that correspond to various 
phases of ref lex modu la t ion learn ing. The Swing Modes 
are termed Rule-Based, Rule-and-Network-Based, and 
Network-Based. Under Rule-Based Swing Mode, reflex 
modulat ion is carr ied out by rules only. When certain 
condit ions are met, the CMAC network modules concur­
rently at tempt to dupl icate the rule-based reflex modula­
t ion commands, learn ing by example. Under Rule-and-
Network-Based Swing Mode, rule-based and CMAC-based 

reflex modula t ion suggestions are generated in parallel, 
and CMAC learn ing continues. CMAC-based outputs are 
fed directly to the reflexes when they are deemed close 
enough to the "op t ima l " rule-based command sugges­
tions. Finally, under Network-Based Swing Mode, CMAC 
learning ceases, and CMAC outputs direcdy modulate 
shoulder and elbow j o i n t reflexes th roughout the entire 
swing maneuver. Switching between Swing Modes is dic­
tated by the rules shown in Table 2. 

S I M U L A T I O N RESULTS 
Operat ion of the integrated swing-maneuver control ler of 
Fig. 3 was simulated on a personal computer equipped with 
a 10-MHz 80286 processor, an 8-MHz 80287 math coproces­
sor, and 640 KBytes of Random-Access Memory (RAM). 
Source code for the CMAC modules was wri t ten in Pascal, 
whereas the rule-based system components ( inc lud ing 77 
rules) were translated automatically f rom LISP to Pascal as 
described Hande lman and Stengel [1988] . Fol lowing a 
discussion of s imulat ion results detai l ing the operat ion of 
the control ler, real-time performance issues wi l l be ad­
dressed. 

Figure 4 depicts the activity of the rule-based system 
components du r ing various phases of the swing maneu­
ver. Each data po in t in the top p lo t corresponds to the num­
ber of rules tested by the contro l ler inference engine 
du r ing a goal-directed search cycle. Adjacent data points 
are separated by the amoun t of t ime requi red to complete 
a search cycle, in this case forced to coincide with a 
contro l ler sample rate of 20 per sec. At the start of the 
s imulat ion, the manipulator outer l ink mass is set at 0.5 kg, 
and the Base Torque command is set at 3 N m . 

The contro l ler performs swings at 5 sec intervals. It 
begins swinging at t= 5 sec whi le in Rule-Based Swing Mode. 
Peaks and valleys in the number of rules tested reflect 
execution of the various swing steps of Table 1. As shown 
by the p lot of Swing Contact Er ror in Fig. 4, errors 
associated wi th the first 3 swings remain h igh. The outer 
l ink never reaches the contact po in t because the applied 
torques do not overcome gravity by a sufficient amount , 
p romp t ing successive increases in Base Torque. By t =20 
sec, a Base Torque command of 9 N m results in acceptable 
contact error, enabl ing t ra in ing of the CMAC neural 
network modules. 

Dur ing the 15 swings between t = 25 sec and t = 100 sec, 
the rule-based system components teach the CMAC net­
work how to modulate reflexes in order to accomplish a suc­
cessful swing. The first 5 swings arc per formed in Rule-
Based Swing Mode, wi th the CMAC network learning, but 
not cont r ibu t ing to, modu la t ion of the shoulder and elbow 
j o i n t reflexes. By t=50 sec, CMAC command suggestion 
errors have dropped low enough for the control ler to 
enter Rule-and-Network-Based Swing Mode. At t = 80 sec, 
the contro l ler momentar i ly switches to Network-Based 
Swing Mode, bu t the result ing swing falls short of the 
contact po in t . Finally, by t = 100 sec, four consecutive 
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network-based swings can be accomplished. Note in Fig. 4 
that the number of rules tested dur ing network-based 
swings drops considerably, ref lect ing a shift f rom a de­
clarative to a reflexive form of processing. 

