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A B S T R A C T 

Since there existed no convincing theoretical ex­
p lanat ion for the usua l ly observed benefits of 
minimax search in practice, we investigated two 
instances of a class of tree models which are based 
on the concept of quiescence. (This way the str ict 
separation or static and dynamic aspects in prac 
t ical programs is modeled.) We performed Monte 
Carlo simulat ions, enhanced by analyt ic results. 
The behaviour of these models in our studies gen 
eral ly corresponds quite wel l to observations in 
practice (especially that of the model based on the 
more restrict ive def in i t ion of quiescence). Hence, 
we found empir ical evidence for an earl ier conjec 
ture, and these results can serve as an impor tant 
step towards unders tanding the reason for the 
benefits of m in imax search. 

1 I N T R O D U C T I O N 

For a long t ime, there was universal agreement to use 
minimax search in programs for two-person, perfect-
information games. In fact, th is approach is very suc­
cessful in games l ike chess, checkers, or ka lah. Usual ly 
i t shows a dramatic improvement in p lay ing strength 
w i th increasing search depth. However, the discovery 
of minimax pathology [Nau 80] demonstrated tha t in 
certain game trees deeper m i n i m a x search can also 
have detr imental effects. In the meant ime several mod 
els have been analysed which show pathological behav 
iour, and several models which do not (see [Ka ind l 88] 
for a cr i t ical overview). Recently, [Al thofer 89] proved 
for special game trees that under certain conditions not 
only m in imax searches fa i l , but also every other algo­
r i t h m . However, none of these models explains convin 
cingly, why m in imax search is this beneficial in prac 
tice (by showing dramatic improvements of the deci 
sion qual i ty w i t h increasing search depth, and hav ing 
a convincing relat ionship of the assumptions and the 
observed phenomena w i t h " rea l i ty" ) . 

From extensive experience w i t h computer chess 
practice, [Ka ind l 88] developed an i l lust rat ive model 
based on an abstract concept of quiescence. In the fol­
lowing we sketch th is and a related model, describe the 
design of our experiments, and present the results of 
our s imulat ion studies inves t iga t ing the behaviour 
w i t h increasing search depth. 

2 B A C K G R O U N D 

In general, the move decision in " in terest ing" games is 
based on bounded look-ahead to artificial terminal 
nodes. Usual ly , the " w o r t h " of such nodes can only be 
estimated heuristically. Th is is normal ly done by a stat-
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ic evaluation function f(n), assigning a single point val­
ue—usually rang ing over an in terva l of integer va l ­
ues—to a node n. ( In the fo l lowing we assume that fin) 
represents this value from the viewpoint of the side on 
move in the evaluated posit ion, which is represented by 
the node n.) These values are propagated towards the 
root of a search tree according to a back-up rule, usual 
ly v ia minimaxing. 

D e f i n i t i o n 2 .1 . A minimax value MMf (n) of a node 
n can be computed recursively as follows ( in the nega-
max f ramework): 

n, of n. 
Usual ly , the pr imary interest is not the m in imax 

value of the tree itself, but rather the move to be selec 
ted at the root (the given position). In accordance w i t h 
th is back-up ru le, the choice is one of what may be se­
veral moves leading to the max imum (backed-up) value 
of the successors. Since the depth of such searches w i l l 
be impor tant for the purpose of this paper, we also de­
fine a special case of using th is ru le. 

D e f i n i t i o n 2.2. MMfd(n) is the m in imax value of 
node n resu l t ing from exact ly d appl icat ions of the 
recursion (2) in def in i t ion 2.1 in every branch of the 
search tree. 

In fact, MMfd(n) defines the min imax value from a 
full-width search of the tree below n to uni form depth d 
(accord ing to the " type A s t ra tegy " descr ibed by 
[Shannon 50]). Whi le this k i n d of look-ahead is s t i l l the 
usual paradigm in computer game-playing practice, f 
does not di rect ly denote here the static evaluator itself, 
but a simple dynamic quiescence evaluator based on the 
static one. In th is paper it is suff icient to consider f as 
some heurist ic funct ion which evaluates nodes w i t h 
some error. 

