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Abstract 

A fundamental problem for most AI problem 
solvers is how to control search to avoid search­
ing subspaces which previously have been deter­
mined to be inconsistent. Two of the standard 
approaches to this problem are embodied in the 
constraint satisfaction problem (CSP) techniques 
which evolved from vision tasks and assumption-
based t ru th maintenance system (ATMS) tech­
niques which evolved from applying constraint 
propagation techniques to reasoning about the 
physical world. This paper argues that both ap­
proaches embody similar intuit ions for avoiding 
thrashing and shows how CSPs can be mapped 
to ATMS problems and vice versa. In part icu­
lar, Mackworth's notions of node, arc, and path 
consistency, Freuder's notion of it-consistency, 
and Dechter and Pearl's notion of directed K-
consistency have precise analogs in the ATMS 
framework. 

1 Int roduct ion 

Both constraint satisfaction techniques and t ru th main­
tenance systems are used widely in artif icial intelligence 
applications. A variety of refinements have been devel­
oped to avoid the thrashing behavior that often accompa­
nies them. This paper demonstrates that the intuit ions 
underlying these refinements are essentially similar. In 
particular, Mackworth's [13] notions of node, arc, path 
consistency, Freuder's [11] inconsistency, and Dechter and 
Pearl's [1] directed k-consistency for constraint satisfac­
tion problems(CSPs) and techniques for assumption-based 
t ru th maintenance (ATMS) [4, 5] are encompassed by a 
few propositional resolution rules. This paper shows that 
in many cases the constraint networks produced by the 
standard local consistency algorithms are identical to ones 
produced by the ATMS for the same input constraint net­
work. A longer version of this paper [10] explores these 
issues in far greater detail. 

This paper details how both CSP techniques and 
ATMS's are based on a few resolution rules. By out­
l ining the relationship between these two sets of tech­
niques, a connection in terminology and algorithms is es­
tablished between two distinct subfields of artif icial intel­
ligence. This holds the promise that any advance in one 
subfield is easily communicated to the other. At the mo­
ment both have incorporated essentially the same intu­
itions. However, we hope that this synthesis wi l l lead to 
faster progress on these issues of mutual interest. 

1.1 Search vs . I n f e r e n c e 

Al though CSP and ATMS tasks seem, on the surface, to be 
very different, both require combining two distinct modes 
of reasoning to minimize overall computational cost to 
complete tasks. In the following sections we define more 
precisely what ATMS's and CSPs are. Before diving into 
those details, we address the frameworks wi th in which CSP 
and ATMS techniques are used. 

CSPs are typically solved by backtrack search. How­
ever, as Mackworth [13] demonstrated, backtracking suf­
fers f rom numerous maladies often making it "grotesquely 
inefficient." Mackworth pointed out that if the constraints 
are preprocessed then many of backtracking's maladies can 
be eliminated. This preprocessing involves tightening (via 
local consistency algorithms) the in i t ia l constraints so that 
backtracking detects futi le states earlier leading to fewer 
backtracks. Freuder [11] generalized Mackworth's results 
and showed that w i th sufficient preprocessing most or all 
of the futi le backtracks can be avoided. However, the ex­
pense of the preprocessing to avoid all futi le backtracks 
typically outweighs the cost of the futi le backtracks in the 
first place. A fundamental issue for CSP solvers is to de­
termine how much preprocessing is necessary to minimize 
total effort (preprocessing plus backtracking). 

An ATMS task cannot be so cleanly stated as a CSP. In­
stead an ATMS is always used interactively wi th some kind 
of inference engine. The inference engine is roughly analo­
gous to the backtracker while the ATMS is roughly analo­
gous to the module which enforces CSP local consistency. 
The inference engine supplies the ATMS wi th a stream of 
clauses (as opposed to a CSP where the input problem is 
fixed) and queries about those clauses. The most typical 
query the inference engine makes is whether a particular 
set of propositional symbols is consistent (i.e., is part of 
a global solution). Ensuring that the ATMS never replies 
that a set is consistent when it is not is computationally 
disastrous in practice. However, answering that a set is 
consistent when in fact it is not results in futi le inference 
engine effort on that set of assumptions. 

