
On Op t ima l Game-Tree Search
using Rat iona l Meta-Reasoning

Stuart Russell and Eric Wefald*
Computer Science Division

University of California
Berkeley, CA 94720

Abst ract
In this paper we outline a general approach to
the study of problem-solving, in which search
steps are considered decisions in the same sense
as actions in the world. Unlike other metrics
in the l i terature, the value of a search step is
defined as a real u t i l i t y rather than as a quasi-
ut i l i ty , and can therefore be computed directly
f rom a model of the base-level problem-solver.
We develop a formula for the expected value
of a search step in a game-playing context us­
ing the single-step assumption, namely that a
computation step can be evaluated as it was
the last to be taken. We prove some meta-
level theorems that enable the development of a
low-overhead algori thm, MGSS*, that chooses
search steps in order of highest estimated ut i l ­
i ty. Al though we show that the single-step as­
sumption is untenable in general, a program
implemented for the game of Othello soundly
beats an alpha-beta search while expanding sig­
nif icantly fewer nodes, even though both pro­
grams use the same evaluation function.

1 In t roduc t ion
The R A L P H (Rational Agent wi th Limited-Performance
Hardware) project is a long-term research effort aimed
at understanding the effects of finite computational re­
sources on the performance of, and the design of algo­
r i thms and architectures for, artif icially intelligent sys­
tems. Rather than viewing AI as the production of
human-like or commercially valuable programs, or as
the design of systems containing only true beliefs, we
see the AI problem as that of designing systems capable
of achieving opt imal behaviour (in a decision-theoretic
sense) under computational constraints in complex task
environments. Such a constrained optimization prob­
lem may have very different solutions from the compu­
tationally unconstrained case, for which a pure logical
(or, more generally, decision-theoretic) implementation
may be appropriate. We therefore view the problem of
finite resources for real-time behaviour as central to A I ,
rather than something that necessitates undesirable ap­
proximations to a 'perfectly rat ional ' agent.

*This research was carried out with support from the
AT&T Foundation and the Computer Science Division of the
University of California, Berkeley. The second author is sup­
ported by a Shell Foundation Doctoral Fellowship.

In this paper, we outline the application of decision
theory to the problem of reasoning about which compu­
tations to perform. The theory can be used to analyze
the rationality of bounded agents, or to design optimal
algorithms for real-time situations — situations in which
the u t i l i t y of an agent's actions depends significantly on
the time at which they are carried out, rendering perfect
deliberative rationali ty inoperable. We apply the theory
to design a game-playing algori thm that selects nodes to
expand according to the expected ut i l i ty of the expan­
sion, and can beat alpha-beta w i th the same evaluation
function while searching fewer nodes.

2 Opt imal al location of computat ional
resources

We are studying the extent to which situation-dependent
control of reasoning can benefit an agent operating in
real t ime. In such an agent, choices concerning which
computation to carry out, if any, must be made by meta-
level computations. This, of course, leads to the poten­
tial for an infinite regress of meta-levels. This regress
can be avoided by, among other methods, the use of ap­
proximate decision-making (the outcome of which is not
guaranteed to be optimal) at some point in the hierarchy,
or by carrying out an unbounded computation at design
time. For the tasks faced in AI the variety of situations
and time pressures suggests that a combined approach
is appropriate.

The basic proposal here is quite simple: choose com­
putations in the same way that any other actions are
chosen. Decision theory is the standard normative the­
ory for actions, so let's apply it to computations too.
This idea, although similar to the concept of informa-
tion value in decision science [RaifTa and Schlaifer, 19(51,
Howard, 1966, Good, 1968], is relatively new in AT. In ad­
di t ion, gett ing the model r ight and put t ing it into prac-
tice are not such easy tasks.

In this section, we give a general formula for the ex­
pected value of a computation. The following section
discusses ways in which the formula must be modified
to make it usable by a l imited rational agent that has
only estimates of uti l i t ies and their expectations. Subse­
quent sections develop the analysis needed, and the sim­
plifying assumptions employed, to create a game-playing
program along these lines.