3 T H E C O N C E P T OF Q U I E S C E N C E 

These quiescence evaluators are dynamic in the sense 
that they themselves perform a search—a rather selec­
t ive quiescence search: for instance in chess, most pro­
grams t ry capture moves, searching for ( re la t ive ly ) 
quiescent positions (where the side on move cannot 
prof i tably capture). The term "quiescent" was already 
coined by [Shannon 50], and explained using an exam 
ple of capture moves from the domain of chess. Indepen 
dent ly, also T u r i n g derived the same concept f rom his 
considerations about chess programming—he cal led 
quiescent positions "dead" (see [Tur ing et al. 53]). Due 
to the di f f icul t ies in contro l l ing more elaborate quies 
cence searches, even now most chess programs restr ict 
themselves to consider capture (and sometimes also 
checking) moves there. More sophisticated domain-spe­
cific aspects as we l l as a general framework for control-
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l i ng such a quiescence search can be found in [Ka ind l 
82a, b] . 

However abstract ing from the issues of a specific 
game, w h a t is the domain- independent concept of 
quiescence a l l about? General ly, we would not consider 
a posit ion as quiescent if i ts value can be changed dras­
t ica l ly by moves or move sequences. These values are 
derived f rom the static evaluat ion funct ion and/or the 
back-up ru le. (Capture moves in chess s ign i f i cant ly 
change the static values assigned by the mate r ia l l y 
dom ina ted eva lua t i on funct ions. ) Based on t h i s , 
[Ka ind l 88] defined an abstract model of quiescence 
( rewr i t ten here more formal ly) . 

D e f i n i t i o n 3 .1 . A node k is n-ply-quiescent i f f / k ) = 
MMf

n(k). 
This def in i t ion is already tai lored towards a s impl i 

f ied envi ronment w i t h two-valued functions. As ind i 
cated above, these functions usual ly re tu rn a wider 
range of values. Therefore in practice, strict equal i ty 
would be achieved very seldom, and a relaxat ion, for 
example, in the sense of "smal l difference" would be 
more real ist ic. Moreover, it only relates the values of 
the nodes at a certain constant distance of a given node 
w i t h i ts own value. Whi le th is has been considered suf 
ficient for i l lus t ra t ive purposes, a more restrictive defi 
n i t ion may provide a more realistic model, e.g. one re 
qu i r i ng s tabi l i ty up to a certain depth. 

D e f i n i t i o n 3.2. A node k is uo-to-n-ply-quiescent i f f 
k is i-ply-quiescent for a l l i E ( { l . .n \ . 

4 T R E E M O D E L S B A S E D O N Q U I E S C E N C E 

The question to be answered is, why deeper and deeper 
m in imax searches usually achieve better and better 
results in practice. Whi le this may seem i n tu i t i ve l y 
"clear" at first glance when considering a concrete 
domain l ike chess, up to now a convincing explanation 
based on a general model has not been given. The key 
question for th is can be stated using Ken Thompson's 
words:1) "Wha t is i t in the tree?" 

We are rather convinced now that the central con 
cept for such an explanation is quiescence. Based on i t , 
the fo l lowing cr i ter ia specify tree models w i th simpl i -
f ied propert ies, wh ich should nevertheless capture 
what is impor tant for strongly beneficial behaviour of 
m i n i m a x search. Hence the quest ion is, whether 
searches in such trees using the min imax back-up rule 
show such behaviour. 

D e f i n i t i o n 4 .1 . A class of game tree models is speci­
fied by the fo l lowing assumptions: 
(1) The tree structure has a un i form branching degree 

6. 
(2) True values of nodes (TV) are either W I N or LOSS. 
(3) True values have the game-theoretic relat ionship. 
(4) Heur is t i c values (assigned by f) are e i ther +1 

(est imat ing WIN) or -1 (est imating LOSS). 
(5) Probabi l i t ies of error e+ and e- are defined as follows 

(k being a node): 

(6) For a l l nodes / that are quiescent and for a l l nodes m 
tha t are not quiescent the fol lowing conditions hold: 

1) pr ivate communicat ion of the second author w i th Ken 
Thompson in San Francisco, October, 1984 

(7) The number of nodes tha t are quiescent is sma l l 
compared to the number of nodes that are not quies­
cent. 
Subst i tut ing "n-ply-quiescent" for "quiescent" here 

results in the model presented in [Ka ind l 88], using 
'' up-to-n-ply-quiescent' yields a related model. Both of 
these model instances have been investigated to study 
also the influence of the respective def in i t ion of quies­
cence. 

