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A b s t r a c t 

A real-time AI system in the real world needs 
to monitor an immense volume of data. To do 
this, the system must fi lter out much of the 
incoming data. However, it must remain re­
sponsive to impor tant or unexpected events in 
the data. This paper describes some simple ap­
proaches to data management, shows how they 
can fai l to be both adequately selective and re­
sponsive, and presents an approach that im­
proves on the simple approaches by making use 
of information about the system's resources and 
ongoing tasks. The new approach has been ap­
plied in a system for moni tor ing patients in a 
surgical intensive-care uni t . 

1 I n t r o d u c t i o n 

When an AI system meets the real wor ld, it is confronted 
by an overwhelming amount of data. To maintain real­
t ime performance, the system must reduce the flow of 
data to a manageable amount. Some simple approaches 
have been used to filter the incoming data, but these 
have severe shortcomings. To operate in real t ime while 
remaining responsive to important external events, a sys­
tem needs a more intelligent approach to data manage­
ment. 

The real world supplies a continuous stream of data 
for a system to monitor. The system has sensors that 
sample the data stream at a high enough rate to catch all 
of the data that the system needs. However, no system 
doing complex processing can keep up wi th the nearly-
continuous data stream f rom many sensors. Some sort 
of data reduction is necessary. 

The problem is not l imi ted to reducing a continuous 
data stream, however. Some sensors may not i fy a system 
of particular events in the world rather than t ransmit t ing 
a continuous stream of data. For instance, there may 
be a sensor that notices a person walk ing into a room. 
Unless it had knowledge about when such an event would 
happen, a system could not accurately predict the event. 
If it were receiving data f rom this sensor, the system 
would need to be able to react quickly to unexpected or 
unpredictable events. 

Also, wi thout a perfect model of the wor ld, the value of 
any data point is unpredictable. The better the system's 

model of the wor ld, the better a prediction it could make, 
but it must be prepared for some unexpected data values. 
These values should not be ignored, since they might in­
dicate an important event that the system should handle. 

A real-t ime AI system must be able to reduce the data 
stream to a manageable amount while remaining respon­
sive to unexpected data arrival and values. The object 
of this paper is to show methods for intelligent data 
management that address these issues. First, some sim­
ple data reduction approaches wi l l be discussed. These 
methods have been used in existing real-time systems, 
but they are inadequate to handle the kind of variabil i ty 
actually present in the real world. Second, an approach 
wi l l be introduced that makes use of more intelligent 
data management techniques, making use of knowledge 
about the system's resources and current tasks. Finally, 
this approach wi l l be shown as it works in Guardian, a 
system for moni tor ing patients in a surgical intensive-
care unit . 

2 L i m i t a t i o n s of C u r r e n t Approaches 

The fixed-sampling approach to data reduction involves 
fixed-time sampling of the sensor data. This method 
uses an explicit, preset sample rate [Andersson, 1988, 
Fagan et a/., 1984] where the system checks the input 
once every t ime interval. Two assumptions are impl ic i t 
in this approach. First, the system must be able to com­
plete its processing of one set of input before the next set 
arrives. However, the system may remain needlessly idle 
when it is performing l i t t le reasoning, since there may be 
interesting data between the sampled data. Conversely, 
the system may be too slow when the data require a large 
amount of reasoning. Second, the samples may not ac­
curately reflect the actual data. For example, see Figure 
1, where the sampled data show l i t t le of what is actually 
happening. 

One variant of the fixed sampling approach is the 
averaged-sampling approach, which uses the average 
value of a parameter over the sampling interval. This 
approach has mainly been used for parameters where 
instantaneous values either don't exist or are highly in-
accurate, such as heart rate in [Fagan et a/., 1984]. This 
st i l l suffers f rom the problems of a fixed t ime interval, 
but it begins to address the problem of errors due to data 
f luctuat ion. However, much of the detail of the data is 
st i l l lost, as can be seen in Figure 2. 
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Another sampling method, polling, trades the diff icul­
ties of a fixed t ime interval for less reliable data. Under 
this approach, the system samples the data, performs 
whatever reasoning necessary, and then repeats the pro­
cedure [Kaemmerer and A l la rd , 1987, Nitao and Parodi, 
1985]. Here the system is guaranteed to be neither idle 
nor overwhelmed by data, since it reads data whenever 
it has processed the previous data. But al l the problems 
wi th fixed sampling in losing the detail of the data are 
compounded. Whereas fixed sampling guarantees that 
any interesting data events lasting longer than the sam­
pling interval wi l l be noticed, poll ing's interval is depen­
dent on the processing. This variable interval makes the 
behavior of the system less well-defined. Figure 3 shows 
an example of such a system's behavior, where in this 
case the amount of reasoning depends on the magnitude 
of the data point . 