Notat ion: The agent's goal is to maximize its utility
function U(w) on states of the world w. We denote the
outcome of an action A performed in a situation W j by
[A, Wj}, or simply [A] if performed in the "current" situa-

334 Search

t ion. At any given time the agent has a default base-level
action, α, which is the action that currently appears best
to the agent. At the same time it has available to it a
set of possible computational actions Sj, wi th which it
can continue its deliberations. Computation Sj might
lead the agent to revise its choice of default action; the
new default action wi l l be called αs j The meta-level
decision problem for the agent is thus to decide among
the immediate options a, S 1 , . . . , Sk .

Computat ional actions are distinguished from base-
level actions in that they directly affect only the agent's
internal state. We define the net value of a computa­
tional action to be the resulting increase in uti l i ty, com­
pared to the u t i l i t y of taking the default action instead:

(1)

If Sj is a "complete computat ion", i.e., is not followed
by any further deliberation, then the ut i l i ty of state [Sj]
is just the u t i l i t y of the action αs j chosen as a result of
the computation,1 , given that it is to be performed after
the computation is complete, i.e., in the state [Sj]:

(2)

In the general case, the computation wi l l bring about
changes in the internal state of the agent that wi l l af­
fect the value of possible further computational actions.
We call such a computation a "part ial computat ion". In
this case, we want to assess the ut i l i ty of the internal
state in terms of its effect on the agent's ult imate choice
of action. Hence the ut i l i ty of the internal state is the
expected u t i l i ty of the base-level action which the agent
wi l l ul t imately take, given that it is in that internal state.
This expectation is defined by summing over all possible
ways of completing the deliberation from the given inter­
nal state. We denote a computation sequence consisting
of computation S1 followed by computation S2 by the
expression S1 .S2 . Thus, lett ing T range over all possible
complete computat ion sequences following S j , and αT
represent the action chosen by computation sequence T,
we have

(3)

where P (T) is the probabil i ty that the agent wil l perform
the computation sequence T.

3 Est imat ing the Value of
Computa t ion

How should a limited rational agent use these equations
to evaluate its own computational actions? The agent
cannot simply apply equation 3 directly, because it does
not know the exact uti l i t ies of its base-level actions. (I f
it did, it would not need to deliberate at all.) We wi l l
assume the agent makes a numerical estimate U([A]) of
the ut i l i ty of its available actions, and that deliberation
proceeds by revising these estimated util it ies. At the
end of its deliberations it picks the action wi th high­
est estimated ut i l i ty. This model applies to, or can be
adapted to, most search algorithms in A I . Since it is im­
portant to distinguish the different ut i l i ty estimates as

l We ignore learning as a means of generating utility for
future situations.

computation proceeds, we wil l use S to denote the base-
level computation sequence carried out up to the current
state. Then QS represents an estimate of a quanti ty Q
calculated by computation S. Thus the estimated utility
of a computation Sj is given by:

T

Here Ai ranges over all of the possible base level actions
in the current state; hence αT is just the action which
maximizes US.sj.T in the state [S j .T] .

Finally, the estimated net value of computation Sj is
given by

(5)
Of course, before the computation Sj is performed,

V(Sj) is a random variable. Although the agent can't
know ahead of time what the exact value of V(Sj) wi l l
be, given sufficient statistical knowledge of the distribu­
tion of V for similar actions in past situations, the agent
can take its expectation,

I (6)
Such an agent can thus employ meta-level rationality
in its control decisions. The principle of rationality—
choose the action wi th highest estimated expected
uti l i ty—applied to the meta-level decision problem is
equivalent to:

1. Estimate the expected value E[V(Sj)] of each com­
putational action Sj.

2. If any computational action has positive expected
value, take the one wi th highest expected value.
Otherwise, cease computing and take the current
base-level action, α, with highest expected ut i l i ty.

Thus far we have captured the real-time nature of
the environment by explicitly including the situation in
which an action is taken in the argument to the ut i l ­
i ty function. Such a comprehensive function of the total
state of affairs captures all constraints and trade-offs; in
particular, any form of time constraint can be expressed
in this way. However, the inclusion of this dependence
on the overall state significantly complicates the analy­
sis. Under certain assumptions, it is possible to capture
the dependence of ut i l i ty on time in a separate notion of
the cost of time, so that the consideration of the qual­
i ty of an action can be separated from considerations of
time pressure.