In order to make studying the behaviour of these 
models feasible at a l l , they are kept as simple as pos­
sible. Hence, the relationship of these assumptions to 
real i ty and their possible influence on the behaviour 
should be discussed. Cr i ter ion (1) assumes a un i form 
branching of the tree, which is normal ly not the case in 
practice. However, according to [Michon 83] th is prop­
erty as a special case of "non-inertness" even seems to 
fur ther pathological behaviour (the contrary of what 
we are going to show). Cr i ter ia (2) and (4) assume only 
two possible values for the true as wel l as the heurist ic 
values. Whi le especially the second of these simpli f ica­
tions seems strong, for instance the studies of [Bratko 
& Gams 82] and [Pearl 83] show that they d id not i n f l u 
ence the behaviour of their models. Assumption (5) dis 
t inguishes two different probabil i t ies, since the analy-
ses of [Schrufer 86] and [Pearl 83] indicate that th is 
may be important for the behaviour. We w i l l describe 
below whether this is also the case w i th our models. 

In summary, assumptions (1) to (5) are fa i r ly stan 
dard. However, assumptions (6) and (7) are new and 
should model "what it is in the tree" (based on the con­
cept of quiescence). Assumption (6) states that the er­
rors of statically evaluat ing quiescent nodes are usual­
ly smaller than those of evaluat ing nonquiescent ones. 
(Why else are resources spent for quiescence search?) 
Assumption (7) models the current s i tuat ion in do­
mains l ike chess, checkers, or ka lah, where at least up 
to now no static evaluation functions have been wr i t ten 
that are sufficient to capture their dynamic aspects. If 
they were, the searches would not have to discover th is 
much. (We have also investigated this case w i t h i n our 
s imulat ion studies.) 

As the parameters of the models are important for 
the investigations, we w i l l enumerate them expl ic i t ly. 
The shape of the game tree is completely specified by 
the uni form branching degree 6, but also the probabil i­
ty p = P(TV(k) = WIN) for a l l nodes k may be impor­
tant (see e.g. [Pearl 83]). The remain ing parameters 
characterize the properties of the stat ic evaluat ion 
function f: The errors e+ and er have to be considered 
twice, once for quiescent nodes (eq+, eq-) and once for 
nonquiescent nodes (en+, en~). The number n of n-ply -
quiescent or up-to-n-ply-quiescent is of special interest, 
since a relationship w i th the benefits of searching n 
plies deep has been conjectured by [Ka ind l 88]. At last, 
also the probabi l i ty fraction — P(k is quiescent) for a l l 
nodes k can be parametrized, determining the average 
fraction of the number of quiescent nodes to the total 
number of nodes. 

Besides specifiying the model assumptions we also 
have to define how the behaviour of the models shall be 
measured. The question is whether the errors made by 
the evaluat ion function are increased or decreased by 
backing up the heuristic estimates th rough several 
levels of the tree via min imax ing. Hence we define the 
probabi l i ty of the error made by the min imax value of a 
certain search depth in est imat ing the true value as 
follows, using the fact that in our models P(TV(fe) = 
WIN) + P(TV(* ) = LOSS) = 1. (The qual i ty of the move 
choice at the root is directly related to th is error.) 
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5 E X P E R I M E N T D E S I G N 

Since we have investigated the models performing sim 
ulat ions, we had to generate game trees according to 
the cr i ter ia of the models. W i t h i n these trees, m in imax 
searches were performed. 