We thus see that ATMS and CSP techniques embody 
the same computational trade-offs. Futile backtracking is 
analogous to futi le inference engine work, but avoiding all 
futi le backtracking or all futi le inference engine work is too 
expensive also. Thus, the CSP local consistency algorithms 
are motivated by exactly the same set of problem solving 
concerns as the ATMS algorithms. But even more surpris­
ing, most of the CSP local consistency algorithms them­
selves have almost identical analogs in the ATMS frame-
work. 

Due to the nature of the ATMS task, all ATMS algo-
r i thms are incremental. CSP techniques are typically used 
to solve completely specified problems, and need not be in-
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We have encoded the three conditions which define a 
constraint problem: every variable has a value, no variable 
can have more than one value, and no combination of vari­
able assignments violates any constraint. Therefore, every 
complete assignment of t ru th values to the propositional 
symbols which satisfies every clause in C, corresponds to a 
solution to the original CSP. Conversely, every solution to 
the CSP corresponds to an assignment of t ru th values to 
the propositional symbols which satisfies every clause of C. 

3.1 E x a m p l e c o n t i n u e d 

We were given the variables x1 x2,x3 w i th domains D1 = 
{a , b}, D2 = { e , / } , and D3 = {c, d,g) and binary con-
straints C1 2 = {be ,b f } , C1 3 = {bc.bd.bg}, and C2 3 = 
{ed,fg}. C consists of the following clause set. Each vari­
able must have a value: 

The negative clauses stating that each variable can have 
only one value: 

The constraints: 

3.2 C S P - P r o p o s i t i o n a l m a p p i n g 

Every constraint network CN has a unique encoding C = 
as a set of clauses. The inverse, 

exists only under the following conditions: 

1. A l l clauses are either positive or negative. 

2. Every symbol appears in at most one positive clause. 

3. For every pair of symbols in every positive clause, the 
binary negative clause of these two symbols is in the 
clause set. 

4. No negative clause of three or more literals contains 
two symbols occurring in the same positive clause. 

The following defines every positive clause de­
fines a variable and (2) every negative clause mentioning 
only symbols which occur in positive clauses but which 
does not mention two symbols from the same positive 
clause indicates a disallowed combination for the constraint 
among the variables of the symbols. Note that for every 
constraint network 

3.3 B a c k t r a c k search 

Both ATMS and CSP techniques exploit backtrack search 
for identifying global solutions. The following is a simple 
generic backtrack algori thm for constructing solutions to a 
CSP encoded as a set of clauses C. Let Subsumed?(S, C) 
be a function which checks whether the negative clause 
constructed f rom the symbols of S is subsumed by C 
(equivalently, the function checks whether interpreting the 
symbols of S to be true falsifies any clause of C). Let the 
global variable b count the number of backtracks (i.e., the 

number of times BT was called wi thout producing a solu­
t ion), b is init ialized to be 0. 

A L G O R I T H M B T ( S , C ) : 

1. [Termination check] If every variable has a value in S, 
then mark S as a solution and return. 

2. [Subsumption check] Pick a variable Xi which does not 
have a value in S. If Subsumed? ) holds 
for every value a i j , then set b = b + 1 and return. 

3 . [Iterate] For every j , unless Subsumed? 
call 

Note that BT impl ic i t ly incorporates the binary negative 
clauses involving elements of the same variable. 

Unfortunately, using BT to f ind all solutions can in­
volve an enormous amount of often futi le [4, 13] backtrack­
ing (i.e., 6 wi l l be very large). Both ATMS and CSP al­
gorithms incorporate the strategy which, in propositional 
terms, amounts to constructing addit ional clauses, entailed 
by C. Adding to C a clause entailed by i t , can only re­
duce the number of backtracks required to find a solu­
t ion. Adding all clauses to C entailed by i t , guarantees 
backtrack-free search. 