A final approach, fixed thresholding, uses fixed thresh­
olds to signal out-of-range data, generating interrupts 
for the system to handle [Ali and Scharnhorst, 1985, 
Anderson et a/., 1984, Chen, 1985]. This requires the 
data to be well-behaved w i th respect to the thresholds 
chosen. Variations just w i th in the allowable range wi l l 

escape notice, even when the system is idle. Slightly 
wider variations that cross the threshold may cause mul ­
t iple interrupts. In fact, one of the worst situations for a 
fixed threshold is when the value hovers near the thresh­
old. Figure 4 shows how fixed thresholding can cause 
both periods of inact iv i ty and periods of overabundant 
data. 

3 I n te l l i gen t D a t a M a n a g e m e n t 

The characteristics of real-world data and the shortcom­
ings of the simple methods for data management suggest 
a set of criteria for more effective data management: 

* The system should be responsive to changing re-
source requirements of the reasoning system. The 
amount of data sampled should depend on how 
much t ime the system needs to process those data. 

♦ The system should be responsive to important 
events in the data. The fact that the system is busy 
should not prevent it f rom noticing crucial data. 

♦ The system should be able to focus its attention dy­
namically. If some parameters are part icularly rel­
evant to the current reasoning of the system, they 

Figure 1: Fixed sampling. The input data are sampled once every fixed t ime interval. 

Figure 2: Averaged sampling. The input data are sampled once every fixed t ime interval. The value returned is 
the average of the parameter over the last sampling interval. 

Figure 3: Pol l ing. The input data are sampled whenever the system finishes processing the previous data. 
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should be monitored more closely. Conversely, irrel­
evant parameters should be monitored only closely 
enough to ensure that crit ical events are not lost. 

These criteria can be met by using a combination 
of sampling and thresholding, w i th the sampling rate 
and thresholds dynamically controlled. In addit ion, the 
thresholds are made relative to the last data value sent. 
The sampling rate and threshold define a dynamic filter 
on a parameter. 

The sampling rate is not a strict specification of the 
interval between incoming data values, but rather a base-
line sampling rate: if no data values for a parameter have 
been sent wi th in the t ime interval defined by the parame­
ter's sampling rate, a new data value is sent. Thus a min­
imum sampling rate wi l l be maintained. However the 
sampling rate may be higher, depending on the thresh­
olds. The sampling rate is changeable by the system. 

The real power of the approach comes from having 
a dynamic threshold set relative to the last data i tem 
received. This relative thresholding avoids the boundary 
conditions of the fixed thresholding approach. Since the 
allowable range wi th in the threshold is changeable, the 
system alters the threshold to adjust the data rate. 

Note that the use of thresholding as opposed to simple 
sampling provides information about the filtered data. 
More specifically, given a parameter's data value v and 
a threshold of v± ∆v, the parameter is guaranteed to be 
in the range [v — ∆v, v + Av] unt i l another data value is 
received. 

The baseline sampling guarantees the data to be up 
to date, or no more out of date than the sampling in­
terval. If the threshold is relatively small , then this 
w i l l prove unnecessary. But wi th larger thresholds, this 
might prove important . Also, the working system uses 
this in its computation of data rates (this wi l l be dis­

cussed in Section 4). 

