
A COMPARISON OF ATMS A N D CSP TECHNIQUES
Johan de Kleer

Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto CA 94304

Abstract

A fundamental problem for most AI problem
solvers is how to control search to avoid search­
ing subspaces which previously have been deter­
mined to be inconsistent. Two of the standard
approaches to this problem are embodied in the
constraint satisfaction problem (CSP) techniques
which evolved from vision tasks and assumption-
based t ru th maintenance system (ATMS) tech­
niques which evolved from applying constraint
propagation techniques to reasoning about the
physical world. This paper argues that both ap­
proaches embody similar intuit ions for avoiding
thrashing and shows how CSPs can be mapped
to ATMS problems and vice versa. In part icu­
lar, Mackworth's notions of node, arc, and path
consistency, Freuder's notion of it-consistency,
and Dechter and Pearl's notion of directed K-
consistency have precise analogs in the ATMS
framework.

1 Int roduct ion

Both constraint satisfaction techniques and t ru th main­
tenance systems are used widely in artif icial intelligence
applications. A variety of refinements have been devel­
oped to avoid the thrashing behavior that often accompa­
nies them. This paper demonstrates that the intuit ions
underlying these refinements are essentially similar. In
particular, Mackworth's [13] notions of node, arc, path
consistency, Freuder's [11] inconsistency, and Dechter and
Pearl's [1] directed k-consistency for constraint satisfac­
tion problems(CSPs) and techniques for assumption-based
t ru th maintenance (ATMS) [4, 5] are encompassed by a
few propositional resolution rules. This paper shows that
in many cases the constraint networks produced by the
standard local consistency algorithms are identical to ones
produced by the ATMS for the same input constraint net­
work. A longer version of this paper [10] explores these
issues in far greater detail.

This paper details how both CSP techniques and
ATMS's are based on a few resolution rules. By out­
l ining the relationship between these two sets of tech­
niques, a connection in terminology and algorithms is es­
tablished between two distinct subfields of artif icial intel­
ligence. This holds the promise that any advance in one
subfield is easily communicated to the other. At the mo­
ment both have incorporated essentially the same intu­
itions. However, we hope that this synthesis wi l l lead to
faster progress on these issues of mutual interest.

1.1 Search vs . I n f e r e n c e

Al though CSP and ATMS tasks seem, on the surface, to be
very different, both require combining two distinct modes
of reasoning to minimize overall computational cost to
complete tasks. In the following sections we define more
precisely what ATMS's and CSPs are. Before diving into
those details, we address the frameworks wi th in which CSP
and ATMS techniques are used.

CSPs are typically solved by backtrack search. How­
ever, as Mackworth [13] demonstrated, backtracking suf­
fers f rom numerous maladies often making it "grotesquely
inefficient." Mackworth pointed out that if the constraints
are preprocessed then many of backtracking's maladies can
be eliminated. This preprocessing involves tightening (via
local consistency algorithms) the in i t ia l constraints so that
backtracking detects futi le states earlier leading to fewer
backtracks. Freuder [11] generalized Mackworth's results
and showed that w i th sufficient preprocessing most or all
of the futi le backtracks can be avoided. However, the ex­
pense of the preprocessing to avoid all futi le backtracks
typically outweighs the cost of the futi le backtracks in the
first place. A fundamental issue for CSP solvers is to de­
termine how much preprocessing is necessary to minimize
total effort (preprocessing plus backtracking).

An ATMS task cannot be so cleanly stated as a CSP. In­
stead an ATMS is always used interactively wi th some kind
of inference engine. The inference engine is roughly analo­
gous to the backtracker while the ATMS is roughly analo­
gous to the module which enforces CSP local consistency.
The inference engine supplies the ATMS wi th a stream of
clauses (as opposed to a CSP where the input problem is
fixed) and queries about those clauses. The most typical
query the inference engine makes is whether a particular
set of propositional symbols is consistent (i.e., is part of
a global solution). Ensuring that the ATMS never replies
that a set is consistent when it is not is computationally
disastrous in practice. However, answering that a set is
consistent when in fact it is not results in futi le inference
engine effort on that set of assumptions.

