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ABSTRACT

Since there existed no convincing theoretical ex-
planation for the usually observed benefits of
minimax search in practice, we investigated two
instances of a class oftree models which are based
on the concept of quiescence. (This way the strict
separation or static and dynamic aspects in prac
tical programs is modeled.) We performed Monte
Carlo simulations, enhanced by analytic results.
The behaviour of these models in our studies gen
erally corresponds quite well to observations in
practice (especially that ofthe model based on the
more restrictive definition of quiescence). Hence,
we found empirical evidence for an earlier conjec
ture, and these results can serve as an important
step towards understanding the reason for the
benefits of minimax search.

1 INTRODUCTION

For a long time, there was universal agreement to use
minimax search in programs for two-person, perfect-
information games. In fact, this approach is very suc-
cessful in games like chess, checkers, or kalah. Usually
it shows a dramatic improvement in playing strength
with increasing search depth. However, the discovery
of minimax pathology [Nau 80] demonstrated that in
certain game trees deeper minimax search can also
have detrimental effects. In the meantime several mod
els have been analysed which show pathological behav
iour, and several models which do not (see [Kaindl 88]
for a critical overview). Recently, [Althofer 89] proved
for special game trees that under certain conditions not
only minimax searches fail, but also every other algo-
rithm. However, none of these models explains convin
cingly, why minimax search is this beneficial in prac
tice (by showing dramatic improvements of the deci
sion quality with increasing search depth, and having
a convincing relationship of the assumptions and the
observed phenomena with "reality").

From extensive experience with computer chess
practice, [Kaindl 88] developed an illustrative model
based on an abstract concept of quiescence. In the fol-
lowing we sketch this and a related model, describe the
design of our experiments, and present the results of
our simulation studies investigating the behaviour
with increasing search depth.

2 BACKGROUND

In general, the move decision in "interesting" games is
based on bounded look-ahead to artificial terminal
nodes. Usually, the "worth" of such nodes can only be
estimated heuristically. This is normally done by a stat-
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ic evaluation function f(n), assigning a single point val-
ue—usually ranging over an interval of integer val-
ues—to a node n. (In the following we assume that fin)
represents this value from the viewpoint of the side on
move in the evaluated position, which is represented by
the node n.) These values are propagated towards the
root of a search tree according to a back-up rule, usual
ly via minimaxing.

Definition 2.1. A minimax value MMf (n) of a node
n can be computed recursively as follows (in the nega-
max framework):

(1) If n is considered terminal: MM (n):= fin);
{2) else: MM¢(n) .= max,(~MM/{n,)) for all successors

n, of n.

Usually, the primary interest is not the minimax
value of the tree itself, but rather the move to be selec
ted at the root (the given position). In accordance with
this back-up rule, the choice is one of what may be se-
veral moves leading to the maximum (backed-up) value
of the successors. Since the depth of such searches will
be important for the purpose of this paper, we also de-
fine a special case ofusing this rule.

Definition 2.2. MMf(n) is the minimax value of
node n resulting from exactly d applications of the
recursion (2) in definition 2.1 in every branch of the
search tree.

In fact, MMf'(n) defines the minimax value from a
full-width search of the tree below n to uniform depth d
(according to the "type A strategy" described by
[Shannon 50]). While this kind oflook-ahead is still the
usual paradigm in computer game-playing practice, f
does not directly denote here the static evaluator itself,
but a simple dynamic quiescence evaluator based on the
static one. In this paper it is sufficient to consider f as
some heuristic function which evaluates nodes with
some error.

3 THE CONCEPT OF QUIESCENCE

These quiescence evaluators are dynamic in the sense
that they themselves perform a search—a rather selec-
tive quiescence search: for instance in chess, most pro-
grams try capture moves, searching for (relatively)
quiescent positions (where the side on move cannot
profitably capture). The term "quiescent" was already
coined by [Shannon 50], and explained using an exam
ple of capture moves from the domain ofchess. Indepen
dently, also Turing derived the same concept from his
considerations about chess programming—he called
quiescent positions "dead" (see [Turing et al. 53]). Due
to the difficulties in controlling more elaborate quies
cence searches, even now most chess programs restrict
themselves to consider capture (and sometimes also
checking) moves there. More sophisticated domain-spe-
cific aspects as well as a general framework for control-



ling such a quiescence search can be found in [Kaindl
82a, b].