5.1 T ree G e n e r a t i o n 

Whi le these models have resisted formal analysis up to 
now, even programming the generation of game trees 
according to their cr i ter ia was nont r i v ia l . Hence we 
w i l l sketch the most impor tan t aspects here. (The 
reader interested in algor i thmic details is referred to 
[Scheucher 89].) General ly, every stochastic event has 
been simulated by a call to a pseudo-random number 
generator, parametrized independently of the relative 
frequencies achieved ear l ier in the tree generat ion 
process.2) 

Due to the complex relat ionships between the true 
and the heurist ic values w i t h i n whole subtrees it was 
rather clear that the trees should be generated top-
down from the root. These relat ionships can be viewed 
as constraints which have to be satisfied w i t h i n the 
trees. And it is more convenient to propagate such con 
stra ints down the tree and to assign values satisfying 
them, rather than just assigning values at the bottom 
which have to be retracted often (since the constraints 
cannot be satisfied w i th them). S imi la r ly , i t was rather 
clear that the trees had to be stored expl ic i t ly , as gener 
a t ing them "on the f l y " whi le searching them seemed 
unreal ist ic due to the complex relationships. 

Also it proved useful to assign the true and the heu 
r ist ic values "simultaneously". Predetermining either 
of them (e.g. the true values) a l l over the generated tree 
first, leads to an undesirable effect: Since there are 
severe constraints to be sat isf ied for the rema in ing 
values, the probabil i t ies of error (e+ and e- for quiescent 
and for nonquiescent nodes) as parametrized may differ 
too much from the actual ly achieved relative frequen­
cies. Hence, we decided to generate the tree recursively 
as follows. 

First , for some node k and its chi ldren nodes k, t rue 
values are assigned according to the game-theoretic 
relat ionship and the "probabi l i ty - to-win" parameter p. 
They are also labelled as "quiescent" or "nonquiescent" 
according to the parametrized fract ion (of the former). 
Then these successors are assigned heurist ic values ac 
cording to the probabil i t ies of error. ( In fact, some of 
them already may have had one attached, which is not 
altered here.) After that , for each of the subtrees rooted 
in the nodes k t the generat ing program tries to assign 
heurist ic values to certain descendant nodes so as to 
satisfy the respective cr i ter ia, depending on the label of 
node k t ("quiescent" or "nonquiescent") and the used 
def in i t ion of quiescence (3.1 or 3.2). This process i tself 
works recursively through these subtrees, ensuring the 
reauired m in imax values: E i ther one branch has to be 
followed (selected at random), or a l l the successors have 
to result in a predetermined va lue. Of course, i t is 
easier to satisfy the constraints imposed by the def in i 
t ion of n-ply-quiescence than those by up-to-n-ply-
quiescence. For the latter, it may happen that the proc-

2) The ones used are named nrand48 and erand48, and they are 
available under UNIX* System V. 
UNIX is a registered trademark of AT&T. 

ess of assigning heurist ic values deeper in the tree has 
to backtrack, since the constraints could not be satis­
fied. In such a case other choices are t r ied f i rs t at those 
nodes where only one branch has to result in a pre­
determined value. 

5.2 S i m u l a t i o n Runs 

After the generation of such a game tree, m i n i m a x 
searches were performed w i t h i n this tree. (Of course, 
backward p r u n i n g was used to avoid unnecessary 
effort; see for instance [ K n u t h & Moore 75] for a de 
scription of the a-B procedure.) These searches comput­
ed m in imax values M M f d for al l the possible depths d 
in such a tree. (f is characterized in such a simulated 
tree search by the corresponding parameters.) The goal 
of performing these searches was to gather data about 
the behaviour of the error made by the min imax value 
in est imat ing the true value, depending on the search 
depth. These data provided relat ive frequencies for ed. 
In gather ing them, we kept records whether the root 
nodes of the searches were labelled "quiescent" or "non­
quiescent" since we expected dif ferent behaviour of the 
respective errors. 

In order to study the influence of the parameters of 
the models, we varied them in certain ways (which are 
described together w i t h the results). We investigated 
main ly parameter constellations fu l f i l l i ng the assump-
tions of the models. However, "near misses"—in the 
sense tha t jus t one assumption is not fulf i l led—seemed 
also to be of interest in order to see whether the respec­
tive assumption is necessary for the models to show the 
expected behaviour. 