In applications, typically we are given some value es­
timator that is independent of time and takes just the
action outcome as argument. We wi l l call such a function
the estimated intrinsic utility, denoted by Uj. We can1then define a function TC, for t ime cost, that simply ex­
presses the difference between total and intrinsic ut i l i ty,
assuming this difference depends only on the temporal
duration |Sj | of the computation:

(7)

Consider again the case of a complete computational
action Sj, where Sj results in taking action αSj, where

Russell and Wefald 335

4 Speci f ic base- level p rob lem-so lve rs
Up to this point, we have been working at a very general
level, making no assumptions about the nature of the
base-level decision-making mechanism. The above equa­
tions are applicable to a brain or a pocket calculator,
in principle. Natural ly, there are some attr ibutes of cer­
tain mechanisms that make them amenable to meta-level
control. The overall computat ion should be modular, in
the sense that it can be divided into 'steps' that can be
chosen between; the steps must be able to be carried out
in varying orders. The steps can of course have any grain
size.

We now look at some particular systems in more
detai l .2 We wi l l focus on the use of the complete-
computation formula, equation 8. This equation gives
the net benefit of the computation as a random variable.
In order to compute its expectation, we need informa­
tion about the distr ibut ion of possible effects of a com­
putat ion on the system's value estimates for its available
actions.

In a search program, computation typical ly proceeds
by expanding 'frontier nodes' of the partially-grown
search tree. The value estimates for actions are cal­
culated by backing up values f rom the new leaf nodes
through their parents. The effect on the value estimate
for an action therefore is composed of two aspects: 1) the
effect on the value of the leaf nodes that are expanded,
and 2) the transmission of this effect back through the
tree.

2Space limitations prevent more than a cursory justifica­
tion of the results. For more detailed analysis, see [Russell
and Wefald, 1988b].

The first component depends on the nature of the node
being expanded, and the nature of the expansion compu­
tat ion. Statistical information on the probabil i ty distr i­
but ion can therefore be acquired by induction on a large
sample of similar states using the same type of expan­
sion computation. The second component is an analytic
function of the state of the tree (in particular, the cur­
rent value estimates for the nodes on the path to the
root, and their children) that depends on the backing-
up method used by the search program.

In this paper, we consider systems that make decisions
using simple search algorithms. In order to make calcula­
t ion of the expected value of computation tractable, we
wi l l introduce explicit simplifying assumptions. These
are related to what Pearl [1988] has called a "myopic
pol icy". The notation used wi l l be as above, wi th the
addit ion of B1,B2, etc., to denote current second-best
action, current third-best, and so on.

M e t a - g r e e d y a l g o r i t h m s
Expl ic i t consideration of all possible complete sequences
of search steps is clearly intractable. The obvious simpli­
fication is to consider single computat ion steps (remem­
ber that a single step can represent an arbitrary amount
of computat ion, but wi thout interleaved control), and to
estimate their ul t imate effect; we then choose the step
appearing to have the highest benefit. Such meta-greedy
algorithms effectively have a fixed meta-meta-level policy
of a depth-l imit of 1 on the meta-level decision problem.

S ing le-s tep a s s u m p t i o n
The expression for the estimated ut i l i ty of a computation
(equation 4) can be used directly wi th a meta-greedy al­
gor i thm, but it is often somewhat hard to evaluate, par­
t icularly when the future availability of computational
resources is hard to estimate. The computation is greatly
simplified if we assume that it is reasonable to act as
if we wil l take at most one more search step. In this
case we can use the complete-computation formula 8.
We call this the single-step assumption. The assump­
tion sometimes fails. Recall that a complete computa­
t ion has no value unless it changes the choice of move;
thus the single-step assumption wi l l predict that cer­
tain search steps can have no value, whereas often those
steps enable other steps to become valuable. We wi l l see
that, although it makes the expected-value computation
tractable, this assumption also places certain l imitations
on the depth of search in some domains, including game-
playing.

It is worth emphasizing here that if either the meta-
greedy or single-step assumptions were completely re­
laxed, the other would become completely true. That
is, if it were possible to consider all possible sequences of
computations, then it would be no restriction to consider
those sequences as complete computations. On the other
hand, if we could accurately compute the full expected
value of a single computation step considered as a possi­
bly part ial computation, we would thereby be implici t ly
evaluating all possible continuations of that computation
step, and hence we would not need to consider explicitly
all possible computation sequences. Thus, the simpli­
fication lies in employing the two assumptions jo int ly ;
neither alone would be a restriction.