However abstracting from the issues of a specific
game, what is the domain-independent concept of
quiescence all about? Generally, we would not consider
a position as quiescent ifits value can be changed dras-
tically by moves or move sequences. These values are
derived from the static evaluation function and/or the
back-up rule. (Capture moves in chess significantly
change the static values assigned by the materially
dominated evaluation functions.) Based on this,
[Kaindl 88] defined an abstract model of quiescence
(rewritten here more formally).

Definition 3.1. A node k is n-ply-quiescent iff/k) =
MM (k).

This definition is already tailored towards a simpli
fied environment with two-valued functions. As indi
cated above, these functions usually return a wider
range of values. Therefore in practice, strict equality
would be achieved very seldom, and a relaxation, for
example, in the sense of "small difference" would be
more realistic. Moreover, it only relates the values of
the nodes at a certain constant distance of a given node
with its own value. While this has been considered suf
ficient for illustrative purposes, a more restrictive defi
nition may provide a more realistic model, e.g. one re
quiring stability up to a certain depth.

Definition 3.2. A node k is uo-to-n-ply-quiescent iff
k is i-ply-quiescent for all iE ({l..n\.

4 TREE MODELS BASED ON QUIESCENCE

The question to be answered is, why deeper and deeper
minimax searches usually achieve better and better
results in practice. While this may seem intuitively
"clear" at first glance when considering a concrete
domain like chess, up to now a convincing explanation
based on a general model has not been given. The key
question for this can be stated using Ken Thompson's
words:") "What is it in the tree?"

We are rather convinced now that the central con
cept for such an explanation is quiescence. Based on it,
the following criteria specify tree models with simpli-
fied properties, which should nevertheless capture
what is important for strongly beneficial behaviour of
minimax search. Hence the question is, whether
searches in such trees using the minimax back-up rule
show such behaviour.

Definition 4.1. A class ofgame tree models is speci-
fied by the following assumptions:

(1) The tree structure has a uniform branching degree

6.

(2) True values of nodes (TV) are either WIN or LOSS.
(3) True values have the game-theoretic relationship.
(4) Heuristic values (assigned by f) are either +1

(estimating WIN) or -1 (estimating LOSS).

(5) Probabilities oferror e+ and e- are defined as follows

(k being a node):

erlk) = P(flk} = +1|TV(k) = LOSS)
e-tk) = P(f(k) ==1|TV(k) = WIN)
(6) For all nodes / that are quiescent and for all nodes m
that are not quiescent the following conditions hold:
e () < er(m)
e () < eim)
e (l) < e-(m)
e () < er(m)

1) private communication of the second author with Ken
Thompson in San Francisco, October, 1984

(7) The number of nodes that are quiescent is small
compared to the number of nodes that are not quies-
cent.

Substituting "n-ply-quiescent” for "quiescent" here
results in the model presented in [Kaindl 88], using
" up-to-n-ply-quiescent' yields a related model. Both of
these model instances have been investigated to study
also the influence of the respective definition of quies-
cence.

In order to make studying the behaviour of these
models feasible at all, they are kept as simple as pos-
sible. Hence, the relationship of these assumptions to
reality and their possible influence on the behaviour
should be discussed. Criterion (1) assumes a uniform
branching ofthe tree, which is normally not the case in
practice. However, according to [Michon 83] this prop-
erty as a special case of "non-inertness" even seems to
further pathological behaviour (the contrary of what
we are going to show). Criteria (2) and (4) assume only
two possible values for the true as well as the heuristic
values. While especially the second of these simplifica-
tions seems strong, for instance the studies of [Bratko
& Gams 82] and [Pearl 83] show that they did not influ
ence the behaviour of their models. Assumption (5) dis
tinguishes two different probabilities, since the analy-
ses of [Schrufer 86] and [Pearl 83] indicate that this
may be important for the behaviour. We will describe
below whether this is also the case with our models.