We thus see that ATMS and CSP techniques embody
the same computational trade-offs. Futile backtracking is
analogous to futi le inference engine work, but avoiding all
futi le backtracking or all futi le inference engine work is too
expensive also. Thus, the CSP local consistency algorithms
are motivated by exactly the same set of problem solving
concerns as the ATMS algorithms. But even more surpris­
ing, most of the CSP local consistency algorithms them­
selves have almost identical analogs in the ATMS frame-
work.

Due to the nature of the ATMS task, all ATMS algo-
r i thms are incremental. CSP techniques are typically used
to solve completely specified problems, and need not be in-

290 Search

We have encoded the three conditions which define a
constraint problem: every variable has a value, no variable
can have more than one value, and no combination of vari­
able assignments violates any constraint. Therefore, every
complete assignment of t ru th values to the propositional
symbols which satisfies every clause in C, corresponds to a
solution to the original CSP. Conversely, every solution to
the CSP corresponds to an assignment of t ru th values to
the propositional symbols which satisfies every clause of C.

3.1 E x a m p l e c o n t i n u e d

We were given the variables x1 x2,x3 w i th domains D1 =
{a , b}, D2 = { e , / } , and D3 = {c, d,g) and binary con-
straints C1 2 = {be ,b f } , C1 3 = {bc.bd.bg}, and C2 3 =
{ed,fg}. C consists of the following clause set. Each vari­
able must have a value:

The negative clauses stating that each variable can have
only one value:

The constraints:

3.2 C S P - P r o p o s i t i o n a l m a p p i n g

Every constraint network CN has a unique encoding C =
as a set of clauses. The inverse,

exists only under the following conditions:

1. A l l clauses are either positive or negative.

2. Every symbol appears in at most one positive clause.

3. For every pair of symbols in every positive clause, the
binary negative clause of these two symbols is in the
clause set.

4. No negative clause of three or more literals contains
two symbols occurring in the same positive clause.

The following defines every positive clause de­
fines a variable and (2) every negative clause mentioning
only symbols which occur in positive clauses but which
does not mention two symbols from the same positive
clause indicates a disallowed combination for the constraint
among the variables of the symbols. Note that for every
constraint network

3.3 B a c k t r a c k search

Both ATMS and CSP techniques exploit backtrack search
for identifying global solutions. The following is a simple
generic backtrack algori thm for constructing solutions to a
CSP encoded as a set of clauses C. Let Subsumed?(S, C)
be a function which checks whether the negative clause
constructed f rom the symbols of S is subsumed by C
(equivalently, the function checks whether interpreting the
symbols of S to be true falsifies any clause of C). Let the
global variable b count the number of backtracks (i.e., the

number of times BT was called wi thout producing a solu­
t ion), b is init ialized to be 0.

A L G O R I T H M B T (S , C) :

1. [Termination check] If every variable has a value in S,
then mark S as a solution and return.

2. [Subsumption check] Pick a variable Xi which does not
have a value in S. If Subsumed?) holds
for every value a i j , then set b = b + 1 and return.

3 . [Iterate] For every j , unless Subsumed?
call

Note that BT impl ic i t ly incorporates the binary negative
clauses involving elements of the same variable.

Unfortunately, using BT to f ind all solutions can in­
volve an enormous amount of often futi le [4, 13] backtrack­
ing (i.e., 6 wi l l be very large). Both ATMS and CSP al­
gorithms incorporate the strategy which, in propositional
terms, amounts to constructing addit ional clauses, entailed
by C. Adding to C a clause entailed by i t , can only re­
duce the number of backtracks required to find a solu­
t ion. Adding all clauses to C entailed by i t , guarantees
backtrack-free search.

4 P ropos i t i ona l inference rules

Al l ATMS and CSP local consistency techniques can be
viewed as implementing a few basic resolution rules. A l l
of these inference rules change the clause set, preserving
the set of global solutions, but improving the efficiency
of the backtrack search used to find the solutions. This
section presents a set of inference rules referred to as I
which we use in subsequent sections to characterize the
ATMS and CSP local consistency algorithms. The names
of these rules are chosen for compatibi l i ty wi th the equiv­
alent ATMS rules.

HO: This rule removes subsumed clauses from C. If
clause D C is subsumed by some other clause E C,
then D is removed from C.

H3: A unit resolution rule:

H5: This rule does the main work. N(B) indicates the
negative clause wi th symbols B. Given a set of negative
clauses N(ai):

An instance of this rule is:

H5 can a generate a very large number of clauses, therefore
it is useful to define two restrictions of H5.

