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Abstract

A fundamental problem for most Al problem
solvers is how to control search to avoid search-
ing subspaces which previously have been deter-
mined to be inconsistent. Two of the standard
approaches to this problem are embodied in the
constraint satisfaction problem (CSP) techniques
which evolved from vision tasks and assumption-
based truth maintenance system (ATMS) tech-
niques which evolved from applying constraint
propagation techniques to reasoning about the
physical world. This paper argues that both ap-
proaches embody similar intuitions for avoiding
thrashing and shows how CSPs can be mapped
to ATMS problems and vice versa. In particu-
lar, Mackworth's notions of node, arc, and path
consistency, Freuder's notion of it-consistency,
and Dechter and Pearl's notion of directed K-
consistency have precise analogs in the ATMS
framework.

1 Introduction

Both constraint satisfaction techniques and truth main-
tenance systems are used widely in artificial intelligence
applications. A variety of refinements have been devel-
oped to avoid the thrashing behavior that often accompa-
nies them. This paper demonstrates that the intuitions
underlying these refinements are essentially similar. In
particular, Mackworth's [13] notions of node, arc, path
consistency, Freuder's [11] inconsistency, and Dechter and
Pearl's [1] directed k-consistency for constraint satisfac-
tion problems(CSPs) and techniques for assumption-based
truth maintenance (ATMS) [4, 5] are encompassed by a
few propositional resolution rules. This paper shows that
in many cases the constraint networks produced by the
standard local consistency algorithms are identical to ones
produced by the ATMS for the same input constraint net-
work. A longer version of this paper [10] explores these
issues in far greater detail.

This paper details how both CSP techniques and
ATMS's are based on a few resolution rules. By out-
lining the relationship between these two sets of tech-
niqgues, a connection in terminology and algorithms is es-
tablished between two distinct subfields of artificial intel-
ligence. This holds the promise that any advance in one
subfield is easily communicated to the other. At the mo-
ment both have incorporated essentially the same intu-
itions. However, we hope that this synthesis will lead to
faster progress on these issues of mutual interest.
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1.1 Search vs. Inference

Although CSP and ATMS tasks seem, on the surface, to be
very different, both require combining two distinct modes
of reasoning to minimize overall computational cost to
complete tasks. In the following sections we define more
precisely what ATMS's and CSPs are. Before diving into
those details, we address the frameworks within which CSP
and ATMS techniques are used.

CSPs are typically solved by backtrack search. How-
ever, as Mackworth [13] demonstrated, backtracking suf-
fers from numerous maladies often making it "grotesquely
inefficient." Mackworth pointed out that if the constraints
are preprocessed then many of backtracking's maladies can
be eliminated. This preprocessing involves tightening (via
local consistency algorithms) the initial constraints so that
backtracking detects futile states earlier leading to fewer
backtracks. Freuder [11] generalized Mackworth's results
and showed that with sufficient preprocessing most or all
of the futile backtracks can be avoided. However, the ex-
pense of the preprocessing to avoid all futile backtracks
typically outweighs the cost of the futile backtracks in the
first place. A fundamental issue for CSP solvers is to de-
termine how much preprocessing is necessary to minimize
total effort (preprocessing plus backtracking).

An ATMS task cannot be so cleanly stated as a CSP. In-
stead an ATMS is always used interactively with some kind
of inference engine. The inference engine is roughly analo-
gous to the backtracker while the ATMS is roughly analo-
gous to the module which enforces CSP local consistency.
The inference engine supplies the ATMS with a stream of
clauses (as opposed to a CSP where the input problem is
fixed) and queries about those clauses. The most typical
query the inference engine makes is whether a particular
set of propositional symbols is consistent (i.e., is part of
a global solution). Ensuring that the ATMS never replies
that a set is consistent when it is not is computationally
disastrous in practice. However, answering that a set is
consistent when in fact it is not results in futile inference
engine effort on that set of assumptions.

We thus see that ATMS and CSP techniques embody
the same computational trade-offs. Futile backtracking is
analogous to futile inference engine work, but avoiding all
futile backtracking or all futile inference engine work is too
expensive also. Thus, the CSP local consistency algorithms
are motivated by exactly the same set of problem solving
concerns as the ATMS algorithms. But even more surpris-
ing, most of the CSP local consistency algorithms them-
selves have almost identical analogs in the ATMS frame-
work.