4 P ropos i t i ona l inference rules 

Al l ATMS and CSP local consistency techniques can be 
viewed as implementing a few basic resolution rules. A l l 
of these inference rules change the clause set, preserving 
the set of global solutions, but improving the efficiency 
of the backtrack search used to find the solutions. This 
section presents a set of inference rules referred to as I 
which we use in subsequent sections to characterize the 
ATMS and CSP local consistency algorithms. The names 
of these rules are chosen for compatibi l i ty wi th the equiv­
alent ATMS rules. 

HO: This rule removes subsumed clauses from C. If 
clause D C is subsumed by some other clause E C, 
then D is removed from C. 

H3: A unit resolution rule: 

H5: This rule does the main work. N(B) indicates the 
negative clause wi th symbols B. Given a set of negative 
clauses N(ai): 

An instance of this rule is: 

H5 can a generate a very large number of clauses, therefore 
it is useful to define two restrictions of H5. 

H5-k:: H5 restricted to only infer negative clauses below 
size k. The basic intu i t ion behind this restriction is that it 
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reduces overall computational complexity by reducing the 
number of clauses H5 introduces. In addit ion, when H5 is 
used as part of search, smaller clauses are more valuable 
than larger ones because they provide more pruning. Given 
a set of negative clauses N(a , ) : 

5 Loca l consistency cond i t ions 

The local consistency algorithms enforce local consistency 
conditions by adding clauses. These added clauses reduce 
the backtracking needed to find solutions. 

In discussing these theorems it is important recognize 
that the constraints in a constraint network, by construc­
t ion, do not contain spurious information. For example, if 
a constraint network has the constraint C12 = {ab}, then 
necessarily Thus, all CSP local consis­
tency algorithms impl ic i t ly incorporate a l imited form of 
subsumption: when an element is removed from a domain 
of some variable, all constraints referring to that variable 
are simplified to no longer to refer to the deleted element. 
(Note that this happens automatically if constraints are 
represented by allowed combinations, however, how a con­
straint is represented is not specified in the CSP approach.) 

5.1 N o d e cons is tency 

Node consistency ensures that the singleton constraint 
Ci{X) for every node i and any value Node 
consistency ensures that all unary constraints are used to 
delete disallowed domain elements. In the clausal encod­
ing, the domain of a variable is represented by a single 
disjunction and unary constraints appear as singleton neg­
ative clauses. 

T h e o r e m 1 A constraint network CN is node consistent 
iff no application of IIS to produces a clause. 

5.2 A r c cons is tency 

Arc consistency is ambiguously defined in the CSP litera­
ture. Here we adopt the definition of [14] which is slightly 
stronger than the one in [13]. Note that arc consistency 
does not necessarily imply node consistency, although all 
so-called arc consistency algorithms in the literature en­
force node consistency as well. Arc consistency ensures 
that for every pair of nodes i and j, for every value 
there exists a value which is not excluded by C i j. 
(To avoid double subscripts, I wri te x for x, and y for Xj.) 

T h e o r e m 2 A constraint network CN is arc consistent iff 
no application of produces a singleton 
negative clause. 

Proof. Let the Y1 be the elements of Dj. This is represented 
by the disjunction: 

Suppose that there were some value such 
that every value was excluded by C i J . These 
exclusions are represented by binary negative clauses. 

Thus, there must exist a set of binary negative clauses 
all of which contain x:X and each of the possible values 

Applying H5-2 to these binary clauses we obtain the 
singleton negative clause -ix:X. 
The converse is straight forward. 

5.3 P a t h cons is tency 

As wi th arc consistency, path consistency is also ambigu­
ously defined. We adopt the stronger definition of path 
consistency from [14]: if for every three nodes r, s and / if 
for every value and not excluded by the 
constraint between nodes Crt there exists a value 
such that the values X and Y are not excluded by Cre) 

and the values Y and Z are not excluded by Cst. 

T h e o r e m 3 A constraint network CN is path consistent 
iff no application of H5-3 to produces a binary 
clause not subsumed by C. 