3 3 6 Search

but the distributions are narrow. (This latter case has
received scant attention in the literature.) We illustrate
the three major situations graphically in Figure 2.

6 Game-playing: The MGSS*
algor i thm

In this section, we describe how the ut i l i ty of a computa­
tion can be estimated for two-player games, in which the
basic decision-making algorithm is some kind of looka-
head search using minimax backup. The choice of search
steps is then made so as to maximize the system's overall
ut i l i ty, as determined by the move chosen and the time
at which it is made. A system wi th low-overhead, nor­
mative control of search would be guaranteed to win, on
average, against any other program wi th equal computa­
tional resources and domain-specific knowledge. We be­
lieve such a system can be achieved. In addit ion, we ob­
tain qualitative insight into the nature of efficient search.

We assume a standard evaluation function that is in­
dependent of time factors, and we therefore use the time
cost function described above. The evaluation function is
viewed as an intrinsic expected ut i l i ty function, not as an
estimate of the true value of the position. The true value
for a game such as chess is 0 or ±1 (on a scale in which
1 is a win); the estimated ut i l i ty is a computationally-
bounded, probability-weighted value pwin — Ploss [Good,
1968].

In our analysis [Russell and Wefald, 1988b], we use
both the meta-greedy and single-step assumptions, wi th
individual node expansions as the chosen computational
steps. We have developed an efficiently computable for­
mula for evaluating the integrals in equations 9 and 10.
The principal tool is the re-expression of the probability
distributions p iJ in terms of the error distr ibution pjj
at the leaf node affected by the search action Sj,. Since
pjj is a function of only the board situation, and not of
tne game tree, it can be estimated from empirical data
on the results of previous tree searches. A computable
expression for the integral is then obtained by analyzing
how the change in value of the leaf node is propagated
to the top level.

The proof of correctness of the following equations,
corresponding to equations 9 and 10, depends on a the­
orem proved in [Russell and Wefald, 1988b] that gives a
simple recursive definition for the nodes that are Rele­
vant to a top-level move, that is, nodes whose expansion
can affect the top-level move's value (cf. singleton con­
spiracies in [McAllester, 1988]). The value of expanding
any other node is strictly 0, and our algori thm derives
considerable efficiency from restricting its attention to
only relevant nodes.

The expected value of expanding a leaf node j in the

Russell and Wefald 337

7 Implementat ion of MGSS*
We have used the game of Othello for our experiments in
this domain. In a direct implementation of the analysis
of the previous section, the entire search tree is kept in
memory, and the tree is grown one step at a time by
choosing, at each step, a t ip node to expand, and adding
its successors to the tree.

The following information is maintained for each node:

1. a link to the top-level move, if any, to which the
node is Relevant;

2. the SearchValue of the node, i.e., the expected gain
in u t i l i t y f rom expanding the node, for leaf nodes;

3. the Game Value of the node, i.e., its StaticValue if
it is a leaf node, or its current backed-up value oth­
erwise;

4. the 6 value for the node, as defined above;

5. a l ink point ing to the Parent of the node; and

6. if the node has already been expanded, a pointer
to a list containing the node's Children. The list is
maintained in order of GameValue.

Relevant leaf nodes wi th positive Search Value are main­
tained in a Queue, in decreasing order of SearchValue.

A l g o r i t h m M G S S *

1. Generate the successors of the Root. Place
the Relevant ones in the Queue ordered by
SearchValue. For each successor, set its
GameValue equal to its StaticValue. Place the
successors in the Children list of the Root ordered
by GameValue.

2. Remove the first element j of Queue. Compute
E(A(Sj)) using equation 11 or 12. Estimate the
time-cost TC of expanding node j. If ~
TC] < 0 then return the first element in the
Children of the Root as the best move.

3. Otherwise
(a) Carry out the computat ion Sj ;. For each result­

ing leaf node, set GameV alue = StaticValue.
(b) Place the new leaf nodes, ordered by

GameV alue, in the Children list of j.
(c) Back up the GameValues of the successors to

j ' s GameV alue. If this changes, re-insert j in
its parent's Children list and continue backing
up recursively, stopping at the Root. When­
ever a Children list is re-ordered, or the best
move in such a list increases its value, or the
second-best move in such a list decreases its
value, recompute the appropriate S values and
Relevant node pointers. The latter step may
involve updating Queue membership.