Due to the nature of the ATMS task, all ATMS algo-
rithms are incremental. CSP techniques are typically used
to solve completely specified problems, and need not be in-



cremental. However, many of the CSP local consistency al-
gonthms can easily be made incremental. (Although some
CSP algorithms take explicit advantage of the fact that
the problem is completely specified a priori.) ATMS tech-
niques are more general, not because of their inherent in-
crementality, but rather that they can directly solve any
task stated propositionally. For example, every CSP can
be conveniently expressed as an ATMS problem, but not
every ATMS problem can be conveniently expressed as a
CSP. This gives the ATMS the flexibility that it can in-
tersperse solving a CSP with other kinds of propositional
reasoning. The the local consistency intuitions underlying
CSP techniques thus have a more general manifestation

within the ATMS framework.

2 Definitions
2.1 CSPs

For more details, Mackworth [14] presents an excellent in-
troduction to CSPs. A constraint satisfaction problem
{CSTP) is specified by a set of variables z;,..., 7, and aset
of constraints on subsets of these variables litniting the val-
ues they can take on. C,-J-k___ notates the constraini atnong
variables #;, zj 2, .. ..

If the constraint places no limitations on its vanables, it
is called unwersal. By convention, universal constraints
are not explicitly represented. Every variable z; is re-
stricted to a finite set D); of values {a;;,...,din,}. The
lantguage in which these constraints are stated, or the cosis
ol determining whether a set of values satisfies a constraint
are typically not addressed in the CSP literature. We ad-
dress Lhose in section 19,

The constraint salisfaclion task consists of finding all
sets of values ay;, . ..., ap;, for 2, .., x, that simultane-
ously satisfy all the given constraints. I'wo CSPs are equiv-
alent if they both have the smmne sct of solutions. Uniike
iuch of the CSP literature we always consider the general
case where the constraints can be n-ary and asynmunetric.

Consider the following cxainple from Freuder [11]. We
are given the variables x|, x9, x4 with domains D, = {a, b},
Ly = {e.f}, and D3 = {¢,d, ¢} and binary constraints
(specified extensionally by their allowed tuples) (2 =
{be,bf}, Cl.’i = {b(‘.bd‘ bg}‘ and 023 = {{d,fy] This
CSP has two solutions:

) =bry=¢13=4d,

r=bay=flzz =g

Every CSP is characterized by a constraint nelwork
which, in general, is a bypergraph in which the vertices rep-
resent. variables and the hyperedges represent consiraints.
All the CSP local consistency algorithins operate by trans-
forming constraint networks into equivalent but (hope-
fully) simpler ones.

2.2 ATMS

The input to the ATMS is a set of propositional literals £, a
set propositional clauses  constructed {rom those literals,
and a distinguished set of assumptions 4 C £. The task
of the ATMS can be succinetly characterized as finding all
prime implicates mentioning at most one non-assumplion
literal (i.e., in £ — A) [16]. However, for the purposes of

this paper we characterize (equivalently) the ATMS in the
terms of [4).

An environment is a subset of A. An environment F
is inconsistent (called nogood) if the union of E with C is
not satisfiable. Nogood X is subsumed by nogood Y if the
assumptions of ¥ are a proper subset of those of X. A
choose is a clause whose literals are all assurnptions and is
often written choose{A;,..., A }. Choose R is subsumed
by choose S if the assumptions of S are a proper subset
of those of R. A literal { is said to Aold in environment E
if I follows from the union of £ and C under the rules of
propositional logic. A nogood is minimal (with respect to
subset) if it contains no others as a subset.

The ATMS problem is to find all minimal nogoods and
to identify for every literal I € £ a set of environments
{Ey,...,E.} (called the label) having the four properties:

1. {Soundness.] { holds in each F;.
2. [Consistency.] E; is nol nogood.

3. [Completeness] Every consistent environment E in
which ! holds is a superset of some E;.

4. [Minimality.] No E; is a proper subset of any other.