Dynamic fi lters allow the system to adjust the incom­
ing data rate to its needs. Wi thou t any knowledge of its 
internal processing, the system could monitor the rate 
at which incoming data arrived in the system. If the 
rate rises too high or drops too low, the system could 
increase or decrease the filter threshold. This reactive 
adjustment acts like a control system wi th the function 
of keeping the rate w i th in a given range. This approach 
is i l lustrated in Figure 5. Note that the rate of data sent 
to the system (the ones that the filters allow through) 
is independent of the rate at which data are sensed. In­
stead, the values of the sensed data determine the data 
rate to the system. 

By inspecting the reasoning component, the system 
may notice a backlog of tasks wait ing to be executed. 
The input could be slowed to allow the system to catch 
up. This needs to affect the input rate controller, which 
could otherwise negate any change that the task-level 
controller might make. Specifically, the task-level con­
troller might slow the input rate down below the min i ­
mum allowable rate defined for the input-rate controller. 
The input-rate controller would then increase the data 
rate, possibly causing further backlogs on the task queue. 

In addit ion to these reactive behaviors, it would be de­
sirable to anticipate resource requirements and change 
the filters accordingly. The system might plan to exe­
cute a complex procedure, but before start ing the pro-
cedure, it could change the filters to slow the data rate 
an amount appropriate for the complexity of the task. 
Note that this need only be approximate, since the com­
ponents for rate control and task-backlog control wi l l 
adjust the actual input rate to match the ongoing rea­
soning. 

Figure 4: Fixed thresholding. The input data are sampled whenever they cross a fixed threshold. 

Figure 5: Dynamic filters. The input data are sampled when they cross a threshold around the previous data value 
sent. The size of the threshold varies according to the data rate. 
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Moni tor ing the task queue and anticipating resource 
requirements combine to satisfy the criterion that the 
system be responsive to reasoning resources. Since the 
system adjusts the filters in response to or in anticipa­
t ion of reasoning, the incoming data rate remains at an 
appropriate level for the reasoning in the system. 

The system st i l l maintains its sensitivity to important 
data through the use of the dynamic thresholds of the 
filters. Each parameter is guaranteed to be wi th in the 
range defined by its filter, and any deviation from that 
range wi l l cause a new data value to be sent to the sys­
tem. 

To handle the criterion that attention be allocated dif­
ferentially among the parameters, the system might have 
some notion of relevance. When a parameter is rele­
vant to the reasoning task the system is performing, any 
changes to the filters would t ry to favor the relevant pa­
rameters over the irrelevant parameters. For instance, 
when a complex procedure begins, the system may be 
able to achieve a sufficient overall data-rate reduction 
by only changing the filters of parameters irrelevant to 
the procedure. The filters of relevant parameters would 
change only when changes to the irrelevant parameters 
were not enough. 

Since the threshold ranges and the sampling rate are 
changeable, the system can control the amount of at­
tention given a parameter. The system is then able to 
adjust the input rate for any parameter or set of param­
eters when it has knowledge that suggests that action. 

4 Data Management in Guardian 

These ideas for data management have been applied in 
the Backlog component of the Guardian system [Ilayes-
Roth et a/., 1989]. Guardian is an application, im­
plemented in the BB1 blackboard system [Hayes-Roth, 
1985], for monitor ing patients in a surgical intensive-care 
unit . Currently, Guardian monitors twenty parameters, 
performing tasks such as data abstraction, associative di­
agnosis, model-based explanation, and model-based di­
agnosis. These tasks vary in their complexity and con­
sequently in their demands on reasoning resources. The 
Backlog subsystem of Guardian is responsible for main­
taining appropriate data input levels. 

There is a filter corresponding to each parameter that 
Guardian receives. These filters reside on an external 
processor, between the external sensors and Guardian. 
Guardian can change a filter by specifying the size of the 
relative threshold for a parameter (as in the amount of 
change allowable before a new data value is sent) or spec­
i fy ing the baseline sampling rate. In practice, the sam­
pl ing rate stays constant while the threshold changes. 