In addi t ion to the parameters of the models them 
selves there are also parameters for the investigations 
v ia s imulat ion. The size of a generated tree is deter 
mined here not only by the un i form branching degree 
6, bu t also by its depth dg. Since there was a max imum 
of avai lable work ing memory determined by the given 
resources, pairs of b and dg were chosen so as to result 
in trees just f i t t ing into the avai lable memory. Whi le of 
course searches not only from the root of the generated 
tree were possible, none of them were directed into the 
region below (dg — n) levels f rom this root, (n is the 
parameter in def in i t ion 3.1 or 3.2, respectively.) The 
reason is that w i t h i n this region the conditions of the 
models cannot be guaranteed, since it contains nodes 
for which the property of n ply-quiescence (or up-to-n-
ply-quiescence) cannot be ensured (because correlated 
nodes would be outside of the generated tree). 

Another parameter for a s imulat ion run is the seed 
for the pseudo-random number generator.3) For gather­
ing data about several trees w i t h an otherwise ident i ­
cal parameter constel lat ion, th is seed was var ied. The 
simulat ions reported in this paper have been run over a 
period of about two months on a workstat ion, ma in ly 
overnight or on weekends. 

6 R E S U L T S 

Since the given parameter values (especially for proba 
bi l i t ies) could not always be achieved accurately w i t h i n 
the generated trees (also due to the constraints to be 
satisfied), the sampl ing of the data was done according 
to the actual values in these trees (especially relat ive 
frequencies). For th is reason the figures shown below 
plot the results of using certain parameter values out of 
an interval. We w i l l discuss the results of parameter 

3) In fact, the seeds for the "instances" of erand 48 were results of 
calls to nrand48, which was initialized by a single seed. 
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0.002288, that at d = 5 is 2 X 0.006265.4) However, 
especially the model based on n-ply-quiescence also 
shows certain phenomena of increasing error. First we 
w i l l discuss these phenomena, and then we w i l l analyse 
the influence of the various parameters of the models. 

Let us compare the relative frequencies for e1 and e2 

in the model based on n-ply-quiescence. W i t h the 
exception of n = 2, the error rate generally increases 
here from the 1-ply to the 2-ply searches. Fig. 2 may 
i l lustrate this phenomenon by showing a typical case 
(comparable to that of Fig. 1). We cannot relate it to 
practice, and it is not really clear why it arises. But we 
can see from our data comparing both models, that i ts 
effect is related to the weaker stabi l i ty provided by the 
def ini t ion of n-ply-quiescence. Whi le also the model 
based on up-to-n-ply-quiescence shows different behav­
iour in this case, the error is usually reduced at d = 2 
compared to that at d = 1. 

More generally, the model based on n-ply-quies-
cence sometimes also leads to increases in error when 
going from odd to even search depths. Systematically, 
the behaviour here is worse than that when going from 
even to odd depths, whi le the overall tendency is al­
ways towards an error reduction. Fig. 3 i l lustrates such 
"oscil lat ions" and the average behaviour (showing the 
straight l ine of least square distances). It is interest ing 
to notice that m in imax ing did also re la t ive ly better 
when the search depth was odd in the studies of [Nau el 
al. 86]. Up-to-n-ply-quiescence strongly dampens these 
oscillations (see e.g. Fig. 4). Since these phenomena are 
not known to have occured in practice, we a t t r ibu te 
them to ar t i f ic ia l assumptions in the models, such as 
keeping n constant for every quiescent node in a tree. 

How does an increase of the parameter n influence 
the behaviour of the models? As to be expected, it re­
duces the overall rate of improvement per ply. But it 
also leads to stronger oscillations, especially for n-ply-
quiescence (compare for instance Figs. 2 and 3). For 
vary ing values of 6, the same patterns can be observed, 
indicat ing no signif icant influence of th is parameter on 
the general behaviour. However, dif ferent values of p 
influence the phenomena described above: When nodes 
k have a larger and larger probabil i ty P(TV(k) = WIN) 
(especially larger than 0.5), the strange phenomenon 
regarding 2-ply searches fades and even disappears. In 
much the same way the oscillations between odd and 
even depths are dampened by increasing values of p. 