All ATMS algorithms maintain an auxiliary set A of un-
subsumed nogoods. For an ideal ATMS A is exactly the
set. of minital nogoods. However, identifying all minimal
nogoods Is expensive and thus, in practice, ATMS algo-
rithms usually identify only some of the nogoods, thereby
(only) foregoing the above consistency property but at
great improvement in efficiency. All ATMS algorithms en-
sure a weakened form of consistency:

2. [Consistency’.] E; is not subsumed by N.

3 Propositional encoding of CSPs

A CSP is encoded as a set of propositional clauses. We re-
fer to the mapping of constraint networks lo a clause sets
C as € = A(CN). For every z; we introduce a proposi-
tional symbo) for cvery possible value a,; € ;. We write
these propositional symbols as z:a which represents the
proposition that ¢ = a. The constraints are formulated as
a set of clauses € in terms of these propositional symbols
as follows. For cach variable z; we include in € the posi-
tive clause (i.e., a choose) which states that every variable
must have a value:

Ty VooV Ty,

In addition, we specify that a variable can have at most
one value; for every z, lor every a;j, for every ait such
that k£ # j we include in € the binary negative clause:

=Ty V Oriag.

Every constraint 'z in the constraint network 1s en-
coded as follows. For every tuple [ty,... 1] of assign-
ments to the variables of Z we need a formula disallowing
that conjunction:

St A A tﬂl)!
which in clausal form is:

Sy V-Vt
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We have encoded the three conditions which define a
constraint problem: every variable has a value, no variable
can have more than one value, and no combination of vari-
able assignments violates any constraint. Therefore, every
complete assignment of truth values to the propositional
symbols which satisfies every clause in C, corresponds to a
solution to the original CSP. Conversely, every solution to
the CSP corresponds to an assignment of truth values to
the propositional symbols which satisfies every clause of C.

3.1 Example continued

We were given the variables x; xp,x3 with domains D; =
{a, b}, D, = {e,/}, and D3 = {c, d,g and binary con-
straints Ci, = {be,bf}, Cy3 = ({bc.bd.bg}, and C,3; =
{ed,fg}. C consists of the following clause set. Each vari-
able must have a value:
TyaVzryhzreVeyf ,racVeydV g
The negative clauses stating that each variable can have
only one value:
4 N I Iy .
—~ryaVorgd —rgeVozyf  —xaceVorgd
~Zaie V x3g
—~zgd V -z3'¢
The constraints:
Cia: Cya: Caa:
=ry:aV zae nryaVxae L€V e
~zyaV-ozyf  ozpaVozad  -zgeV-zag
SZ)a VvV Eag —zo:f V x3e
“zy.f V -zsd

3.2 CSP-Propositional mapping

Every constraint network CN has a unique encoding C =
A{CN) as a set of clauses. The inverse, CN = A™¥{()

exists only under the following conditions:
1. All clauses are either positive or negative.
2. Every symbol appears in at most one positive clause.

3. For every pair of symbols in every positive clause, the
binary negative clause of these two symbols is in the
clause set.

4. No negative clause of three or more literals contains
two symbols occurring in the same positive clause.

The following defines A~1: (1) every positive clause de-
fines a variable and (2) every negative clause mentioning
only symbols which occur in positive clauses but which
does not mention two symbols from the same positive
clause indicates a disallowed combination for the constraint
among the variables of the symbols. Note that for every

constraint network CN: CN = A~Y{A(CN))

3.3 Backtrack search

Both ATMS and CSP techniques exploit backtrack search
for identifying global solutions. The following is a simple
generic backtrack algorithm for constructing solutions to a
CSP encoded as a set of clauses C. Let Subsumed?(S, C)
be a function which checks whether the negative clause
constructed from the symbols of S is subsumed by C
(equivalently, the function checks whether interpreting the
symbols of S to be true falsifies any clause of C). Let the
global variable b count the number of backtracks (i.e., the
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number of times BT was called without producing a solu-
tion), b is initialized to be 0.

ALGORITHM BT(S,C):

1. [Termination check] If every variable has a value in S,
then mark S as a solution and return.

2. [Subsumption check] Pick a variable X; which does not
have a value in S. If Subsumed?{(SU {z;:a;;}) holds
for every value a;;, then set b = b + 1 and return.

3. [lterate] For every j, unless Subsumed?(SU{x.-:a,'_,-})
call BT(S U {zi:ai; }).