(d) Add j's Relevant successors, ordered by
SearchV alue, to the Queue.

4. Go to 2.
A l l this means that the overhead for controll ing the

search is small, provided that the integral expression in
equations 11 and 12 can be evaluated quickly and ex­
actly. We now show how this is done.

The leaf-node error distr ibutions (the functions pjj in
the integral) are generated by prior statistical sampling.
For search steps consisting of a single node expansion,
such as are used in MGSS*, the error is simply defined
as the difference between the leaf's static value and its
backed-up value f rom a depth one search. The data
points are gathered into buckets according to selected
features of the board situation. 35,000 data points were
gathered into roughly 1000 buckets. A different error
density function is created for each bucket. The func­
tions appear to be normal curves to a reasonable degree
of approximation, and can thus be represented by two
parameters, the mean u and standard deviation a.

Given normal curves Nua for the density functions pjj
and pkk, we can simplify equations 11 and 12 consider­
ably, after some mathematical effort. The new equations

338 Search

corresponding to equation (12). Here Φ is a tabulated
integral of the normal curve No,1 Armed wi th these
formulae, computing search values is a good deal quicker
than computing the static evaluation function, enabling
MGSS* to perform wi th very low overhead.

The t ime cost estimation function can also in princi-
ple be determined empirically. Assume that the average
time needed to perform a search step is, say, a millisec­
ond. Then we want to determine empirically the effect
of wasting a millisecond, in a given game situation, on
the probabil i ty of ult imately winning the game. We then
have a common ut i l i t y scale for moves and time costs.
In practice, it is sufficient to have C be an appropriate
function of the number of seconds per move remaining,
such that a loss on time is impossible. The appropri­
ate sort of time-cost function wi l l depend heavily on the
particular rules under which the game is played, such
as whether there is a per-move or only a per-game time
l imit , and so on. For the purpose of testing the im­
plementation, we set a per-game time l imi t in terms of
numbers of nodes expanded, and set the time cost to be
an appropriately parameterized inverse function of the
average t ime remaining per move.

8 Performance of MGSS"
The qualitative behaviour of the MGSS* algorithm
is much like that described for the general decision-
theoretic case, wi th two distinct classes of search ter­
mination points (see figure 2). The search is highly se­
lective, w i th some branches reaching depths of 20.

Our experiments indicate that, wi th moderately small
time allocations, MGSS* is significantly better than an
alpha-beta search using the same evaluation function,
even though MGSS* generates significantly fewer nodes
of search. Our results vs. alpha-beta search to depths
2, 3, and 4 are summarized in table 1. For each search
depth, the time cost function of MGSS* was adjusted to
allow the algor i thm to generate about as many nodes on
average as alpha-beta; beyond depth 2, however, MGSS*
chose to generate far fewer nodes. Each tournament con­
sisted of 32 games played from 16 different starting posi­
tions, w i th the two algorithms alternately playing black.
(One game against depth-2 a-/? was tied.)

Note that MGSS* is roughly even wi th depth-2 a-/3,
and searches slightly more nodes; evidently, at this depth
a-/? is wasting very l i t t le of its search effort. However,
at greater effort l imits, MGSS* plays significantly better,
while doing much less search, in terms of nodes gener­
ated. In terms of t ime used, the performance of MGSS*
is less impressive, using more time at depths 2 and 3, and
slightly less at depth 4. It is important to emphasize that
very l i t t le effort was made to optimize the implementa­

tion of MGSS* wi th respect to execution t ime, and we
are confident that opportunities exist for considerable
savings by improving the data structures used, replacing
sorted lists wi th hash tables and binary search trees, and
so on.

