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A b s t r a c t 
In this paper we discuss Poligon, a skeletal system fo r 
the development of concurrent blackboard based 
applications, its architecture and the motivation fo r its 
design. A number of experiments have been performed 
in order to evaluate the performance of Poligon. Some 
of these are detailed and the results are shown. Lessons 
learned in the development of Poligon are given and 
conclusions about the performance of similar systems 
are drawn. 

1 . Introduction 

It is often said that future AI applications wi l l make signifi­
cantly greater computational demands than the present 
generation. The Advanced Architectures Project of Stanford 
University's Heuristic Programming Project [Rice, 1988b] 
is investigating this issue, since it has as its objective 
achieving computational speed-up for expert systems 
through the use of parallel hardware and new, advanced soft­
ware architectures. This requires the development of ev­
erything from designs for parallel hardware, which might be 
appropriate for the execution of future symbolic programs, 
through operating system and language concepts to problem-
solving frameworks and eventually mounting applications 
on them in order to test the new designs. 

Poligon [Rice, 1986] is one of the problem-solving 
frameworks developed as part of the Advanced Architectures 
Project. In Section 2, we discuss Poligon's architecture as a 
design for a high-performance, concurrent blackboard system 
aimed particularly at the problem domain of soft real-time 
problems, and what motivated this design. Section 3 dis­
cusses the applications mounted on the Poligon framework 
and experiments performed on the Poligon system to mea­
sure its performance. Section 4 presents the results of these 
experiments and an interpretation of them. We conclude in 
Section 5 with a number of the lessons we have learned in 
the process and pointers for future research. 

The author gratefully acknowledges the support of the 
fo l lowing funding agencies for this project; DARPA/RADC, 
under contract F30602-85-C-0012; N A S A , under contract 
number NCC 2-220; Boeing Computer Services, under con 
tract number W-266875. 

2 . The Poligon Architecture 

In this section we briefly discuss the architecture of the 
Poligon system. A more detailed description of the design 
rational for Poligon can be found in [Ni i et al., 1988]. Be­
cause of space constraints, it wi l l be assumed that the reader 
is conversant with the terminology of Blackboard Systems 
[Engclmore and Morgan, 1988], though no deep knowledge 
wi l l be assumed. 

When we started the Advanced Architectures Project we 
had a hunch that the Blackboard problem-solving architecture 
might offer a basis for the efficient exploitation of concur­
rent hardware. This was because the blackboard model ap­
peared to have concurrency built into it. Why this is, in 
fact, not the case is explained in [Rice, 1988a]. The primary 
reasons why the blackboard model of a collection of simul­
taneously cooperating experts cannot develop the parallelism 
that one might expect is that the blackboard model itself as­
sumes effectively infinite bandwidth with which the experts 
can see any part of the blackboard that might be of interest. 
It also assumes that experts do not get into one another's 
way whilst solving the problem. In practice a knowledge 
source can only see a small segment of the blackboard at any 
one time without degrading the performance of the system 
unacceptably. Similarly, the experts are dependent on one 
another, they must often wait for the results deduced by 
other agents and can be confused by updates being posted at 
unexpected times or in surprising orders. We are, however, 
unaware of a better architecture for concurrent problem-solv­
ing than that of Blackboard systems. 

Although a number of other research efforts have looked at 
concurrent blackboard systems, these have concentrated pri­
marily on either the aspects of distributed, concurrent prob­
lem-solving, such as [Lesser and Corki l l , 1983] or on coarse 
grained parallel systems, such as [Fcnnell and Lesser, 1977, 
Aiel lo, 1986, Ensor and Gabbe, 1985]. Poligon is a finer 
grained system than these, directed particularly at gaining 
speed-up through parallel execution. 

The normal, serial implementations of the blackboard 
metaphor use a scheduling mechanism to cause one rule to 
fire after another. In parallel systems it is crucial that the 
programmer eliminate serial components, since this limits 
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speed-up.1 The main motivation of the Poligon system was 
to find a way to eliminate the serializing aspects of the 
blackboard model. We viewed this as doing the following: 
• Eliminating the scheduling mechanism and finding ways 

to support concurrent rule activation all across the black-
board. 