Note that BT implicitly incorporates the binary negative
clauses involving elements of the same variable.

Unfortunately, using BT to find all solutions can in-
volve an enormous amount of often futile [4, 13] backtrack-
ing (i.e., 6 will be very large). Both ATMS and CSP al-
gorithms incorporate the strategy which, in propositional
terms, amounts to constructing additional clauses, entailed
by C. Adding to C a clause entailed by it, can only re-
duce the number of backtracks required to find a solu-
tion. Adding all clauses to C entailed by it, guarantees
backtrack-free search.

4 Propositional inference rules

All ATMS and CSP local consistency techniques can be
viewed as implementing a few basic resolution rules. All
of these inference rules change the clause set, preserving
the set of global solutions, but improving the efficiency
of the backtrack search used to find the solutions. This
section presents a set of inference rules referred to as |
which we use in subsequent sections to characterize the
ATMS and CSP local consistency algorithms. The names
of these rules are chosen for compatibility with the equiv-
alent ATMS rules.

HO: This rule removes subsumed clauses from C. |If
clause D € C is subsumed by some other clause E € C,
then D is removed from C.

H3: A unit resolution rule:

-A
AVAI V- -VAg
Ay V-V Ay, replaces the antecedent disjunction

H5: This rule does the main work. N(B) indicates the
negative clause with symbols B. Given a set of negative
clauses N(ai):

Al V . V Am
N(o;) where A; € o; and Aj4; € o; for all i

N({Ulei — {A)
An instance of this rule is:
eV zyf
Sxgie V oxalc
~zy:f V ~zae

-3

H5 can a generate a very large number of clauses, therefore
it is useful to define two restrictions of H5.

H5-k:: H5 restricted to only infer negative clauses below
size k. The basic intuition behind this restriction is that it



reduces overall computational complexity by reducing the
number of clauses H5 introduces. In addition, when H5 is
used as part of search, smaller clauses are more valuable
than larger ones because they provide more pruning. Given
a set of negative clauses N(a,):

AV VA,
N(a;) where A; € a; and Aj,; € o for all ¢

N(Uiloi = {Ai}]) where JU;[oq — {Ai})] < &

(Note that the rule will only apply to |ay] < k.)

5 Local consistency conditions

The local consistency algorithms enforce local consistency
conditions by adding clauses. These added clauses reduce
the backtracking needed to find solutions.

In discussing these theorems it is important recognize
that the constraints in a constraint network, by construc-
tion, do not contain spurious information. For example, if
a constraint network has the constraint C;, = {ab}, then
necessarily a € D1 and b € IJ2. Thus, all CSP local consis-
tency algorithms implicitly incorporate a limited form of
subsumption: when an element is removed from a domain
of some variable, all constraints referring to that variable
are simplified to no longer to refer to the deleted element.
(Note that this happens automatically if constraints are
represented by allowed combinations, however, how a con-
straint is represented is not specified in the CSP approach.)

5.1 Node consistency

Node consistency ensures that the singleton constraint
Ci{X) for every node i and any value X € D);. Node
consistency ensures that all unary constraints are used to
delete disallowed domain elements. In the clausal encod-
ing, the domain of a variable is represented by a single
disjunction and unary constraints appear as singleton neg-
ative clauses.

Theorem 1 A constraint network CN is node consistent
iff no application of IIS to € = A{(CN) produces a clause.

5.2 Arc consistency

Arc consistency is ambiguously defined in the CSP litera-
ture. Here we adopt the definition of [14] which is slightly
stronger than the one in [13]. Note that arc consistency
does not necessarily imply node consistency, although all
so-called arc consistency algorithms in the literature en-
force node consistency as well. Arc consistency ensures
that for every pair of nodes i and j, for every value X € I}
there exists a value ¥ € D_,- which is not excluded by Cj.
(To avoid double subscripts, | write x for x, and y for Xj.)

Theorem 2 A constraint network CN is arc consistent iff
no application of H5-2 1o € = A(CN) produces a singleton
negative clause.

Proof. Let the Y; be the elements of D;. This is represented
by the disjunction:

yvwv-v y:Y,,,‘

Suppose that there were some value X € I such
that every value ¥ € D,- was excluded by C;,. These
exclusions are represented by binary negative clauses.