In summary, assumptions (1) to (5) are fairly stan
dard. However, assumptions (6) and (7) are new and
should model "what it is in the tree" (based on the con-
cept of quiescence). Assumption (6) states that the er-
rors of statically evaluating quiescent nodes are usual-
ly smaller than those of evaluating nonquiescent ones.
(Why else are resources spent for quiescence search?)
Assumption (7) models the current situation in do-
mains like chess, checkers, or kalah, where at least up
to now no static evaluation functions have been written
that are sufficient to capture their dynamic aspects. If
they were, the searches would not have to discover this
much. (We have also investigated this case within our
simulation studies.)

As the parameters of the models are important for
the investigations, we will enumerate them explicitly.
The shape of the game tree is completely specified by
the uniform branching degree 6, but also the probabili-
ty p = P(TV(k) = WIN) for all nodes k may be impor-
tant (see e.g. [Pearl 83]). The remaining parameters
characterize the properties of the static evaluation
function f: The errors e+ and er have to be considered
twice, once for quiescent nodes (eq+, e;) and once for
nonquiescent nodes (e,+, e,~). The number n of n-ply -
quiescent or up-to-n-ply-quiescent is of special interest,
since a relationship with the benefits of searching n
plies deep has been conjectured by [Kaindl 88]. At last,
also the probability fraction — P(k is quiescent) for all
nodes k can be parametrized, determining the average
fraction of the number of quiescent nodes to the total
number of nodes.

Besides specifiying the model assumptions we also
have to define how the behaviour of the models shall be
measured. The question is whether the errors made by
the evaluation function are increased or decreased by
backing up the heuristic estimates through several
levels of the tree via minimaxing. Hence we define the
probability of the error made by the minimax value ofa
certain search depth in estimating the true value as
follows, using the fact that in our models P(TV(fe) =
WIN) + P(TV(*) = LOSS) = 1. (The quality ofthe move
choice at the root is directly related to this error.)
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Definition 4.2. For node k and search depth d
(k) = P((MMM(k) = +1) A (TV(k) = LOSS)) v
(MM (k) = 1) A(TV(k) = WIN))).

5 EXPERIMENT DESIGN

Since we have investigated the models performing sim
ulations, we had to generate game trees according to
the criteria of the models. Within these trees, minimax
searches were performed.

51 Tree Generation

While these models have resisted formal analysis up to
now, even programming the generation of game trees
according to their criteria was nontrivial. Hence we
will sketch the most important aspects here. (The
reader interested in algorithmic details is referred to
[Scheucher 89].) Generally, every stochastic event has
been simulated by a call to a pseudo-random number
generator, parametrized independently of the relative
frequencies achieved earlier in the tree generation
process.?

Due to the complex relationships between the true
and the heuristic values within whole subtrees it was
rather clear that the trees should be generated top-
down from the root. These relationships can be viewed
as constraints which have to be satisfied within the
trees. And it is more convenient to propagate such con
straints down the tree and to assign values satisfying
them, rather than just assigning values at the bottom
which have to be retracted often (since the constraints
cannot be satisfied with them). Similarly, it was rather
clear that the trees had to be stored explicitly, as gener
ating them "on the fly" while searching them seemed
unrealistic due to the complex relationships.

Also it proved useful to assign the true and the heu
ristic values "simultaneously". Predetermining either
ofthem (e.g. the true values) all over the generated tree
first, leads to an undesirable effect: Since there are
severe constraints to be satisfied for the remaining
values, the probabilities of error (e+ and e- for quiescent
and for nonquiescent nodes) as parametrized may differ
too much from the actually achieved relative frequen-
cies. Hence, we decided to generate the tree recursively
as follows.