• Optimizing the design for distributed-memory, message-
passing hardware, which should be able to deliver the best 
performance for large numbers of processors (of the order 
of hundreds to thousands.) 

• Distributing the knowledge base over the blackboard so 
that there would be no serialization in the access to the 
blackboard from the executing knowledge. 

• Designing the system so as to allow it to be highly com­
pilable. It was clear from the outset that a considerable 
portion of the expense of existing AI systems is due to 
the fact that they are optimized for easy modification and 
debugging, rather than high run-time performance. The 
resulting system, therefore, had to be designed so as to be 
able to be compiled efficiently yet still be intelligible and 
debuggable during the development cycle. 

As these ideas progressed we developed the notion of a 
blackboard consisting of active nodes, tightly associated 
with the knowledge relevant to them. 

A very simple scheme was developed for invoking the 
knowledge that had been distributed to the blackboard nodes: 
rules arc activated as daemons as a result of modifications to 
the slots of a node (see Figure 1). 

The distributed-memory hardware model, on which the 
Poligon system was to operate had the property that each 
processor was effectively a uniprocessor system. This 

' Speed-up can be viewed as the ratio of the system's speed 
using N processors to its speed using only one. 

meant that if we viewed the blackboard with a "Node as a 
Process/Processor" model then we would lose potential par­
allelism due to being able to execute only one piece of code 
(rule) at a time for any given node. 

What we needed, therefore, was a mechanism to allow the 
activation of multiple rules for any given blackboard node. 
This caused us to develop a model of Poligon which was as 
follows: "A blackboard node is a process on a processor, 
surrounded by a collection of processors able to service its 
requests to execute rules." It can easily be seen that this 
model is very close to a distributed object system model. 
This is by no means a coincidence. The underlying hardware 
system on which Poligon was implemented was a con­
current, distributed object oriented system [Delagi et al., 
1986]. 

The model expressed above is not without problems. In 
order to minimize the probability of a node being locked for 
a long period, which would delay remote access to it, as 
much processing is done in the remote rule invocations as 
possible2. This means that, when the rules execute, they 
have to do so in the context of a snap-shot of the solution 
state as it was when the rule was invoked (see Figure 2). 
Remote reads to other nodes, even the invoking node, are 
expensive and one cannot guarantee that things haven't 
changed by the time that the result of the read has been re­
turned. 

2There are no user accessible locks in Poligon. Poligon 
nodes become locked (enter critical sections) during slot reads 
and updates, which are cheap operations. The Poligon archi­
tecture is such that deadlock w i l l not happen as a result of 
system action, though the user can sti l l write a program that 
wi l l l ive-lock, e.g. two nodes each wait ing for one node to 
update the other wi l l wait for ever. 
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This led to the development of the idea of a Poligon node 
as being an agent capable of evaluating its own performance. 
Mechanisms had to be included so as to allow the system to 
be able to assess any request to modify its local state and to 
decide whether to perform the update, or what else to do in­
stead, on the basis of its own view of how it is progressing 
towards its goal of solving the problem. 

3 . Experiments on Poligon 

In this section we briefly describe the experiments performed 
on the Poligon system to date. Two applications have been 
mounted on Poligon: Elint, a soft real-time situation as­
sessment problem and ParAble, a diagnostic application for 
particle accelerator beam-lines [Selig, 19871. The experi­
ments with the Elint application have now been completed, 
whereas those on the ParAble system are in their infancy, so 
only the Elint application will be considered here. A more 
detailed treatment of the Elint experiments can be found in 
[Niietal. , 1988]. 

The Elint application encodes knowledge used to interpret 
the radar emissions made by planes that are received by 
ground-based tracking stations distributed across the country. 
Because these tracking sites are passive devices, they can 
only detect the bearing and spectral characteristics of the 
radar emissions. Between them, it is their responsibility to 
deduce a position, course, identity and intention for any air­
craft traveling through the monitored airspace. The Elint 
application simulates a central machine that integrates re­
ports from these detection sites in order to achieve the over­
all goals mentioned. 