In order to demonstrate the inherent adaptability of 
the integrated control ler, the outer l ink mass is increased 
f rom 0.5 kg to 1.0 kg at t = 120 sec. As shown in Fig. 4, 
insufficient Base Torque causes the manipulator to miss 
the contact po int over the next 6 swings. Dur ing this t ime 
the Swing Mode regresses f rom Network-Based, to Rule-
and-Network-Based, to Rule-Based, and the Base Torque 
command is steadily increased. By t = 155 sec, a Base 
Torque of 19 Nm results in a successful rule-based swing. 
Between t = 160 sec and t = 205 sec, the CMAC network 
re-learns by rule-based example how to modulate properly 
the low-level j o i n t reflex gains. By t = 205 sec, four success­
ful network-based swings once again can be per formed. 

Ut i l iz ing the personal computer hardware and software 
described earlier, processing requirements for the various 
control ler operations included the fol lowing. Whi le in 
Rule-Based Swing Mode wi th no CMAC learning, a typical 
control ler goal-directed search cycle testing 23 rules 
required 0.014 sec. The CMAC network (4 inputs, 6 
outputs) required approximately 64 KBytes of memory 
(RAM). The reading (recall) of a single set of CMAC 
network outputs required 0.023 sec, and the updating 
(learning) of a set of CMAC input-output points required 
0.047 sec. A l though the present control ler implementa­
t ion conf igurat ion cannot support the simulated sample 
rate of 20 per sec, implementat ion of the integrated 
control ler on mul t ip le state-of-the-art microprocessor 
boards should achieve real-time performance. 

CONCLUSIONS 

Knowledge-based systems and artif icial neural networks 
offer very dif ferent capabilities concerning control 
system design, implementat ion, and performance. The ap­
proach taken in this paperwas to develop a robotic control 
system that utilizes the strengths of each processing 
technique where appropriate. A rule-based system initially 
finds acceptable first-cut solutions to the given control 
objective, then teaches a neural network how to accom­
plish parts of the task which are amenable to the 
network's learning and generalization abilities. The net­
work learns on-line by examples provided by rule-based 
task execution. The result ing integrated system enables a 
natural division o f labor ; strategics for task execution 
(embodied by the execution moni tor of the swing maneu­
ver described above) remain wi th in an expressive rule-
based representation, whereas specific tactics (such as 
reflex gain modulat ion) are delegated to the most 
appropriate fo rm of processing. In addi t ion, by replacing 
rule groups wi th neural networks in a modular fashion, 
integration of the two computat ional paradigms occurs 
wi th in the convenient hierarchical software architecture 
provided by knowledge-based programming techniques. 

When integrated, knowledge-based systems and artificial 
neural networks merge declarative and reflexive forms of 
in format ion processing. For the swing-maneuver control­
ler described above, shifts between declarative and reflex­
ive processing are traced by variations in the number of 
rules being tested and the errors associated with the 
network outputs dur ing learning. Furthermore, a shift 
f rom declarative to reflexive processing implies changes in 
the control ler 's focus of attention and allocation ofcompu-

Handelman, Lane and Gelfand 197 



lat ional resources. By integrat ing aspects of declarative 
knowledge-based systems and reflexive art i f icial neural 
networks in real t ime, the stage may be set for the 
development of highly adaptive and dexterous robotic 
contro l systems. 

Many addit ional issues related to the integrat ion of 
neural networks and knowledge based systems for autono-
mous contro l wi l l be investigated in future research. These 
include: l ) I f we were to use special purpose parallel archi­
tectures for the neural network and rule-based system 
control , would neural network control be significantly 
more eff icient for the automatic contro l phase as in hu­
mans ? 2)How should opt imal learning strategies used by 
the execution mon i to r be generated ? 3) In the prel iminary 
example we investigated, we were able to transfer control 
smoothly between the knowledge-based system and neural 
network. What stability problems might arise in more 
complex systems ? 4) Given a group of neural networks 
assigned to per form a complex, multi-faceted task, how 
should the execution mon i to r knowledge base be set up to 
optimally allocate knowledge among networks and deter­
mine their t ra in ing order ? 5)Can the transfer of knowl­
edge among system components be bi-directional, that is, 
can the knowledge-based system infer new rules or modify 
existing ones based on neural network performance ? 
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