Thus, there must exist a set of binary negative clauses
all of which contain x:X and each of the possible values

-z XV —-y:Yl

<z X VY.

Applying H5-2 to these binary clauses we obtain the
singleton negative clause -ix:X.

The converse is straight forward.

5.3 Path consistency

As with arc consistency, path consistency is also ambigu-
ously defined. We adopt the stronger definition of path
consistency from [14]: if for every three nodes r, s and / if
for every value X € D, and Z € D; not excluded by the
constraint between nodes C, there exists a value Y € D),
such that the values X and Y are not excluded by Cy
and the values Y and Z are not excluded by Cs:.

Theorem 3 A constraint network CN s path consistent
iff no application of H5-3 to { = A{CN) produces a binary
clause not subsumed by C.

5.4 k-consistency

[10] generalizes the preceding result to obtain:

Theorem 4 A constraint network CN is strongly k-
consistent iff no application of H5-k to € = A{CN)\ in-
troduces a new clause not subsumed by C.

6 Local consistency algorithms

All ATMS and CSP local consistency algorithms employ
some subset of the inference rules J (from section 4) to
modify the clause set C to achieve local consistency. Given
the theorems of the preceding section and the set of in-
ference rules |, the following useful algorithmic properties
hold for a clausal encoding of a CSP.

Proposition 5 Given any subset of inference rules from
I, any order of application will lead to the same resulting
clause set as long as the clause set closed under those rules.

Proposition 6 Any algorithm incorporating any subset of
inference rules from 1 achieves node consistency as long as
the resulting clause set is closed under H3.

Proposition 7 Any algorithm incorporating any subset of
inference rules from 1 achieves node and arc consistency
as long as the resulting clause set is closed under H3 and
H5-S.

Proposition 8 Any algorithm incorporating any subset of
inference rules from 1 achieves node, arc and path consis-
tency as long as the resulting clause set is closed under H3
and H5-S.

Proposition 9 Any algorithm incorporating any subset of
inference rules from 1 achieves strong k-consistency as
long as the resulting clause set is closed under H5-k.
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6.1 The importance of the algorithms

The basic motivation for applying the local consistency al-
gorithms to constraint networks is to reduce or even totally
eliminate the number of backtracks required to identify the
solutions. This issue is extensively discussed in the CSP
literature. A general result from Freuder stated in propo-
sitional terms is:

Theorem 10 // the clause set C = A(CN) is closed un-
der H5; then the solutions can be found via backtrack-free
search.

The local consistency conditions are similarly important
to ATMS operations — often backtrack search is used to
construct problem solutions. The local consistency con-
ditions however play an even more central role in ATMS
functioning. Fundamental to the ATMS is its ability to ef-
ficiently answer queries whether the conjunction of a set of
symbols is known to be inconsistent. If the ATMS replies
that the symbol set is consistent when, in actual fact, it
is not, the inference engine may perform an unbounded
amount of futile work. Therefore, it is important that the
ATMS answer such queries correctly. If the clause set is
closed under H5, then the ATMS can correctly answer the
queries by a simple subsumption test with N.

Extensive experience with the ATMS has shown that
closing the initial clause set under H5 usually yields a total
increase in overall problem-solving effort. This is because
the inference engine effort saved by correctly answering the
queries is outweighed by the computational effort of closing
the clause set under H5. Usually, it is globally optimal to
close the clause set under 115k for some small value of
k. These conditions, of course, correspond to the ATMS
notions of arc and path consistency.

7 CSP algorithms

Both ([13] and [14]) definitions of local consistency admit
more ambiguity than first meets the eye. Consider just the
simple case of achieving node consistency. A node consis-
tency algorithm converts a constraint network to an equiv-
alent one which is node consistent. Unfortunately, there
may be a very large number of equivalent networks which
are node consistent. The node consistency condition, al-
though well-defined, does not specify which of these net-
works a node consistency algorithm must find. Although
rarely specified, all consistency algorithms incrementally
remove local consistency violations by minimally tighten-
ing the constraints to find an equivalent consistent network
meeting the local consistency condition.

The common CSP local consistency algorithms can be
analyzed in terms of the inference rules of 2. The node
consistency algorithm NC-1 repeatedly applies rule 113.