The important characteristics of the Elint problem were: 
• A continuous stream of input data. 
• No a priori knowledge of the behavior or number of the 

aircraft being tracked. 
• The need to emit periodic reports capturing the system's 

evolving view of the solution. 
The Elint problem was chosen both because it was non-

trivial and was in a class of problems, for which blackboard 
systems had already been used, and also because it was hoped 
that parallelism would be readily available. It was antici­
pated that parallelism could be extracted from the concurrent 
execution of knowledge on any given part of the solution 
space and from the potentially large number of independent 
elements in that solution space, i.e. aircraft. 

The application was taken from a serial implementation 
and was not restructured so as to be better suited for parallel 
execution. The blackboard was, however, composed of three 
distinct layers in the abstraction hierarchy. Data flowing 
from one level to the next allowed pipes to be formed that 
were three stages long. 

Perhaps the most important lesson that we learned from 
performing these experiments was to find a way to measure 
the relative performance of concurrent real-time systems. 
The best way that we found to do this was to pump data into 
the system at a given rate, which was under the control of 
the user, and examine the system's output over time. There 
is a measurable time between the time that data comes into 
the system and the time that any associated reports come out 
of the system. If this time difference increases on average 
over the course of a run then the system was not able to 

keep up with the rate at which data was being pumped into 
it. The experiment was then performed again with the data 
rate turned down until the report latency did not increase. 
This gave us a measure for the system's throughput, which 
we took to denote its peak performance. 

The experiments that were performed were intended to 
measure a number of different aspects of the system's per­
formance: 
• The speed-up that the Poligon system could deliver. 
• The peak throughput of the system. 
• The ability of the system to exploit large knowledge 

bases. 
• The granularity of the system. 

Experiments to measure these are described in Section 4. 

4. Experimental Results 

The space available for this paper does not allow a full ex­
planation of the experimental results, so the interested reader 
is again advised to refer to [Nii et al., 1988] for more details. 
It is hoped that the treatment here will be sufficient to give 
the gist of what we have learned. 

It should be noted here that wherever reference is made to 
absolute times, these are measured in terms of the perfor­
mance of the simulated hardware on which the Poligon sys­
tem runs [Delagi, 1986]. Each processing element of this 
machine is of about the performance of a TI Explorer™ II+ 
processor. 

4 . 1 . Measurement of Speed-up and Throughput 
In this experiment two different data sets were used. One 

was designed to allow the Poligon system only to create one 
pipe in the solution space, the second allows Poligon to 

Explorer is a trade mark of Texas Instruments Corpora­
t i o n . 
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create four pipe-lines; it was four times as dense1. The 
combination of these two results allows us to do the 
following: 
• Measure the peak throughput for the larger data set. 
• Determine the contribution to speed-up due simply to 

pipe-line parallelism. 
• Compare the results from the two data sets so as to be 

able to get a measure of the ability of the system to ex­
ploit parallelism in the source data, i.e. data parallelism. 
The results from the two data sets are shown in Figure 3. 
In this experiment we learned the following: 

• The peak speed-up shown in this application due to pipe­
line parallelism was 3.6. This showed that although the 
length of the pipe was three, speed-up was greater than 
three because of the concurrent execution of rules by the 
different stages of the pipe. 

• The peak throughputs measured from the two data sets 
were not significantly different. This indicates that 
Poligon was able to achieve an almost linear increase in 
speed-up as the problem size of the data set increased, an 
important result. 

• The peak throughput for the system as measured from the 
larger data set was about 340us per signal data record. 
Because of the linear increase in performance with data set 
complexity it is assumed that with more complex prob­
lems higher performance could be achieved. By compari­
son the Elint application, when coded to run in the AGE 
blackboard system took about 3.7 seconds to process each 
piece of signal data. 