The maintenance of the incoming data rate is per­
formed when data arrive in the system. Guardian has a 
number of input streams, each of which has an associated 
data rate. In the current system, there is one parame­
ter per stream, but this is not required. The data rate 
is computed as a time-weighted average, decaying over 
t ime. Specifically, at the t ime a new data value is sent, 
if At is the t ime in seconds since the last data value was 
sent, and r is the input rate, in items per hour, at the 

t ime the last data value was sent, then 

is the new data rate. This formula provides a reason­
able balance between stabi l i ty and responsiveness in the 
data input rate. Since the input rate is computed only 
when input arrives — this is to avoid loading the proces­
sor w i th continual recomputations — the data rate may 
start gett ing out of date, since in reality there is a con­
tinuous decay of the data rate when no input is arr iv ing. 
The baseline sampling rate overcomes this problem by 
making sure data get sent at least once in the sampling 
interval. This ensures that the system's calculated data 
rate is no more than the sampling interval out of date. 

When the data rate falls outside of the acceptable 
range, this condit ion is posted on the blackboard, which 
triggers a knowledge source for correcting the condit ion. 
The knowledge source has a pr ior i ty proport ional to the 
amount the data rate is out of range, so minor adjust­
ments may be passed over when the system is busy. 
When the knowledge source runs, the filter thresholds for 
the associated parameters are changed an amount pro­
port ional to the amount the data rate is out of range. 
Specifically, if the maximum allowable data rate is ro, 
the current data rate is r > r0, the current threshold 
is A v , and the range of possible parameter values is V, 
then the formula 

defines the new threshold. When the data are dis­
tr ibuted uniformly over the possible range of data, then 

is the fraction of data actually being sent. Since 
the data rate is a factor of too high, the desired frac­
t ion of data sent is . The threshold formula 
is defined using this desired fract ion. If the data are dis­
t r ibuted uniformly, the formula wi l l adjust the threshold 
by the correct amount to bring the data rate wi th in the 
allowable range. In general it adjusts the data rate in the 
direction of the allowable range. A similar formula exists 
for the case where the data range is below the min imum 
allowable data rate. 

The Backlog component also handles backlogs of 
pending tasks. The BB1 agenda is the queue for ac­
t ivated knowledge sources, and as such provides a ready 
indication of the number of outstanding tasks. When the 
agenda grows too large, a knowledge source is triggered, 
w i th a pr ior i ty dependent on the size of the agenda. 
The knowledge source alters the input rate indirectly. 
Since, as mentioned earlier, the task-backlog correction 
needs to take precedence over the data-rate correction, 
the knowledge source triggered by the agenda overflow 
decreases the min imum and max imum allowable data 
rates for each stream by a percentage proport ional to 
the size of the agenda. The data-rate adjustments wi l l 
continue, except that they wi l l now adjust the data rate 
to be w i th in a lower range. This indirect control over 
the input rate meets the design goal for solving task 
backlogs. If the agenda continues to grow, the allowable 
ranges continue to decrease. When the agenda shrinks, 

Washington and Hayes-Roth 253 



the allowable ranges increase back towards their original 
settings. 

Ant ic ipat ion of reasoning-intensive tasks is done by 
moni tor ing the control plan of the blackboard. When a 
complex task is ready to run, the Backlog component ad­
justs the fi l ters in proport ion to the estimated complex­
i t y of the task. Currently this complexity is estimated 
ahead of t ime, but w i th more knowledge, the estimates 
could be computed at run t ime. As discussed earlier, 
the estimate need only be approximate, since the Back­
log component wi l l continue to monitor the data rate 
and the agenda, adjusting the rate to keep the incoming 
data at a reasonable pace for the task being performed. 

To help focus the system's attent ion on important 
data, the system recognizes relevance of parameters to 
the reasoning tasks. Relevance is implemented by having 
objects on the blackboard l ink ing parameters to plans 
(or more generally, parameters to an arbi trary black­
board object). This l inking establishes the parameters 
as relevant in the context of the plan, and when the plan 
is active, changes to filters are made to other parameters 
first. The relevant parameters have their filters changed 
only when the changes to the other, irrelevant parame­
ters result in less of an overall change than needed. 

5 Per fo rmance 

The Backlog component of the Guardian system has 
shown that it can meet the criteria for effective data 
management. The Guardian system has been run on 
scenarios containing up to three hours of simulated data, 
performing its various reasoning tasks while remaining 
abreast of the latest events in the data. 

