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ABSTRACT

In equality-based binary resolution,
the viability test is used as a
decision mechanism to select
disagreement sets and also to define
the RUE unifier. In this paper we
solve the problem of non-termination
of the viability test by applying
the theory of And-Or graphs.

1. INTRODUCTION

In resolution by unification and equality
(RUE resolution), we augment the standard
theory of binary resolution due to
[Robinson,1965] by the notion of
disagreement sets, to incorporate the
axioms of equality into the definition of
resolution and eliminate the use of these
axioms in refutations.

In RUE resolution we resolve to
inequalities when the mgu does not exist;
for example, the E-unsatisfiable set:

S: 1. P(f(a),g(b})
2. P(f{c),g(d))
E. a=>
. b=2¢
5. g(c) = g(d)

is refuted by:
P(f{a),g(b))

|.__

P(r(e),a(d))

afge v g{b) ¥ gld)
—  &le) = &(q)
afe v bfe
| a=b
b #c¢c (merging)
} b=c
a
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RUE refutations are succinct and
typically less than half as long as
corresponding refutations with the
equality axioms. Furthermore, RUE
resolution is complete without using
paramodulation or the equality axioms.
Experiments with a theorem prover based
on this method have produced superior
results which are described in
[Digricoli and Harrison,1986].

2. RUE Resolution

The basic definitions underlying RUE
resolution are the following:

A Disagreement Set of a Pair of Terms:

"If s,t are non-identical terms,

the set of one element, a pair, [s:t],
is the origin disagreement set.

If s,t have the form:
f(aq,...,ax),f(by...,bg), then the

set of pairs of corresponding arguments
that are not identical is the topmost
disagreement set. Furthermore, if D
is a disagreement set, then

(D - [e}) U D is also a disagreement
set, where e is an element of D and

D is a disagreement set of e."

For example:

origin dis. set

{r(a.g(b)lrftctgc¢))
arc, g(b):g(d) topmost
a;c, b:d bottommost

A Disagreement Set of

Complementary Literals:

"A disagreement set of complementary
literals, P(sl.....sn).P(tl....,tn).

is defined as the uniom

D.

D=11

nes

i
where Di is a disagreement set of the

corresponding arguments, si'ti .



The topmost _disagreement set of
P(sl,...,s ), P(tl.....t ) is the set of

pairs of correspending arguments that are
not identical. Applying the substitution
axiom for predicates, we can state that:

P(S)se0018,) a ?(tl,....tn) -~ D

where D now represents a disjunction of
inequalities specified by any disagreement
set of P,not P, 1In resolution by unifi-
cation and equality we can resplve P and

P immediately to D. For example, we

may resolve:

P(f(a),g(b))}

——  B(f(c),e(d)

D

in four distinct ways dependent on our
choice of disagreement set; namely to any
one of the folleowing resolvents:

fla)£f(c) v e(b)Aa(d)
agc v g(b)feld)

f{a)gf{c) v bFd
agc v b#d

It is in fact, the second resolvent which
is required to refute 3 in the previocus
example, Hence, RUE resolution reguires

a decision mechanism to select the approp-~
riate disagreement in resolving comple-
mentary literals, [furthermore, we show in
LDigricoli and Harrison,198067 that the
substitution to be applied before resclv-
ing in a refutation may be neither the mgu
(whernn it exists) nor the mgpu, the most
general partial unifier, & relaxed form of
the mgu which permits us to pass over
irreducible disagreements. Instead we
define the RUE unifier as the appropriate
substitution.

In the theory of RUE resolution in
strong form, both the decision mechanism
to select disagreement sets and the
definition of the RUE unifier depend on a
viability test defined as follows:

"A Disagreement Set D is Viable
in respect to a set of clauses 5
only if:

for each si%ti corresponding to D,

we have that for 84 there is a term a

which is the argument of a positive
equality literal in 5 such that s,
either unifies with & or matches

a on leading function symbol. In

the latter case, &.:a must have a
viable dlsagreemeni set below the
origin disagreement. olmllarly for t
and some other term b which is the
argument of a p031t1ve equality
Jiteral in S."