In terms of nodes generated, we expect further im­
provement wi th more work on the features used to clas­
sify the error density functions. The number of nodes
searched can probably be further reduced by reducing
the unit of computation to be the generation and evalu­
ation of a single successor node, as in alpha-beta, rather
than the expansion of a node. Our algori thm wi l l also
make better use of a more reliable evaluation function
— as the errors tend to zero, the value of search wi l l de­
crease, and in the l imi t the algorithm wi l l only search to
depth 1. An interesting possibility is that the evaluation
function of BKG [Berliner, 1980] has effectively reached
this level already: because of the dice rolls, the branch­
ing factor in backgammon at the root is 20 but at all
other levels is close to 400, so that no current program
uses a significant amount of search. Jeff Conroy [Con-
roy, forthcoming] has extended MGSS* to handle prob­
abilistic outcomes, and init ial results for backgammon
indicate that additional search sti l l pays significant div­
idends.

Although MGSS* seems extremely effective for small
time allocations, the single-step assumption eventually
begins to bar almost all nodes from being expanded as
the tree grows larger. Hence comparisons against a much
deeper-searching alpha-beta are unfavourable. Prelimi­
nary results indicate that MGSS* plays a slightly better
than even game against depth-5 alpha-beta, while gen­
erating about 1/6 as many nodes of search. Against
depth-6 alpha-beta, MGSS* appears to be incapable of
generating large enough search trees to play effectively.
Extension of the algorithm to consider sets of search
steps may overcome this problem. We are also investi­
gating the effect of applying MGSS* to selectively extend
search beyond the depth l imit of an alpha-beta search. A
simpler form of this method appears in the work on sin-
gular extensions by Campbell [Campbell, 1988], and has
proved surprisingly effective in the H I T E C H and Deep
Thought chess machines.

9 Related work
A detailed comparison with related work on selective
search appears in [Russell and Wefald, 1988b]. Here we
can only point the reader to the pertinent literature.

Many sophisticated programs have been constructed
for game-playing, where the infeasibility of search to ter­
mination has long been accepted as a fact of life. In some
excellent early work, statistician I. J. Good [1968, 1977]
proposed a decision-theoretic analysis both of move
choice and search step choice, but the proposal was never
implemented.

Berliner [1979] pointed out that alpha-beta undertakes
needless search when only one legal move is available, or
when one move can be seen to be better than all others
even without search. His B* algorithm attempts to find
the shortest 'p roof , based on heuristic value bounds,
that one move is best. Palay [1982, 1985] has given
heuristics for choosing how to expand the tree to pro­
duce a 'p roo f quickly. In our terms, B* is using the
wrong ut i l i ty function at the meta-level, as i l lustrated

Russell and Wefald 339

by the case of symmetrical moves, where one should toss
a coin rather than at tempt to prove one better.

Rivest's M i n / M a x Approximation algori thm [Rivest,
1988] expands nodes that have the highest effect on the
root value. This only weakly relates to the expansion's
actual ut i l i ty . McAllester's "Conspiracy Numbers" ap-
proach [McAllester, 1988] approach is more sophisti­
cated, considering the set of nodes that must change
their values to increase or decrease the root value be­
yond given bounds.

10 D iscuss ion
The principal contributions of the paper are the follow­
ing:

• The rat ional choice of search steps was defined and
operationalized. Both meta- and base-levels should
use the same ut i l i ty function. This leads to im­
proved choice of search steps compared to several
other algorithms, and unifies pruning and termina­
t ion in a natural framework.

• A class of meta-greedy algorithms was defined, us­
ing the single-step assumption, and a general for­
mula for the value of search was developed in this
context. The formula depends on a notion of er­
ror in evaluation that is both coherent and directly
available f rom empirical data.

• Theorems were proved that allow for efficient im­
plementation and for computation of search values
using only simple, parameterized distributions.

• Good performance of the MGSS* algori thm, despite
its restrictive assumptions, suggests that extensions
of the approach to cover sequences of search steps
may yield very high-quality algorithms that are also
theoretically well-founded.

We also hope this work wi l l help to reduce the gap be­
tween research on game-playing and that on more gen­
eral types of decision-making.

As usual in computer science, justi f ication is the pre­
lude to synthesis, and we expect more new algorithms to
appear as researchers prove various meta-level theorems
concerning search action sequences which provide the ba­
sis for efficient implementations. Appl icat ion to single-
agent search [Wefald and Russell, 1989a] has yielded an
algori thm wi th excellent real-time search behaviour, and
a proof that best-first search is in fact opt imal in the
sense of performing the most valuable node expansions
given the information available.