First, for some node k and its children nodes k, true
values are assigned according to the game-theoretic
relationship and the "probability-to-win" parameter p.
They are also labelled as "quiescent" or "nonquiescent"
according to the parametrized fraction (of the former).
Then these successors are assigned heuristic values ac
cording to the probabilities of error. (In fact, some of
them already may have had one attached, which is not
altered here.) After that, for each of the subtrees rooted
in the nodes ki the generating program tries to assign
heuristic values to certain descendant nodes so as to
satisfy the respective criteria, depending on the label of
node k; ("quiescent" or "nonquiescent") and the used
definition of quiescence (3.1 or 3.2). This process itself
works recursively through these subtrees, ensuring the
reauired minimax values: Either one branch has to be
followed (selected at random), or all the successors have
to result in a predetermined value. Of course, it is
easier to satisfy the constraints imposed by the defini
tion of n-ply-quiescence than those by up-to-n-ply-
quiescence. For the latter, it may happen that the proc-

2) The ones used are named nrand48 and erand48, and they are
available under UNIX* System V.
UNIX is a registered trademark of AT&T.
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ess of assigning heuristic values deeper in the tree has
to backtrack, since the constraints could not be satis-
fied. In such a case other choices are tried first at those
nodes where only one branch has to result in a pre-
determined value.

5.2 Simulation Runs

After the generation of such a game tree, minimax
searches were performed within this tree. (Of course,
backward pruning was used to avoid unnecessary
effort; see for instance [Knuth & Moore 75] for a de
scription of the a-B procedure.) These searches comput-
ed minimax values MMf® for all the possible depths d
in such a tree. (fis characterized in such a simulated
tree search by the corresponding parameters.) The goal
of performing these searches was to gather data about
the behaviour of the error made by the minimax value
in estimating the true value, depending on the search
depth. These data provided relative frequencies for ed.
In gathering them, we kept records whether the root
nodes of the searches were labelled "quiescent" or "non-
quiescent" since we expected different behaviour of the
respective errors.

In order to study the influence of the parameters of
the models, we varied them in certain ways (which are
described together with the results). We investigated
mainly parameter constellations fulfilling the assump-
tions of the models. However, "near misses"—in the
sense thatjust one assumption is not fulfilled—seemed
also to be of interest in order to see whether the respec-
tive assumption is necessary for the models to show the
expected behaviour.

In addition to the parameters of the models them
selves there are also parameters for the investigations
via simulation. The size of a generated tree is deter
mined here not only by the uniform branching degree
6, but also by its depth dg. Since there was a maximum
of available working memory determined by the given
resources, pairs of b and dqy were chosen so as to result
in trees just fitting into the available memory. While of
course searches not only from the root of the generated
tree were possible, none of them were directed into the
region below (dg — n) levels from this root, (n is the
parameter in definition 3.1 or 3.2, respectively.) The
reason is that within this region the conditions of the
models cannot be guaranteed, since it contains nodes
for which the property of n ply-quiescence (or up-to-n-
ply-quiescence) cannot be ensured (because correlated
nodes would be outside ofthe generated tree).

Another parameter for a simulation run is the seed
for the pseudo-random number generator.s) For gather-
ing data about several trees with an otherwise identi-
cal parameter constellation, this seed was varied. The
simulations reported in this paper have been run over a
period of about two months on a workstation, mainly
overnight or on weekends.

6 RESULTS

Since the given parameter values (especially for proba
bilities) could not always be achieved accurately within
the generated trees (also due to the constraints to be
satisfied), the sampling of the data was done according
to the actual values in these trees (especially relative
frequencies). For this reason the figures shown below
plot the results of using certain parameter values out of
an interval. We will discuss the results of parameter

3) In fact, the seeds for the "instances" of erand 48 were results of
calls to nrand48, which was initialized by a single seed.



constellations “inside” and "outside” of the models sep-
arately, while always pointing to the peculiarities aris-
ing from the difference between n-ply-quiescence and
up-to-n-ply-quiescence.