Theorem 11 Executing NC-1 to constraint network CN
has the same result as applying A" to the closure of
A(CN) under H3 and H5-2.

All arc consistency algorithms close the clause set under
H3 and H5-2, applying H3 first whenever possible. The
different arc consistency algorithms do various amounts of
bookkeeping to prevent futile applications of H5-2.

Theorem 12 Executing AC-1, AC-2, or ACS to con-
straint network CN has the same result as applying A"’
to the closure of A(CN) under H3 and H5-2.
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Analogously, the path consistency algorithms close the
clause set under H3 and H5-3.

Theorem 13 Executing PC-1 or PC-2 to constraint net-
work CN has the same result as applying A""' to the clo-
sure OofA{CN) under H3 and H5-S.

8 ATMS algorithms

The ATMS contains a variety of mechanisms to maintain
node labels which we do not discuss here. Instead, this
paper focuses on ATMS techniques to construct nogoods
entailed by C. The ATMS represents the clauses as N a set
of nogoods (i.e., negative clauses) and V a set of chooses
(i.e., positive clauses) where every symbol representing an
assignment is an ATMS assumption. As the ATMS ex-
plicitly represents clauses it can directly incorporate the
inference rules |I. All versions of the ATMS algorithms
incorporate some subset of these inference rules.

8.1 Efficiency considerations

All ATMS algorithms incorporate the subsumption rule
HO. The motivation for incorporating HO is that there are
an exponential number of potential clauses to construct,
but, on average, the subsumption rule will eliminate most
of them from the clause set. Therefore, in all ATMS algo-
rithms HO is always performed first.

Property 5 of section 4 guarantees that the application
order of inference rules is irrelevant. Therefore ATMS im-
plementations order the application of inference rules to
minimize total effort. The basic intuitions behind the or-
dering heuristics are that H5 is extremely expensive and
should always be applied last and to smaller nogoods first
— smaller nogoods should be discovered first as they sub-
sume far more higher-order nogoods which the algorithm
might futilely have to process.

It should be noted that neither rules HO or H3 are nec-
essary to ensure backtrack free search. Both are included
for efficiency considerations. Note that the use of rule HO
makes the overall algorithm adaptive - it allows an ATMS
algorithm to dynamically adapt the set of nogoods to re-
solve as it eliminates nogoods from consideration.

8.2 ATMS algorithm

Whenever a nogood becomes subsumed, as well as being
removed from N it is removed from all pending queues, and
all processing on it is halted. The algorithm maintains a
queue L of pending nogoods ordered by size, initially L is
all new nogoods of size k or less. In usual practice RE-
SOLVE is invoked after every atomic ATMS operation.

ALGORITHM RESOLVE:

1. [Unit preference for H5] If there is a singleton choose,
its single literal is set to true, and every nogood ng
mentioning the literal is replaced by a new nogood
with that literal deleted.

2. If L is empty, return. Pick and remove ng a smallest
nogood from L. If L is empty, return.

3. If ng is the empty nogood, halt. The constraints are
unsatisfiable.

4. [H3] If ng is a singleton, it is removed from the
choose(s) in which it appears. All processed un-



subsumed nogoods which mention elements in these
chooses are requeued on L. Go to step 1.

5. [H5) For every element e of ng, find its choose(s) d,
and for each element of d collect all the processed un-
subsumed nogoods in which it appears. lteratively,
pick one of these nogoods for each element of d, union
their eletnents, and delete the elements of d. Each new
set thus constructed is a new nogood ngx. If this ng*
is subsumed, do nothing. Otherwise, insert it into the
nogood data-base and in L if it is of size less than k.

6. Go to step 1.

Although this algorithm is designed to identify smaller no-
goods first, it cannot guarantee this. For example, while
processing nogoods of size four, it might produce a new
nogood of size three. Note that organizing the search to
process smaller nogoods first is equivalent to organizing
the search to process smaller constraints first., Thus we can
guarantee that if the above algorithm has ever processed
a nogood of size m, that it has processed every constraint
of size { < m.

The following is the execution trace of the first few itera-
tions of the algorithm applied Lo our example (with & = n).
Initially, both the nogood data-base and I consist of the
following. For clarity the binary nogoods involving ele-
ments of the same variable are left out. Chooses and no-
goods are printed out as sets of symbols.