For example, in respect to:

St

= g(d)

the complementary literals, P and P,
have only one viable resolvent:

b) #g{d) .

afe is viable since both a and ¢ unify
with arguments of equality literals in 5.
¢(b)#e(d) is viable since g(b) matches on
function symbol with g{¢) 1in clause 5
(with b:¢ being viable). Furthermore,
g{d) unifies with g{d) in the same clause.
Hence, the entire resglvent is viable and
leads to the refutation already stated.

afe v gl

Notice, however, that: afc v _bfd
ia not viable as a respglvent of P,P, since
the inequality b#d is not viable since d
does not unify with the argument of an
equality literal in S. Furthermore,
a)#T(c) v glb}fe(d) is not viable
since T(a)#f({c) i= not viable.

Byviable we mean "can possibly
articipate in & refutation*., In
Digricoli and Harrison,1986] we prove
that if an inequality is not viable, 1t
either cannot participate in a refutation
of 5 or must be reduced to a lower
disagreement. We also state that the
definition ¢f viability is recursive and
the recursive iteration is finite, since

each of the terms &. and 1. has a finite

nesting of functionlsymbolé. The recur-

sion peels these off and thus ierminates,

It is precisely here that the definition
of viability is flawed since the last
statement is not true. lw and Subrahmanian
[1988] point out counter examples which
show that a non~terminating iteration can
oceyr in applying the viability test. The
following clause set, for example, leads
to non-terminating iteration:

St

P and P can only resolve to f(a,b)#d ,

but this inequality when tested for
viability leads to a non-terminating
iteration: f(a,b) matches on function
symbol with f£{f(a,b),c) and we must test
a#f(a,b) and bfc for viability. But the
first inequality reintroduces f(a,b) which
again must be matched with f{f(a,b),c),

ad infinitum,
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Since in RUE theory, the concept of
viability plays a central role in defining
the RUE unifier and the topmost viable
disagreement set, the possibility of non-
termination undermines the theory of RUE
resolution in strong form unless we can
show how to avoid non-termination. The
primary subject of this paper is to show
how the theory of And-Or graphs due to
[Chang and Slagle,1971] can be used to
solve this problem.

3. The Theory of And-Or Graphs

A node
problem to be solved.
And-expansion:

in an-And-Qr graph represents a
We define an

as denoting that problem p_ is solved if
the logical And of subprobiems P11Pos»+sPy
ig solved, i.,e., we decompose p "in to
subproblems PysPpseees Py all of which
must be solve& ﬁ order™ to solve P, -

Similarly we define an Or expansion:

to denote that P,
the subproblems

is solved if any one of
pl!p2|¢-o|p 13 SOVed

Mixed expansions are permitted so
that:

denctes that P, becomes [pla\ p2) V Pse

In an And-Or graph we repeatedly
perform decomposition until we reach
primitive subproblems which are known to
be solvable or unsolvable. These are the
leaf nodes .of the graph. The entire graph
represents a system of boolean substitu-
tions for the root node.

A set of leaf nodes, 'the solution of
all of which implies the solution of the

root node, is called an implicant of the
root. One implicant is said to subsume
another implicant if it is a subset of

that implicant. For example, if we denote
nodes by numeric indices, then {7,8}
subsumes {2,7,8,9} and, furthermore, since
{7,8) is a simpler solution, we should
discard {2,7,8,9}. Subsumption will play
an important role in our work.
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The situation becomes
because of circularity.

interesting
The And-Or graph:

has no solution due to circularity.
But the cyclic And-Or graph:

1

has one solution: ps * p7

An And-Or graph with many nodes and
cycles may represent a very complex
problem decomposition. The following
algorithm stated by Chang and Slagle will
compute the implicants of an arbitrary
And-Or graph:

Implicant Algorithm;

1. Initialize the current formula
to the root node.

2. Select any non-leaf node in the
current formula (for example, the
lowest numbered node) and substitute
its boolean expansion as stated in the
And-Or graph, for each occurrence of
this node in the current formula.