As these models were developed primarily from
observations of minimaxing practice, we will empha-
size the discussion of the relationship of phenemena
shown by these models with "reality”. Hence, we will
restrict the presentation of the results to that of search
depths d = n, since for d > n mainly unrealistic phe-
nomena have shown up. (For a discussion of these, the
interested reader is referred to [Scheucher 89].) Some-
how it seems, as if there is too little to discover for the
searches probing deeper than n within the trees accord-
ing to our models, We might imagine that games like
chess are characterized by a "large” n. Just before the
presentation of the results gained from the simula-
tions, let us briefly show straightforward analytic re
sults about our models.

lLemma 6.1. Let e+ (k) and ¢ (k) be error proba
bilities (according to definition 4.1), and p = P(TVik)
= WIN) for node k. Then the probability of the total
(static) error can be computed as e(k}) = e (k) - {1—p) +
e-(k) p.

Proof. straightforward by using the multiplication
theorem of probability theory and the fact that in our
models P(TV(k) = WIN) + P(TV(k) = LOSS) = 1 '

Corollary. When restricting the scope to quiescent
nodes { and using the corresponding error probabilities
eq' ([} and e, (), the respective error probability e, (D
can be computed analogously.

Theorem 6.1. Full-width searches to depth d = n
using minimaxing and rooting in nodes [, that are n-
ply-quiescent, result in the error probability

e, () = epr (- (1—p) + e, (D p.

Proof:
e, (1) = P{UMM (1) = +1) ~(TV(]) = LOSS))
(MM (D =<1~ (TV(DH = WIND)
= PU(f(D) = +1) A (TV({D) = LOSH)N
(T =-1) ATV = WIN))
:(’q(!l} = EQ"(I}‘{I_ }+l?q-_[”-p 1

Theorem 6.2. For all depths d € {}..n}, full width
searches using minimaxing and rooting in nodes [, that
are up-to-n-ply-quiescent, result in the same error
pmbaEi]ity e D = e~ (l=p)+ e, (D) p.

Proof: analogous to the proof of theorem 6.1, but using
definition 3.2 instead of 3.1 "

Especially the result of the last theorem may seem
quite unrealistic, in telling that the error probability of
searches from certain nodes is independent of the
search depth (- n). However on the contrary, also in
practice the searches starting at nodes which are quies-
cent do not pay off: Whether their heuristic estimate is
good or not, the value remains rather stable even when
searches are performed. (Usually the fraction of quies-
cent nodes is very low.) The exact result of this theorem
exaggerates, of course, but no more than the assump-
tion of equality in the mode! definitions of quiescence 1t
is based upon. In the figures shown below, the data
about searches starting at nodes, that are up-to-n-ply-
gutescent, are computed using this theorem.

6.1 "Inside"

In general (for d = n), both models usually show a
strong error reduction with increasing d, corresponding
quite well to that usually observed in practice. Fig. 1
shows a typical case for the model based on up-to-n-ply-

uiescence. The length of the 99.9% confidence interval
or the data of nonguiescent nodes at d = 1 is 2 X

0.002288, that at d = 5 is 2 X 0.006265.4) However,
especially the model based on n-ply-quiescence also
shows certain phenomena of increasing error. First we
will discuss these phenomena, and then we will analyse
the influence of the various parameters ofthe models.

Let us compare the relative frequencies for e’ and &’
in the model based on n-ply-quiescence. With the
exception of n = 2, the error rate generally increases
here from the 1-ply to the 2-ply searches. Fig. 2 may
illustrate this phenomenon by showing a typical case
(comparable to that of Fig. 1). We cannot relate it to
practice, and it is not really clear why it arises. But we
can see from our data comparing both models, that its
effect is related to the weaker stability provided by the
definition of n-ply-quiescence. While also the model
based on up-to-n-ply-quiescence shows different behav-
iour in this case, the error is usually reduced at d = 2
compared to that at d = 1.