Number of Rules 
Figure 4. A graph showing application throughput 
slow-down plotted against the number of rules being 
fired for each rule-invoking event 

4 .2 . Measurement of Poligon's Abil i ty to Ex­
ploit Large Knowledge Bases 

In this experiment the Poligon system was tested using 
the small data set used above. The Poligon framework was 
modified so that, whenever a rule was invoked, N rules 
would be invoked, rather than just one. N -1 of these rules 
had the special characteristic that they performed almost all 
of the processing required except for any blackboard modify­
ing updates. This gave a measure of the system load if the 
knowledge base was N times larger, whilst still giving the 
right behavior for this application. 

The results from this experiment are shown in Figure 4. 
In this experiment, if the system were able to exploit par­

allelism in the knowledge base to the full, one would expect 
that the system would not slow down at all as new knowl­
edge was added, i.e. the line shown in Figure 4 would be 
horizontal. If, on the other hand, the system bogged down 
completely as more knowledge was added one would expect 
that the result would be worse than linear slow-down, that is 
the plot would appear above the "linear slow-down" line. 
As can be seen easily from the graph, Poligon's performance 
was better than linear. In order to perform four times as 
much work it took only 2.2 times as long. This means 
that, as long as there are sufficient computational resources, 
the Poligon system delivers good performance for a knowl­
edge base whose size is at least up to four times that of the 
Elint applications 

4 .3 . Measurement of the Granularity of 
Poligon's Rules 

In this experiment some of the internal mechanisms 
within Poligon were timed in order to get some empirical 
measure of the granularity of the system. 

Within a blackboard system a number of mechanisms are 
of crucial importance to the performance of the system. 
Amongst these arc slot reads, slot writes and rule invoca­
tion.3 

In order to determine the costs of these operations they 
were performed repeatedly in a manner which allowed the 
individual costs to be measured with some precision. 

The results of these experiments are as follows. It should 
be noted that all of these results neglect any communication 
overhead, so they are only representative for local opera­
tions. 
• Slot reads take 1.36 + 0.94N Us, where n is the number of 

slots being read at once, Poligon supports a form of mul­
tiple slot read operation. 

• Slot updates lake 18 + 53.In us, where n is the number 
of slots being written. Poligon allows arbitrary user code 
to be executed during the slot update operation, so this is 
a representative figure taken from the Elint application. 
This is for the case of no rules being associated with the 
slots being updated. 

1The small data set can be thought of as representing only 
one aircraft, the second had four. The data was, therefore, no 
more complex, there was just more of it. 

2In AGE, the Elint knowledge base was composed of about 
twenty knowledge sources, each having about three rules. 

3Node creation is another important aspect, which was not 
measured in this experiment. 
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• The overhead cost of starting up a rule's execution is 
about 1ms per rule invoked. 

A substantial part of the time taken performing these op­
erations could be optimized considerably. For instance, a 
figure of about 500us for rule invocation could relatively 
easily be achieved in a real system and more than this im­
provement could be expected for a system which allowed 
specialized microcode or similar efficiency tuning. This 
shows that there is a lower bound to the granularity that the 
user can expect to achieve. For computations taking less 
than a few milliseconds it may not be worth starting up a 
rule to perform the computation, the cost of parallel execu­
tion would be in excess of the serial execution time. 

5 . What We have Learned 

We have learned a number of lessons from this project, 
some of which were counter to our intuitions. 
• Our intuit ion told us that programming a concurrent 

blackboard system would not be too hard because of the 
assumed implicit asynchrony in serial blackboard systems. 
We found this not to be the case. We found the pro­
gramming task to be difficult and, we believe, a reconccp-
tualization of existing problems wi l l be required in order 
to port them for efficient parallel execution. The di f f i ­
culty of implementation of applications is due largely to 
the divergence of implementations of serial blackboard 
systems from the pure blackboard model in order to make 
implementation and programming more manageable as 
was mentioned in Section 2 and is covered more thor­
oughly in [Rice 88a]. 