3. Remove from the current formula any
implicant which is subsumed by another
implicant in the current formula or by
an implicant which previously appeared
in the current formula.

4. Repeat steps (2) and (3) until the
current formula either vanishes (there
is no solution for the root due to
cycles in the graph) or only leaf nodes
appear in the current formula. In the
latter case, the final state of the
current formula, when no further
substitutions are possible, represents
a disjunction of the alternative
implicants of the And-Or graph.

For example, consider the And-Or graph
taken from [Nilsson,1971f p.126] :



/',/cl}\
4 /z\e_\-/&/g\ ,
8 9/\A B C/\D

E

to which we apply the impliecant
algorithm:

1
23
43 v 53
Le v 47 v 56 v 57
36 v B6 v 37 v B7 v 56 v
6v76vE86veE? VT vEB?V 56 v 57
6 v 7 { subsumption)
2B v 7
4B v 5B v 7
3B vEBBvV 5B v 7
6B v 7B v 8B v 5B v 7
88 v 5B v 7 { subsumption)
88 v 9B v AB v 7
8B v 9B vABVCvVvD
EFB v 9B v AB v C v D all leaf nodes

The algorithm converges to five distinct
implicants and subsumption was used to
filter out the effect of the cycle in
the graph.

Chang and Slagle prove that their
algorithm always converges to solution
implicants or to the empty formula,
irrespective of cycles in the graph.
Nilsson who gives a good treatment of
And-Or graphs in [I971] fails to mention
the implicant algorithm which seems to be
absent from most texts in artificial
intelligence.

4, And-Or Graphs Applied to Viability

Consider our previous clause set:

St -_(f(a b))
. P(d)
3. a=>mn
b4, b = ¢
5, f(f(a,b),c) =d

Can 8 be refuted?
resolution is:

The only possible

p(f(a,b))

|— F(d)
f(a,b) £ d

so the question arises: is this inequality
viable? We have previously shown that the
viability test does not terminate when
applied to this inequality. In point of
fact, this inequality is not viable since
we cannot deduce f(a,b)=d from S.

If we state the recursive application
of the viability test as an And-Or graph,
we can show that f(a,b)=d is not viable
because the And-Or graph for viability
has no solution, the implicant algorithm
converges to the empty formula:

L
yd\

2 3
£(a, b)/é’f(f(a\b}c) cdid (6))
a ;4 f{a,b)
6 7 ’//A:h\\\‘B
ara (3) b:b (&) crc (4)

In the above, a(3), b{4), e(&) and 4(5),
dericte the clause numbers in which
unification occurs. We apply the
implicant algerithm fto the above:

1
23
453
6253 (subsumed by 23)
empty formula

The reader should review the defini-
tion of viability and then follow the
decomposition that occurs in the And-Or
graph which simply traces the recursive
application of the viability test. The
And-Or graph contains no duplicate nodesj
hence, in expanding node 4 we cycle back
to node 2, creating a cyclic graph. All
the circularity which occurs during the
viability test will produce cycles in the
And-Or graph which are analyzed by the
implicant algorithm to determine viability.

We impose the condition that the nodes
of a viability graph be mutually distinct
so that if a successor node already exists
in the graph we arc back to that unique
representation in the graph. The leaf
nodes of a viability graph will necessarily
be either unsolvable argument nodes (the
viability test is not satisfied) or
solved unification nodes (a term unifies
with the argument of an equality literal).
The root inequality is viable if and only
if the implicant algorithm converges to
at least one implicant composed purely of
solved unification nodes. In RUE resolu-
tion in strong form we are required to
resolve to the topmost viable disagree-
ment set (each inequality must be viable
and nearest the topmost disagreement of
the complementary literals resolved.
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The And-Or graph for the viability of
an inequality will always be finite since
the number of distinct terms or subterms
in S is finite and duplicate nodes are not
permitted in the graph.

We will present the strict formaliza-
tion of the concept of an And-Or graph
applied to viability, defining the differ-
ent types of nodes present in the graph,
namely, inequality nodes, argument nodes,
unification nodes, function-matching
nodes and disagreement set nodes, in a
proximate future paper.
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