More generally, the model based on n-ply-quies-
cence sometimes also leads to increases in error when
going from odd to even search depths. Systematically,
the behaviour here is worse than that when going from
even to odd depths, while the overall tendency is al-
ways towards an error reduction. Fig. 3 illustrates such
"oscillations" and the average behaviour (showing the
straight line of least square distances). It is interesting
to notice that minimaxing did also relatively better
when the search depth was odd in the studies of [Nau e/
al. 86]. Up-to-n-ply-quiescence strongly dampens these
oscillations (see e.g. Fig. 4). Since these phenomena are
not known to have occured in practice, we attribute
them to artificial assumptions in the models, such as
keeping n constant for every quiescent node in a tree.

How does an increase of the parameter n influence
the behaviour of the models? As to be expected, it re-
duces the overall rate of improvement per ply. But it
also leads to stronger oscillations, especially for n-ply-
quiescence (compare for instance Figs. 2 and 3). For
varying values of 6, the same patterns can be observed,
indicating no significant influence of this parameter on
the general behaviour. However, different values of p
influence the phenomena described above: When nodes
k have a larger and larger probability P(TV(k) = WIN)
(especially larger than 0.5), the strange phenomenon
regarding 2-ply searches fades and even disappears. In
much the same way the oscillations between odd and
even depths are dampened by increasing values of p.

The influence of varying error probabilities for the
static evaluation is of special interest here, since in-
creasing errors at nonquiescent nodes (even any one of
en* or e,~) cause stronger improvement with increasing
search depth, whereas low errors at such nodes do not
even result in error reduction. There may be even a
hint for the practical use of minimaxing, not to worry
too much about estimating the values of nonquiescent
nodes accurately. In fact, the most successful chess pro-
grams up to now do not use mechanisms (like swap-off
analysis) which are attempting this for assigning static
scores. The influence of these errors is stronger than
that of the errors at quiescent nodes (especially it
shows up, that any one of en” or e, should be large to
achieve (strong) improvements).

4) Because of the way of tree generation and searching, we have
more data for the shallower searches, and those of quiescent
nodes are partially computed using the theorems Whenever
feasible, the computed values of e/ are plotted instead of rela-
tive frequencies The complete set of figures is available in
[Scheucher 89|, showing a much stronger variation of parame
ters than is possible here due to space limitations.
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For different error probabilities of overestimating
and underestimating (e* e~), we could not find differ
ent results compared to the case of (nearly) equal

robabilities. Especially in contrast to the result of
pSchrufer 86], it was not necessary for e- to be negli-
gible to avoid pathology.

6.2 "Outside"

Let us look at the effects of violating the assumptions
(6) and (7) in definition 4.1, first one at a time. When
some error probability at quiescent nodes becomes
larger or equal to one of that at nonquiescent ones, the
relative frequencies for e are nearly independent of
the search depth d, i.e. no improvements can be found.
(See Fig. 5, forinstance.) According to theorem 6.2, for
up -to-n-ply-quiescence the probabilities of the backed-
up errors at quiescent nodes become large, and strangly
enough even larger than those at nonquiescent nodes.
What happens, when the number of quiescent nodes
is not "small" compared to that of nonquiescent ones?
When the fraction of the number of quiescent nodes in-
creases, the relative frequencies for e become already
smaller at lower depths d, but they also cannot be
reduced very much (see e.g. Fig. 6). This phenomenon
can be related to rare cases in computer chess practice,
in particular to certain chess endgames with very few
possibilities for capturing pieces or promoting pawns.
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Hence, from the results of our simulation studies we
can see that both these new and critical assumptions
are necessary. In addition, experiments of violating
them simultaneously lead to completely unrealistic
effects.

7 RELATED WORK

Now let us briefly compare our results with those of
some of the earlier attempts to explain the benefits of
minimax search observed in practice. Previous work
suggests that independence of the true values or inde
pendence of the errors made by the static evaluation
function is a necessary condition for pathology in mini
maxing. Note, that assuming independence instead of
our critical assumptions (6) and (7), our models would
be a generalization of a pathological one analysed by
[Pearl 83]. Due to these assumptions (and our way of
tree generation) we also avoid the "minimax conver
gence" and the related necessity to have a specific
value of the "probability-to-win" parameter p for "fair
games" (see e.g. [Nau 821). Hence, most of the attempts
to show nonpathological behaviour are based on vari-
ous assumptions about "dependencies".