5.4 k-consis tency 

[10] generalizes the preceding result to obtain: 

T h e o r e m 4 A constraint network CN is strongly k-
consistent iff no application of H5-k to \ in­
troduces a new clause not subsumed by C. 

6 Local consistency a lgo r i thms 

Al l ATMS and CSP local consistency algorithms employ 
some subset of the inference rules J (from section 4) to 
modify the clause set C to achieve local consistency. Given 
the theorems of the preceding section and the set of in­
ference rules I, the following useful algorithmic properties 
hold for a clausal encoding of a CSP. 

P r o p o s i t i o n 5 Given any subset of inference rules from 
I, any order of application will lead to the same resulting 
clause set as long as the clause set closed under those rules. 

P r o p o s i t i o n 6 Any algorithm incorporating any subset of 
inference rules from 1 achieves node consistency as long as 
the resulting clause set is closed under H3. 

P r o p o s i t i o n 7 Any algorithm incorporating any subset of 
inference rules from 1 achieves node and arc consistency 
as long as the resulting clause set is closed under H3 and 
H5-S. 

P r o p o s i t i o n 8 Any algorithm incorporating any subset of 
inference rules from 1 achieves node, arc and path consis­
tency as long as the resulting clause set is closed under H3 
and H5-S. 

P r o p o s i t i o n 9 Any algorithm incorporating any subset of 
inference rules from 1 achieves strong k-consistency as 
long as the resulting clause set is closed under H5-k. 
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6.1 T h e i m p o r t a n c e o f t h e a l g o r i t h m s 

The basic motivation for applying the local consistency al­
gorithms to constraint networks is to reduce or even total ly 
eliminate the number of backtracks required to identify the 
solutions. This issue is extensively discussed in the CSP 
literature. A general result f rom Freuder stated in propo-
sitional terms is: 

T h e o r e m 10 // the clause set C = A(CN) is closed un­
der H5} then the solutions can be found via backtrack-free 
search. 

The local consistency conditions are similarly important 
to ATMS operations — often backtrack search is used to 
construct problem solutions. The local consistency con­
ditions however play an even more central role in ATMS 
functioning. Fundamental to the ATMS is its abil ity to ef-
ficiently answer queries whether the conjunction of a set of 
symbols is known to be inconsistent. If the ATMS replies 
that the symbol set is consistent when, in actual fact, it 
is not, the inference engine may perform an unbounded 
amount of futi le work. Therefore, it is important that the 
ATMS answer such queries correctly. If the clause set is 
closed under H5, then the ATMS can correctly answer the 
queries by a simple subsumption test wi th N. 

Extensive experience wi th the ATMS has shown that 
closing the init ial clause set under H5 usually yields a total 
increase in overall problem-solving effort. This is because 
the inference engine effort saved by correctly answering the 
queries is outweighed by the computational effort of closing 
the clause set under H5. Usually, it is globally optimal to 
close the clause set under 115-k for some small value of 
k. These conditions, of course, correspond to the ATMS 
notions of arc and path consistency. 

7 CSP a lgor i thms 
Both ([13] and [14]) definitions of local consistency admit 
more ambiguity than first meets the eye. Consider just the 
simple case of achieving node consistency. A node consis­
tency algorithm converts a constraint network to an equiv­
alent one which is node consistent. Unfortunately, there 
may be a very large number of equivalent networks which 
are node consistent. The node consistency condition, al­
though well-defined, does not specify which of these net­
works a node consistency algorithm must f ind. Although 
rarely specified, all consistency algorithms incrementally 
remove local consistency violations by minimally tighten­
ing the constraints to find an equivalent consistent network 
meeting the local consistency condition. 

The common CSP local consistency algorithms can be 
analyzed in terms of the inference rules of 2. The node 
consistency algori thm NC-1 repeatedly applies rule 113. 

T h e o r e m 11 Executing NC-1 to constraint network CN 
has the same result as applying A"1 to the closure of 
A(CN) under H3 and H5-2. 