Al though the large-scale changes in an intensive-care 
setting usually take place slowly, smaller variations may 
occur continually. In our current system, 15 parameters 
are sensed approximately every 20 seconds, w i th an ad­
dit ional 5 parameters — lab results and machine settings 
— sensed when they change. The durat ion of the BB1 
reasoning cycle, averaged over a run of 45 minutes, is 
about 15 seconds. Since BB1 triggers at least one knowl­
edge source for each data value it receives, and executes 
one per cycle, the filters must reduce the (15/20)15 = 11.25 
data items sensed each cycle to one. This is a lower 
bound, and in reality, the number of sensed data versus 
the number of data processed is significantly higher. In a 
representative run of 45 minutes, each of 15 parameters 
was sensed 139 times, for a total of 2085 data values. 
The filters allowed between 4 and 22 of the 139 sensed 
values into B B 1 , w i th a total of 119 data values reach­
ing the reasoning component. Thus the filters achieved 
greater than a 94% reduction in data, w i th the quali ty 
of the solution unaffected. 

There is a delay between the system deciding to change 
the input rate and the change actually taking effect. At 
the least, there is some communication delay when the 
filtering component is on a separate machine (which is 
the case in the current system). In the case of agenda 
backlogs, the change is indirect — the system shifts the 
range of acceptable rates rather than changing the fil­
ters directly — so there may be a delay before any filter 
changes occur. 

One possible problem wi th delays is when a sudden 
change occurs in the data variabi l i ty. New filters are 
needed to preserve a reasonable rate of input to the sys­
tem, but the filter change wi l l be delayed, so either too 
much or too l i t t le data wi l l arrive in the system. The 
current Guardian system has fixed-length buffers for in ­
put to the system, so if too much data arrives, the older 
data wi l l be lost. When there is too l i t t le data, the sys­
tem waits unt i l the next data value arrives, and at that 
point adjusts the filters. 

The effectiveness of the adjustment that the system 
makes to the filters is dependent on the delay in changing 
the filters. In particular, suppose that there were short 
bursts of highly varying data, interleaved w i th nearly 
flat data. If the bursts were close enough together, the 
system would start compensating for one extreme just 
when the other extreme occurred. This could be handled 
by noticing periodicity in the input data, but no such 
faci l i ty exists in the current system. 

6 Ongo ing W o r k 

The current implementation of data management in the 
Guardian system includes the ideas presented in this pa­
per. Further work is in progress to improve these ideas. 
In particular, a large part of the data management is 
being moved outside the reasoning component to avoid 
any unnecessary interference wi th the reasoning tasks, 
and the filter criteria are being expanded so that data 
may be filtered even more intell igently. 

If a large port ion of data management is done wi th in 
the reasoning component of the system, it could poten­
t ia l ly consume significant resources. This could make 
the overall performance of the system worse rather than 
better. In the current implementation of Guardian, the 
data management component is carefully constructed so 
that i t w i l l not interfere w i th the normal operation of the 
system. For instance, knowledge sources for data man­
agement are rated in proport ion to the severity of the 
problem they are to correct. This way minor corrections 
wi l l be put aside when important reasoning is underway. 

A better approach to reduce the resource demands of 
data management is to move as much of the work as pos­
sible to another processor. Work is underway to move 
the data management task to the (remote) filtering ma­
chine, since a large part of its operation is independent of 
the reasoning. The parts that require informat ion f rom 
the reasoning component are also being moved if they 
can get the information in a small amount of commu­
nication. For instance, the size of the agenda is easily 
communicated to a remote machine. 

Another direction of work in progress is making the fil­
tering criteria sensitive to more features. The reasoning 
system can set expectations, and the filtering component 
wi l l use a violated expectation as another reason to send 
a data value, tagged appropriately. Also being added are 
classification ranges, so that when a data value changes 
f rom what the system considers low to normal, a data 
value wi l l be sent. The filtering procedure allows these 
classification ranges to be set dynamical ly by the reason­
ing system. Addit ional ly, some simple trend analysis wi l l 
be performed to ensure that the overall rate of change in 
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some parameter is w i th in expected bounds. A l l of these 
additions are expected to be in place shortly, making the 
incoming data much more meaningful to the reasoning 
system. 
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