Initial nogoods: {{zs:e,zz:¢},{zy:f,za:¢c}, {za: f, 25:
d}, {zz:e, za:¢}, {®1:0, z3:¢}, {7):a, z5:d}, {21 :a, 23:¢), {21:
a,z2:e}, {zya, v2:f}

Picking: {zy:¢, zy:c}

Picking: {zq:f, z3:¢}

Resolving the nogoods {xy:¢, z3:c} and {xo:f, z3:c} with
choose {z3:¢, z,:f} gives the new nogood {zj«e}.

Inserting {za:c} into the new the nogood data base re-
moves the subsumed, {{z;:e, z3:c}, {z2:f, za:c}, {2170, z3:
c}}, leaving the nogoods, {{z3:c}, {#2:f, z3:d},{x2:¢,7a:
g}, {zia, z3d}, {z1:e, 23:9}, {210, 200e}, {210, 22:f 1 1.

Picking: {z3:}

Eliminating it from the choose: {zac,z3d, z39}.

9 Comparison of algorithms

Duc to the fact the ATMS always perflorins subsumption,
different. constraint networks may be represented by the
same A and D. Suppose constraint. C)p3 disallowed the
combination abc and constraint ', disallowed the combi-
nation ab. After encoding the constraints as nogoods, the
ATMS throws away the nogood abe because it is subsumed
by ab. Hence the same P and AN corresponds to (at least)
two equivalent constraint networks -— one in which Cjo3
allows abc and another which does not. To avoid these
difficulties we define the following:

Definition 14 A constrainl network is irredundant if cv-
ery luple T of assignments disallowed by every constraini
Cz ts not disallowed by some other constraint Cy where
YCZ.

Definition 15 The srredundant form of a constraint net-
work 15 an egquivalent irredundant network formed by re-
pealedly removing excluded tuples in hkigher-order con-
straints also excluded by lower-order constrainis.

Given clause set C we can always construct an equivalent
irredundant constraint network as follows. If a clause set
C is closed under HO, then CN = A~1(() is irredundant.

9.1 Comparison of results

As a consequence of propositions 6, 7 and 8 (see section 4)
the constraint network represented by (i.e., via A™!) a set
of clauses is node, arc and path congistent after the ATMS
algorithm has been executed for k = 1,2, 3 respectively.

The standard ATMS algorithms always apply H5 to unit
chooses immediately. This unit preference strategy is, in
my experience, always worth it. However, the CSP al-
gorithms do not incorporate this strategy for Hb {even
though they incorporate, as the ATMS does, the unit res-
olution rule H3). As a consequence of the ATMS’s unit
preference strategy, the irredundant form of the constraint
network produced by a CSP algorithm is not necessarily
the same as the one produced (via A~') by an ATMS
algorithm, For example, running the standard node con-
sistency algorithm NC leaves the network D, = {A}, D, =
{B,C},Cyy = {A,C) unchanged because it is already
node consistent. However, after processing with & = 1 the
ATMS has reduced the network to D, = {A}, D, = {C}.
[lowever, we could delete step 1 from RESOLVE (step 5
would deduce the same nogood later anyway). So modified,
the irredundant form of the constraint network produced
by the standard node and arc consistency algorithms is the
same {via A~!) as the ATMS produces with k = 1 and 2
respectively.

The comparison with path consistency is more difficult.
Instead of dwelling on path consistency, it is more useful
to consider the generalized notion of k-consistency. The ir-
redundant form of the network produced by Freuder’s syn-
thesis algorithm [11] is the same (via A~!) as RESOLVE
with step 1 disabled.

Sce [10] for a comparison of the computational complex-
ities.

10 Comparison of the approaches

In this paper we have focused on ATMS concerns which re-
late to CSPs. However, an ATMS is a very general problem
solver facility which provides far more functionality than
any CSP algorithm. For example, constructing explana-
tions, doing differential diagnosis, interleaving formulation
and solving, etc. As a consequence, it is unlikely that
an implementation of a constraint solver using the ATMS
would use much of the encoding of 3.1. The CSP frame-
work is not concerned with where the constraints come
from nor with the cost of evaluating constraint predicates
on assignment tuples. The CSP framework also does not
permit dynamic reconstruction of the constraint problem.
These, among others, are important problem solving is-
sues. Thus, ATMS usage is oriented towards adaptively
minimizing the number of constraints constructed, mini-
mizing predicate evaluations, and minimizing variable do-
main sizes.