Al l arc consistency algorithms close the clause set under 
H3 and H5-2, applying H3 first whenever possible. The 
different arc consistency algorithms do various amounts of 
bookkeeping to prevent futi le applications of H5-2. 

T h e o r e m 12 Executing AC-1, AC-2, or ACS to con­
straint network CN has the same result as applying A " 1 

to the closure of A(CN) under H3 and H5-2. 

Analogously, the path consistency algorithms close the 
clause set under H3 and H5-3. 

T h e o r e m 13 Executing PC-1 or PC-2 to constraint net-
work CN has the same result as applying A " 1 to the clo­
sure ofA{CN) under H3 and H5-S. 

8 A T M S a lgo r i thms 

The ATMS contains a variety of mechanisms to maintain 
node labels which we do not discuss here. Instead, this 
paper focuses on ATMS techniques to construct nogoods 
entailed by C. The ATMS represents the clauses as N a set 
of nogoods (i.e., negative clauses) and V a set of chooses 
(i.e., positive clauses) where every symbol representing an 
assignment is an ATMS assumption. As the ATMS ex­
plicit ly represents clauses it can directly incorporate the 
inference rules I. A l l versions of the ATMS algorithms 
incorporate some subset of these inference rules. 

8.1 Ef f ic iency cons ide ra t ions 

Al l ATMS algorithms incorporate the subsumption rule 
HO. The motivation for incorporating HO is that there are 
an exponential number of potential clauses to construct, 
but, on average, the subsumption rule wi l l eliminate most 
of them from the clause set. Therefore, in all ATMS algo-
rithms HO is always performed first. 

Property 5 of section 4 guarantees that the application 
order of inference rules is irrelevant. Therefore ATMS im­
plementations order the application of inference rules to 
minimize total effort. The basic intuit ions behind the or­
dering heuristics are that H5 is extremely expensive and 
should always be applied last and to smaller nogoods first 
— smaller nogoods should be discovered first as they sub­
sume far more higher-order nogoods which the algorithm 
might futilely have to process. 

It should be noted that neither rules HO or H3 are nec­
essary to ensure backtrack free search. Both are included 
for efficiency considerations. Note that the use of rule HO 
makes the overall algorithm adaptive - it allows an ATMS 
algorithm to dynamically adapt the set of nogoods to re­
solve as it eliminates nogoods from consideration. 

8.2 A T M S a l g o r i t h m 

Whenever a nogood becomes subsumed, as well as being 
removed from N it is removed from all pending queues, and 
all processing on it is halted. The algorithm maintains a 
queue L of pending nogoods ordered by size, init ial ly L is 
all new nogoods of size k or less. In usual practice R E ­
S O L V E is invoked after every atomic ATMS operation. 

A L G O R I T H M R E S O L V E : 

1. [Unit preference for H5] If there is a singleton choose, 
its single l iteral is set to true, and every nogood ng 
mentioning the literal is replaced by a new nogood 
with that literal deleted. 

2. If L is empty, return. Pick and remove ng a smallest 
nogood from L. If L is empty, return. 

3. If ng is the empty nogood, halt. The constraints are 
unsatisfiable. 

4. [H3] If ng is a singleton, it is removed from the 
choose(s) in which it appears. A l l processed un-
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This approach maximizes the use of ATMS justif ication-
handling facilities which are efficient, minimizes the num­
ber of assumptions necessary to encode a CSP, and min-
imizes the use of the relatively inefficient hyperresolution 
rules. 

If constraints are properly [6] encoded as justifications 
and problem-solving rules, then neither soundness nor 
completeness is lost. A great deal of efficiency is gained 
and the reasoning that underlies the construction of the 
constraints is explicit and under the control of the problem 
solver. Taking a bird'seye view of constraint propagation 
applied to CSPs we recognize that , it transforms a CSP 
into a smaller and more tractable one but doing so un­
der explicit problem solving control such that search and 
predicate evaluation is minimized. 
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