The influence of vary ing error probabil i t ies for the 
static evaluation is of special interest here, since in­
creasing errors at nonquiescent nodes (even any one of 
en* or en~) cause stronger improvement w i th increasing 
search depth, whereas low errors at such nodes do not 
even result in error reduction. There may be even a 
h in t for the practical use of min imax ing , not to worry 
too much about est imating the values of nonquiescent 
nodes accurately. In fact, the most successful chess pro­
grams up to now do not use mechanisms (l ike swap-off 
analysis) which are at tempt ing this for assigning static 
scores. The influence of these errors is stronger than 
that of the errors at quiescent nodes (especially it 
shows up, that any one of en" or en' should be large to 
achieve (strong) improvements). 

4) Because of the way of tree generation and searching, we have 
more data for the shallower searches, and those of quiescent 
nodes are partially computed using the theorems Whenever 
feasible, the computed values of e/ are plotted instead of rela­
tive frequencies The complete set of figures is available in 
[Scheucher 89|, showing a much stronger variation of parame 
ters than is possible here due to space limitations. 
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For di f ferent error probabi l i t ies of overest imating 
and underest imat ing (e+ e~), we could not find differ 
ent resul ts compared to the case of (near ly) equal 

p robabi l i t ies. Especially in contrast to the resul t of 
Schrufer 86], it was not necessary for e- to be negl i­

gible to avoid pathology. 

6.2 " O u t s i d e " 

Let us look at the effects of v io la t ing the assumptions 
(6) and (7) in def in i t ion 4 .1 , f irst one at a t ime. When 
some error p robab i l i t y at quiescent nodes becomes 
larger or equal to one of tha t at nonquiescent ones, the 
relat ive frequencies for ed are nearly independent of 
the search depth d, i.e. no improvements can be found. 
(See F ig . 5, for instance.) According to theorem 6.2, for 
up -to-n-ply-quiescence the probabi l i t ies of the backed-
up errors at quiescent nodes become large, and strangly 
enough even larger than those at nonquiescent nodes. 

Wha t happens, when the number of quiescent nodes 
is not " sma l l " compared to that of nonquiescent ones? 
When the fraction of the number of quiescent nodes in­
creases, the relat ive frequencies for ed become already 
smaller at lower depths d, bu t they also cannot be 
reduced very much (see e.g. F ig . 6). This phenomenon 
can be related to rare cases in computer chess practice, 
in par t icu lar to certain chess endgames w i t h very few 
possibil i t ies for captur ing pieces or promoting pawns. 

Hence, from the results of our s imulat ion studies we 
can see tha t both these new and cr i t ical assumptions 
are necessary. In addi t ion, exper iments of v i o l a t i n g 
them simultaneously lead to completely unrea l is t ic 
effects. 

7 R E L A T E D W O R K 

Now let us br ief ly compare our results w i t h those of 
some of the earl ier attempts to explain the benefits of 
m in imax search observed in practice. Previous work 
suggests tha t independence of the true values or inde 
pendence of the errors made by the static evaluat ion 
funct ion is a necessary condit ion for pathology in m in i 
max ing. Note, that assuming independence instead of 
our cr i t ica l assumptions (6) and (7), our models would 
be a general ization of a pathological one analysed by 
[Pearl 83]. Due to these assumptions (and our way of 
tree generation) we also avoid the "min imax conver 
gence" and the re lated necessity to have a specific 
value of the "probabi l i ty - to-win" parameter p for " fa i r 
games" (see e.g. [Nau 821). Hence, most of the attempts 
to show nonpathological behaviour are based on var i ­
ous assumptions about "dependencies". 

[Nau 82] investigated (via N-games) the inf luence 
of dependencies between the true values which arise 
" incrementa l ly " so tha t the strength or weakness of a 
board posit ion tends to be roughly the same for s ib l ing 
nodes. Bu t a l though th is s ib l ing correlat ion in Nau's 
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simulat ion was considered extremely strong by [Pearl 
83, p. 443], for instance Table 5 in [Nau 82] shows only 
modest improvements in decision qual i ty w i t h increas­
ing search depth. These dependencies also cause the 
same static evaluat ion funct ion to be clearly more ac 
curate for N-games than for the s t ruc tu ra l l y equiv 
alent P-games ( in which pathology occurs). This can be 
related to the more general result by [Chi & Nau 88] 
tha t low error rates favour m i n i m a x i n g , especially 
versus product propagation. In order to achieve bene 
ficial behaviour in our models only a minor i ty of nodes 
must be evaluated w i th low error—the quiescent ones. 
(This seems to be more realistic.) 