H5-k:: H5 restricted to only infer negative clauses below
size k. The basic intu i t ion behind this restriction is that it

292 Search

reduces overall computational complexity by reducing the
number of clauses H5 introduces. In addit ion, when H5 is
used as part of search, smaller clauses are more valuable
than larger ones because they provide more pruning. Given
a set of negative clauses N(a ,) :

5 Loca l consistency cond i t ions

The local consistency algorithms enforce local consistency
conditions by adding clauses. These added clauses reduce
the backtracking needed to find solutions.

In discussing these theorems it is important recognize
that the constraints in a constraint network, by construc­
t ion, do not contain spurious information. For example, if
a constraint network has the constraint C12 = {ab}, then
necessarily Thus, all CSP local consis­
tency algorithms impl ic i t ly incorporate a l imited form of
subsumption: when an element is removed from a domain
of some variable, all constraints referring to that variable
are simplified to no longer to refer to the deleted element.
(Note that this happens automatically if constraints are
represented by allowed combinations, however, how a con­
straint is represented is not specified in the CSP approach.)

5.1 N o d e cons is tency

Node consistency ensures that the singleton constraint
Ci{X) for every node i and any value Node
consistency ensures that all unary constraints are used to
delete disallowed domain elements. In the clausal encod­
ing, the domain of a variable is represented by a single
disjunction and unary constraints appear as singleton neg­
ative clauses.

T h e o r e m 1 A constraint network CN is node consistent
iff no application of IIS to produces a clause.

5.2 A r c cons is tency

Arc consistency is ambiguously defined in the CSP litera­
ture. Here we adopt the definition of [14] which is slightly
stronger than the one in [13]. Note that arc consistency
does not necessarily imply node consistency, although all
so-called arc consistency algorithms in the literature en­
force node consistency as well. Arc consistency ensures
that for every pair of nodes i and j, for every value
there exists a value which is not excluded by C i j.
(To avoid double subscripts, I wri te x for x, and y for Xj.)

T h e o r e m 2 A constraint network CN is arc consistent iff
no application of produces a singleton
negative clause.

Proof. Let the Y1 be the elements of Dj. This is represented
by the disjunction:

Suppose that there were some value such
that every value was excluded by C i J . These
exclusions are represented by binary negative clauses.

Thus, there must exist a set of binary negative clauses
all of which contain x:X and each of the possible values

Applying H5-2 to these binary clauses we obtain the
singleton negative clause -ix:X.
The converse is straight forward.

5.3 P a t h cons is tency

As wi th arc consistency, path consistency is also ambigu­
ously defined. We adopt the stronger definition of path
consistency from [14]: if for every three nodes r, s and / if
for every value and not excluded by the
constraint between nodes Crt there exists a value
such that the values X and Y are not excluded by Cre)

and the values Y and Z are not excluded by Cst.

T h e o r e m 3 A constraint network CN is path consistent
iff no application of H5-3 to produces a binary
clause not subsumed by C.

5.4 k-consis tency

[10] generalizes the preceding result to obtain:

T h e o r e m 4 A constraint network CN is strongly k-
consistent iff no application of H5-k to \ in­
troduces a new clause not subsumed by C.

6 Local consistency a lgo r i thms

Al l ATMS and CSP local consistency algorithms employ
some subset of the inference rules J (from section 4) to
modify the clause set C to achieve local consistency. Given
the theorems of the preceding section and the set of in­
ference rules I, the following useful algorithmic properties
hold for a clausal encoding of a CSP.

P r o p o s i t i o n 5 Given any subset of inference rules from
I, any order of application will lead to the same resulting
clause set as long as the clause set closed under those rules.

P r o p o s i t i o n 6 Any algorithm incorporating any subset of
inference rules from 1 achieves node consistency as long as
the resulting clause set is closed under H3.

P r o p o s i t i o n 7 Any algorithm incorporating any subset of
inference rules from 1 achieves node and arc consistency
as long as the resulting clause set is closed under H3 and
H5-S.

P r o p o s i t i o n 8 Any algorithm incorporating any subset of
inference rules from 1 achieves node, arc and path consis­
tency as long as the resulting clause set is closed under H3
and H5-S.