• We found that the Poligon system and architecture itself 
performed fairly well. Although programming the system 
was not trivial, the Poligon system provided a useful ab­
straction model that allowed the development of an appli­
cation in a blackboard-like manner that still gave the cor­
rect answers and acceptable performance. 

• We had thought that parallelism in the knowledge base 
would be crucial to the achievement of high performance. 
In the applications that we used, knowledge proved to be 
sparse and the pipe-line parallelism that resulted from it 
delivered only a factor of three in speed-up. The small 
amount of speed-up from pipe-line parallelism was due to 
the short length of the pipes, the lack of applicable 
knowledge and the difficulty in balancing the pipes. Most 
of the parallelism seen in the applications implemented in 
the Advanced.Architectures Project was derived from the 
data, not the code. The l imit to the length of the pipes 
derived from the application was not one that resulted 
from the structure of the problem itself, but rather came 
from the fact that the application was reimplcmcntcd for 
Poligon from the AGE implementation, not reformulated. 

• When we started the project our intuition told us that the 
significantly greater cost of communication relative to 
computation would bias the programmer in favor of doing 
as much as possible locally before a message was sent. It 
turned out that doing this increased the granularity of the 
system and restricted parallelism. We found that, al­
though communication is expensive, as long as data keeps 
flowing along a pipe the price that is payed is in latency, 
not in speed-up. The fact that processes are not held up 

by communication is a result of the non-blocking mes­
sage sending ability of the hardware. Thus, fine-grained 
systems are likely to be significant for achieving good 
performance from large multiprocessors but the increased 
latency due to distributing the work could have an adverse 
effect on real-time performance. 

• We learned that simulation of multiprocessors is expen­
sive. A number of projects are interested simply in the 
difficulties caused by the asynchronous behavior of con­
current systems. Such projects are able to use a simple 
model for their implementations on existing hardware. 
We, on the other hand, wanted to measure the performance 
of our software on the hardware we were developing pre­
cisely in order to refine both our hardware and software 
designs. This is computationally a very expensive task 
and has proved to be a major l imiting factor on the work 
that we have done. Having said this, however, it should 
be noted that we arc confident that we have achieved better 
results and have gained deeper insights than we would 
have done if we had concentrated on building real hard­
ware. 

• Resource allocation was found to be a significant factor in 
delivering high performance. The fact that blackboard 
nodes are often very long-lived means that an even load 
balance can easily be disrupted by a few busy nodes. In 
the experiments reported here the allocation of processes 
to processors was done randomly. Other experiments in 
the Advanced Architectures project have shown that, com­
pared to the ideal, perfect load balanced state1, even with 
very careful site allocation the Elint application lost 30% 
in efficiency and delivered 30% less speed-up than in the 
perfectly load balanced case. This could not be recovered 
through the use of more processors |Dclagi and Saraiya, 
1988]. 

6. Conclusions 

In this paper we have described Poligon, a blackboard 
framework designed to operate on distributed-memory 
multiprocessors. We have described experiments performed 
on it, shown the results and discussed the conclusions that 
can be drawn from them and mentioned some lessons that 
were learned along the way. 

We have shown that the Poligon system can deliver a 
speed-up for the Elint application of nearly twelve, with near 
linear speed-up gain with increasing problem complexity. 
We have also shown significantly better than linear slow-
down as a result of increasing knowledge base complexity. 
We are confident, therefore, that given a larger problem 
Poligon could deliver significantly more speed-up than this. 

From our work we can conclude that data parallelism is 
likely to be the most important source of parallelism in the 
foreseeable future, at least until truly huge knowledge bases 
are developed. This requires that concurrent problem-solving 
systems should be not only able to exploit data parallelism 
but be able to do so in a manner which allows the rapid 
development, easy maintenance and modification of knowl-

1 ' Th i s was possible to measure because of being able to 
"cheat" in the processor allocation for the simulator, assum­
ing global knowledge. 
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edge bases and encourages the development of software that 
is not brittle when knowledge is added or removed or when 
the system meets circumstances that were not anticipated by 
the programmer. Poligon is a possible first step in this 
direction. 
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