Very s imi lar to th is " incrementa l " s ib l ing relat ion­
ship is the idea of "c luster ing" of true values investi 
gated by [Beal 82]. In order to make a comparison 
feasible, we gathered data about the "cluster ing factor" 
(as defined by [Beal 82]) in our models dur ing the sim 
u la t ion runs. ( In our models th is factor cannot be con 
stant over a l l the levels of a search tree.) In the aver 
age, for the data at b = 2 a value of about 0.6 was found, 
at b = 4 about 0.4. Most interest ingly, compared to the 
data plotted in the Appendix of [Beal 82] this would 
mean error reduction in the former and error increase 
in the lat ter case. However, we could neither find such 
an influence on the behaviour depending on b nor one 
depending on the data about the "clustering factor" in 
our models. Hence, whi le our assumptions obviously 
induce such cluster ing in our trees, its actual strength 
does not inf luence the behaviour cr i t ical ly. 

In general, some of the earl ier investigated depen­
dencies are plausible to exist in real games (whi le their 
actual strength is not this clear). However, is the enor 
mous effort spent on searching deeper, because there 
are such dependencies? We th ink that the searches are 
performed deeper to discover dynamic aspects not incor 
porated in the usual static evaluat ion function (see also 
[Ka ind l 88]). And this is modeled here based on the 
concept of quiescence. The concepts introduced by these 
models appear to be more fundamental , in having a 
very plausible relat ionship to " rea l i ty" , and in indue 
ing certain dependencies, for instance those denoted as 
"c luster ing". 

[Pearl 83] investigated the argument that deeper 
searching avoids traps, in a very simpl i f ied model con 
sider ing only actual terminal nodes (that is, mates and 
stalemates) at a l l levels of the game tree as "traps". 
Based on practical data and experience, [Ka ind l 88] 
argues that this type of trap alone does not seem to 
make a strong contr ibut ion to the benefits of min imax 
search in computer chess. In a higher sense, th is " t rap 
argument" actual ly served as a basis in developing the 
models investigated here. But they neglect Pearl's type 
of " t r ap " which easily can be evaluated without error. 
[Abramson 86] postulates instead of such " t raps" (but 
w i t h the same consequences) that the evaluation func 
t ion must be able to recognize more and more forced 
wins (evaluated without error) as search deepens, to 
avoid pathology. Our models require neither of these 
strong assumptions to show beneficial behaviour of 
m in imax ing—only a minor i ty of nodes must be evalu 
ated w i t h low error. (This dist inct ion is insofar very 
impor tant as e.g. the first model in [Pearl 83] can avoid 
pathological behaviour only when one of the errors (e* 
or e~ in our notation) is equal to 0.) 

8 C O N C L U S I O N 

In summary, we found empir ical evidence for the con 
jecture stated in [Ka ind l 88], that the benefits of m in i ­
max search usual ly observed in practice can be explain 

ed v ia the concept of quiescence. However, whi le the 
def ini t ion of n-ply-quiescence has been considered suff i­
cient for i l l us t ra t i ve purposes, the more restr ic t ive 
def ini t ion of up -to-n-ply-quiescence resulted in a more 
realistic model. The most unreal ist ic issue here ap­
pears to be that n is constant a l l over the tree. Hence, 
using a random variable may be an interest ing idea. 
Moreover, we investigated the ( important) case "du ­
r i ng " a game, ignor ing completely the real end w i t h 
actual termina l nodes. However, this can be modeled 
by introducing nodes which can be evaluated without 
error ( l ike Pearl's "traps"). Whi le our searches have 
been performed to uni form depth d, quiescence searches 
also might be simulated w i th in our game tree models— 
after a l l they are based on quiescence. 
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