Several problems and research tasks remain. The im­
plications of our approach for learning techniques are be­
ing investigated [Wefald and Russell, 1989b], as are its
implications for the choice of backing-up procedure. We
would like to apply the theory to provide opt imal control
of general decision-theoretic calculations, for example in
an influence diagram system [Pearl, 1988]. However, the
current analysis relies on the unit of computation only
affecting the value of one top-level action, whereas re­
fining a probabi l i ty value, for example, might affect the
value of several actions. Other extensions are needed to
handle the case where t ime cost cannot be treated as in­
dependent of move chosen. The most serious theoretical
problem is the need for the single-step assumption. The
theory of 'conspiracy numbers' developed in [McAllester,
1988] may be of some help here.

References
[Berliner, 1979] Berliner, H. J. (1979) The B* Tree Search

Algorithm: A Best-First Proof Procedure. Artificial In-
telligence 12.

[Berliner, 1980] Berliner, H. (1980). Backgammon computer
program beats world champion. Artif icial Intelligence,
14, 205-220.

[Campbell, 1988] Campbell, M. (1988) Singular Extensions:
Adding Selectivity to Brute Force Searching. In Pro­
ceedings of the A A A I Symposium on Computer Game-
Playing, Stanford, CA, 8-13.

[Conroy, forthcoming] Conroy, J. M. (forthcoming)
Decision-theoretic control of search in probabilistic do­
mains. MS Report, Computer Science Division, Univer­
sity of California, Berkeley, CA.

[Good, 1968] Good, I. J. (1968) A five year plan for auto­
matic chess. Machine Intelligence, 2.

[Good, 1977] Good, I. J. (1977) Dynamic probability, com­
puter chess and the measurement of knowledge. Ma­
chine Intelligence, 8.

[Howard, 1966] Howard, R. A. (1966) Information value the­
ory. IEEE Transactions on Systems Science and Cyber­
netics, SSC-2(1), 22-26.

[McAllester, 1988] McAllester, D.A. (1988) Conspiracy
Numbers for Min-Max Search. Artificial Intelligence,
35, 287-310.

[Palay, 1982] Palay, A. J. (1982) The B* Tree Search
Algorithm—New Results. Artif icial Intelligence 19.

[Palay, 1985] Palay, A.J. (1985) Searching with Probabilities.
Marshfield, MA: Pitman Publishing Inc.

[Pearl, 1988] Pearl, J. (1988) Probabilistic Reasoning in In­
telligent Systems: Networks of Probable Inference San
Mateo, CA: Morgan Kaufmann.

[Raiffa and Schlaifer, 1961]
RaifFa, H, and Schlaifer, R. (1961) Applied Statistical
Decision Theory. Cambridge, MA: Harvard University
Press.

[Rivest, 1988] Rivest, R.L. (1988) Game Tree Searching by
Min/Max Approximation. Artificial Intelligence 34.

[Russell and Wefald, 1988a] Russell, S. J., and Wefald, E. H.
(1988a) Multi-Level Decision-Theoretic Search. Pro­
ceedings of the A A A I Symposium on Computer Game-
Playing, Stanford, CA, 3-7.

[Russell and Wefald, 1988b] Russell, S. J., and Wefald, E. H.
(1988b) Decision-theoretic control of search: General
theory and an application to game-playing. Technical
report UCB/CSD 88/435, Computer Science Division,
University of California, Berkeley, CA.

[Russell and Wefald, 1989] Russell, S. J., and Wefald, E. H.
(1989) Principles of Metareasoning. In Proceedings
of the First International Conference on Principles of
Knowledge Representation and Reasoning, Toronto, On­
tario: Morgan Kaufmann.

[Wefald and Russell, 1989a] Wefald, E. H., and Russell, S. J.
(1989a) Estimating the Value of Computation: the Case
of Real-time Search. A A A I Spring Symposium on AI
and Limited Rationality Working Notes Stanford, CA,
March, 1989.

[Wefald and Russell, 1989b] Wefald, E. H., and Russell, S. J.
(1989b) Adaptive Learning of Decision-Theoretic
Search Control Knowledge. Sixth International Work­
shop on Machine Learning, Ithaca, NY, June, 1989.

340 Search