P r o p o s i t i o n 9 Any algorithm incorporating any subset of
inference rules from 1 achieves strong k-consistency as
long as the resulting clause set is closed under H5-k.

de Kleer 293

6.1 T h e i m p o r t a n c e o f t h e a l g o r i t h m s

The basic motivation for applying the local consistency al­
gorithms to constraint networks is to reduce or even total ly
eliminate the number of backtracks required to identify the
solutions. This issue is extensively discussed in the CSP
literature. A general result f rom Freuder stated in propo-
sitional terms is:

T h e o r e m 10 // the clause set C = A(CN) is closed un­
der H5} then the solutions can be found via backtrack-free
search.

The local consistency conditions are similarly important
to ATMS operations — often backtrack search is used to
construct problem solutions. The local consistency con­
ditions however play an even more central role in ATMS
functioning. Fundamental to the ATMS is its abil ity to ef-
ficiently answer queries whether the conjunction of a set of
symbols is known to be inconsistent. If the ATMS replies
that the symbol set is consistent when, in actual fact, it
is not, the inference engine may perform an unbounded
amount of futi le work. Therefore, it is important that the
ATMS answer such queries correctly. If the clause set is
closed under H5, then the ATMS can correctly answer the
queries by a simple subsumption test wi th N.

Extensive experience wi th the ATMS has shown that
closing the init ial clause set under H5 usually yields a total
increase in overall problem-solving effort. This is because
the inference engine effort saved by correctly answering the
queries is outweighed by the computational effort of closing
the clause set under H5. Usually, it is globally optimal to
close the clause set under 115-k for some small value of
k. These conditions, of course, correspond to the ATMS
notions of arc and path consistency.

7 CSP a lgor i thms
Both ([13] and [14]) definitions of local consistency admit
more ambiguity than first meets the eye. Consider just the
simple case of achieving node consistency. A node consis­
tency algorithm converts a constraint network to an equiv­
alent one which is node consistent. Unfortunately, there
may be a very large number of equivalent networks which
are node consistent. The node consistency condition, al­
though well-defined, does not specify which of these net­
works a node consistency algorithm must f ind. Although
rarely specified, all consistency algorithms incrementally
remove local consistency violations by minimally tighten­
ing the constraints to find an equivalent consistent network
meeting the local consistency condition.

The common CSP local consistency algorithms can be
analyzed in terms of the inference rules of 2. The node
consistency algori thm NC-1 repeatedly applies rule 113.

T h e o r e m 11 Executing NC-1 to constraint network CN
has the same result as applying A"1 to the closure of
A(CN) under H3 and H5-2.

Al l arc consistency algorithms close the clause set under
H3 and H5-2, applying H3 first whenever possible. The
different arc consistency algorithms do various amounts of
bookkeeping to prevent futi le applications of H5-2.

T h e o r e m 12 Executing AC-1, AC-2, or ACS to con­
straint network CN has the same result as applying A " 1

to the closure of A(CN) under H3 and H5-2.

Analogously, the path consistency algorithms close the
clause set under H3 and H5-3.

T h e o r e m 13 Executing PC-1 or PC-2 to constraint net-
work CN has the same result as applying A " 1 to the clo­
sure ofA{CN) under H3 and H5-S.

8 A T M S a lgo r i thms

The ATMS contains a variety of mechanisms to maintain
node labels which we do not discuss here. Instead, this
paper focuses on ATMS techniques to construct nogoods
entailed by C. The ATMS represents the clauses as N a set
of nogoods (i.e., negative clauses) and V a set of chooses
(i.e., positive clauses) where every symbol representing an
assignment is an ATMS assumption. As the ATMS ex­
plicit ly represents clauses it can directly incorporate the
inference rules I. A l l versions of the ATMS algorithms
incorporate some subset of these inference rules.

8.1 Ef f ic iency cons ide ra t ions

Al l ATMS algorithms incorporate the subsumption rule
HO. The motivation for incorporating HO is that there are
an exponential number of potential clauses to construct,
but, on average, the subsumption rule wi l l eliminate most
of them from the clause set. Therefore, in all ATMS algo-
rithms HO is always performed first.