[Nau 82] investigated (via N-games) the influence
of dependencies between the true values which arise
"incrementally" so that the strength or weakness of a
board position tends to be roughly the same for sibling
nodes. But although this sibling correlation in Nau's



simulation was considered extremely strong by [Pearl
83, p. 443], for instance Table 5 in [Nau 82] shows only
modest improvements in decision quality with increas-
ing search depth. These dependencies also cause the
same static evaluation function to be clearly more ac
curate for N-games than for the structurally equiv
alent P-games (in which pathology occurs). This can be
related to the more general result by [Chi & Nau 88]
that low error rates favour minimaxing, especially
versus product propagation. In order to achieve bene
ficial behaviour in our models only a minority of nodes
must be evaluated with low error—the quiescent ones.
(This seems to be more realistic.)

Very similar to this "incremental” sibling relation-
ship is the idea of "clustering" of true values investi
gated by [Beal 82]. In order to make a comparison
feasible, we gathered data about the "clustering factor"
(as defined by [Beal 82]) in our models during the sim
ulation runs. (In our models this factor cannot be con
stant over all the levels of a search tree.) In the aver
age, for the data at b = 2 a value ofabout 0.6 was found,
at b = 4 about 0.4. Most interestingly, compared to the
data plotted in the Appendix of [Beal 82] this would
mean error reduction in the former and error increase
in the latter case. However, we could neither find such
an influence on the behaviour depending on b nor one
depending on the data about the "clustering factor" in
our models. Hence, while our assumptions obviously
induce such clustering in our trees, its actual strength
does not influence the behaviour critically.

In general, some of the earlier investigated depen-
dencies are plausible to exist in real games (while their
actual strength is not this clear). However, is the enor
mous effort spent on searching deeper, because there
are such dependencies? We think that the searches are
performed deeper to discover dynamic aspects not incor
porated in the usual static evaluation function (see also
[Kaindl 88]). And this is modeled here based on the
concept of quiescence. The concepts introduced by these
models appear to be more fundamental, in having a
very plausible relationship to "reality", and in indue
ing certain dependencies, for instance those denoted as
"clustering”.

[Pearl 83] investigated the argument that deeper
searching avoids traps, in a very simplified model con
sidering only actual terminal nodes (that is, mates and
stalemates) at all levels of the game tree as "traps".
Based on practical data and experience, [Kaindl 88]
argues that this type of trap alone does not seem to
make a strong contribution to the benefits of minimax
search in computer chess. In a higher sense, this "trap
argument" actually served as a basis in developing the
models investigated here. But they neglect Pearl's type
of "trap" which easily can be evaluated without error.
[Abramson 86] postulates instead of such "traps" (but
with the same consequences) that the evaluation func
tion must be able to recognize more and more forced
wins (evaluated without error) as search deepens, to
avoid pathology. Our models require neither of these
strong assumptions to show beneficial behaviour of
minimaxing—only a minority of nodes must be evalu
ated with low error. (This distinction is insofar very
important as e.g. the first model in [Pearl 83] can avoid
pathological behaviour only when one of the errors (e*
or e~ in our notation) is equal to 0.)

8 CONCLUSION

In summary, we found empirical evidence for the con
jecture stated in [Kaindl 88], that the benefits of mini-
max search usually observed in practice can be explain

ed via the concept of quiescence. However, while the
definition of n-ply-quiescence has been considered suffi-
cient for illustrative purposes, the more restrictive
definition of up -to-n-ply-quiescence resulted in a more
realistic model. The most unrealistic issue here ap-
pears to be that n is constant all over the tree. Hence,
using a random variable may be an interesting idea.
Moreover, we investigated the (important) case "du-
ring" a game, ignoring completely the real end with
actual terminal nodes. However, this can be modeled
by introducing nodes which can be evaluated without
error (like Pearl's "traps"). While our searches have
been performed to uniform depth d, quiescence searches
also might be simulated within our game tree models—
after all they are based on quiescence.
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