10.1 Limiting predicate evaluations

Suppose that the problem at hand is a fixed CSP, except
that it is extremely expensive to determine whether a set of
values satisfy some constraint predicate C. For simplicity
we assume that all such determinations are equally costly.
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Consider the CSP discussed earlier: Variables z,,2z5, 23
with domains D) = {a,b}, Dy = {¢, f}, and D3 = {c,d, g}
and binary constraints Ciy = {be,bf}, Cia = {bc, bd, bg},
and Ci3 = {ed, fg}. Encoding the problem as a CSP re-
quires evaluating every predicate on every combination of
values. Thus C;; requires 4 evaluations, Cja requires 6
evaluations, and Ca3 requires § as well. Suppose that the
ATMS-based problem solver searches for a solution by first
instantiating Csy3, then Cj3, and then Cy3. This corre-
sponds to the ATMS execution trace presented in section
8.2. None of 6 evaluations of (13 can be avoided. How-
ever, after evaluating (3, ¢ is determined to be inconsis-
tent, therefore constraint €3 need not be evaluated on
ac or be (in general if any combination of values has been
proven inconsistent by previous constraints it need not be
tried). After doing the 4 remaining evaluations of Cia, a
1s determined to be inconsistent. Hence, 13 need only be
evaluated on be and df. Thus, the ATMS has saved 4 of
the 16 expensive predicate evaluations, For mote compiex
CSP tasks, for example if there were thousands of con-
straints mentioning zy, ry, and combinations of other vari-
ables, the ATMS strategy yields far greater performance
improvements. One could imagine a lazy CSP which evalu-
ated predicates as needed, but unless some technique {such
as perhaps adaptive consistency) 18 used to control the con-
straints examined, not enough would be gained.

So far (as in section 3.3) we have been viewing back-
tracking as a post-processing technique to be invoked af
ter the constraints (or clauses} have been processed by
a local consistency algorithm. Particularly in the ATMS
framework, local consistency calculations are easily inter-
mingled with backtracking. In fact, backiracking can be
used as a control technique to limit unnecessary evalua-
tion of constraint predicates {7]. The combination of back-
tracking and the ATMS resolution rules produces as good
a dependency-directed backtracking scheme as is possible
(given the presumption that no additional reasoning over
unevaluated predicates is permitted, i.e., given no addi-
tional information other than the clauses which the ATMS
has been provided by the inference engine). Most ATMS
solvers for CSP-like problems will incorporate some form of
backtracking to control the evaluation of predicates. This
is discussed in detail in [7].

10.2 Constraint propagation

CSP algorithms typically represent constraints by the ex-
tension of the allowed or disallowed combinations of values.
Most constraints cannot be efficiently encoded this way.
Suppose that we were given the constraint £ = y + 1 and
the fact that £ and y had 10000 values each. In this case
it 1s better pot to encode both z and y as ATMS chooses
as the encoding of section 3.1 would. Neither would it be
reasonable to encode the constraint in terms of its allowed
combinations. Rather, only y should be encoded as a vari-
able, and problem-solver rules should be attached to it such
that if a value were obtained for it a value is computed for
z as well. This idea is called constraint propagation. In the
ATMS framework the values for 2 would be encoded as a
set of non-assumption nodes and as the search encountered
y's values, justifications would be installed for the nodes
of . Most constraints and constraint variables should be
encoded this way instead of as described in section 3.1.
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This approach maximizes the use of ATMS justification-
handling facilities which are efficient, minimizes the num-
ber of assumptions necessary to encode a CSP, and min-
imizes the use of the relatively inefficient hyperresolution
rules.

If constraints are properly [6] encoded as justifications
and problem-solving rules, then neither soundness nor
completeness is lost. A great deal of efficiency is gained
and the reasoning that underlies the construction of the
constraints is explicit and under the control of the problem
solver. Taking a bird'seye view of constraint propagation
applied to CSPs we recognize that, it transforms a CSP
into a smaller and more tractable one but doing so un-
der explicit problem solving control such that search and
predicate evaluation is minimized.
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