Property 5 of section 4 guarantees that the application
order of inference rules is irrelevant. Therefore ATMS im­
plementations order the application of inference rules to
minimize total effort. The basic intuit ions behind the or­
dering heuristics are that H5 is extremely expensive and
should always be applied last and to smaller nogoods first
— smaller nogoods should be discovered first as they sub­
sume far more higher-order nogoods which the algorithm
might futilely have to process.

It should be noted that neither rules HO or H3 are nec­
essary to ensure backtrack free search. Both are included
for efficiency considerations. Note that the use of rule HO
makes the overall algorithm adaptive - it allows an ATMS
algorithm to dynamically adapt the set of nogoods to re­
solve as it eliminates nogoods from consideration.

8.2 A T M S a l g o r i t h m

Whenever a nogood becomes subsumed, as well as being
removed from N it is removed from all pending queues, and
all processing on it is halted. The algorithm maintains a
queue L of pending nogoods ordered by size, init ial ly L is
all new nogoods of size k or less. In usual practice R E ­
S O L V E is invoked after every atomic ATMS operation.

A L G O R I T H M R E S O L V E :

1. [Unit preference for H5] If there is a singleton choose,
its single l iteral is set to true, and every nogood ng
mentioning the literal is replaced by a new nogood
with that literal deleted.

2. If L is empty, return. Pick and remove ng a smallest
nogood from L. If L is empty, return.

3. If ng is the empty nogood, halt. The constraints are
unsatisfiable.

4. [H3] If ng is a singleton, it is removed from the
choose(s) in which it appears. A l l processed un-

294 Search

This approach maximizes the use of ATMS justif ication-
handling facilities which are efficient, minimizes the num­
ber of assumptions necessary to encode a CSP, and min-
imizes the use of the relatively inefficient hyperresolution
rules.

If constraints are properly [6] encoded as justifications
and problem-solving rules, then neither soundness nor
completeness is lost. A great deal of efficiency is gained
and the reasoning that underlies the construction of the
constraints is explicit and under the control of the problem
solver. Taking a bird'seye view of constraint propagation
applied to CSPs we recognize that , it transforms a CSP
into a smaller and more tractable one but doing so un­
der explicit problem solving control such that search and
predicate evaluation is minimized.

11 Acknowledgments
This paper profited greatly from lengthy discussions with
John Lamping, Alan Mackworth and Ramin Zabih. Also,
Daniel G. Bobrow, Rina Dechter, Mike Dixon, Ken Forbus,
Felix Frayman, Ken Kahn, Sanjay M i t ta l , Judea Pearl,
Raymond Reiter, Jeffrey Siskind, Mark Stefik, and Brian
Wil l iams provided valuable comments on this paper.

References
[1] Dechter, R. and Pearl, J . , Network-based heuristics

for constraint satisfaction problems, Artificial Intelli­
gence 34 (1988) 1-38.

[2] de Kleer, J . , An assumption-based t ru th maintenance
system, Artificial Intelligence 28 (1986) 127-162. Also
in Readings in NonMonotonic Reasoning, edited by
Matthew L. Ginsberg, (Morgan Kaufman, 1987), 280-
297.

[3] de Kleer, J, Extending the ATMS, Artificial Intelli­
gence 28 (1986) 163-196.

[4] de Kleer, J . , Problem solving wi th the ATMS, Artifi­
cial Intelligence 28 (1986) 197-224.

[5] de Kleer, J. and Wil l iams, B.C., Back to backtrack­
ing: Controll ing the ATMS, Proceedings of the Na­
tional Conference on Artificial Intelligence, Philadel­
phia, PA (August 1986), 910-917.

[6] de Kleer, J. , Propositional inference in CSP and
ATMS techniques, SSL Paper P89-00023, 1989.

[7] Freuder, E.C., Synthesizing constraint expressions,
Communications of the ACM 21(11) (1978) 958 966.

[8] Mackworth, A.K. , Consistency in networks of rela­
tions, Artificial Intelligence, 8 (1977) 99-118.

[9] Mackworth, A.K. , Constraint satisfaction, Encyclope­
dia of Artificial Intelligence, edited by S.C. Shapiro,
(John Wiley and Son, 1987) 205-211.

[10] Reiter, R. and de Kleer, J . , Foundations of
assumption-based t ru th maintenance systems: pre­
l iminary report, Proceedings of the National Con­
ference on Artificial Intelligence, Seattle, WA (July,
1987), 183-188.

296 Search

