
An App rox ima te Solver for Symbolic Equat ions

El isha Sacks
Department of Computer Science

Princeton University
Princeton, NJ 08544, USA

A b s t r a c t

This paper describes a program, called NEW­
TON, that finds approximate symbolic solu­
tions to parameterized equations in one vari­
able. N E W T O N derives an ini t ial approxima­
t ion by solving for the dominant term in the
equation, or if this fails, by bisection. It re­
fines this approximation by a symbolic version
of Newton's method. It tests whether the first
Newton iterate lies closer to the solution than
does the in i t ia l solution. If so, it returns this
iterate; otherwise, it chooses a new ini t ia l solu­
tion and tries again.

1 I n t r o d u c t i o n

Research in symbolic equation solving has focused on ex­
act solution methods. The resulting programs, such as
MACSYMA [Mathlab Group, 1983] and PRESS [Bundy and
Welham, 198l], either return an exact solution or fail.
Yet, scientists and engineers routinely must solve prob­
lems that have no exact closed-form solution. They need
an equation solver that finds adequate approximate solu­
tions to such problems, rather than fail ing. In fact, they
often prefer a simple approximate solution even when
a complicated exact solution is available. For example,
the equation x5 + x — k cannot be solved for x in closed
form, but x = k is an accurate approximation to the
solution for k near 0. One might well prefer this approx­
imat ion to the ful l solution of x4 + x = k, which is very
long and complicated. This paper describes an equation
solver, called NEWTON, that finds approximate solutions
to parameterized equations in one unknown.

Numeric analysis provides many algorithms for solv­
ing indiv idual equations approximately, but says l i t t le
about parameterized equations. One could solve numer­
ically for specific parameter values and interpolate the
results. This would provide l i t t le general understanding
and require prohibit ive amounts of computation, espe­
cially for equations containing mult iple parameters. In­
stead, NEWTON constructs a single parameterized solu­
t ion, such as x = k above, for all legal parameter values.
Users can instantiate a solution w i th mult iple parame­
ter values, rather than rederiving it numerically for each
value. They can examine the influence of parameters
on a solution analytically instead of by experimentation.

For example, the approximate solution x — k increases
linearly in k.

2 The A l g o r i t h m

N E W T O N takes as input a parameterized function / (x) ,
an interval domain for x, and a set of constraints. Each
constraint is a strict or nonstrict inequality between real-
valued functions of the parameters, for example k > 1
and k2 < 2 m . The constraints and f(x) must be ex-
tended elementary functions: polynomials and compo­
sitions of exponentials, logarithms, trigonometric func­
tions, inverse trigonometric functions, and absolute val­
ues. NEWTON assumes that f(x) is d i f ferent iate and
has a single, simple root1 in the domain of x. I discuss
mult iple and nonsimple roots in the concluding section.

N E W T O N narrows in on the root in stages. First, it
brackets the root wi thin an interval on which f(x) is
monotonic by the following algorithm:

1. let [a, 6] be the domain of x

2. if f'(x) has a fixed sign on [a, 6] then return [a, 6]

3. let m=(a + b) /2; if f(a)f(m) < 0 then 6 <- m else
a <— m

4. go to step 2.

If a = —oo or b = oo, it chooses a very small or very large
finite number instead. It uses the BOUNDER inequality
prover [Sacks, 1987a, Sacks, 1987b] to test whether the
inequalities in steps 2 and 3 hold for all parameter val­
ues that satisfy the input constraints. The simple root
assumption ensures that the algorithm terminates. For
example, the function f(x) = x4+kx-l6 wi th parameter
k and constraints — 1 < k < 1 is monotone on the domain
x E [1,10] because / ' (x) = 4x3 + k > 4 - 1 = 3 > 0.

Next, NEWTON calculates an init ial approximate root,
X0 for f(x). If f(x) is a sum, it finds the addend of max­
imal absolute value among those containing x, deletes
the remaining addends that contain x, and solves the
resulting equation.2 In our example, the addends x4

and xk contain x wi th |x4| > \kxI so NEWTON solves
x4 - 16 = 0 to obtain x0 = 2. It rejects x0 = -2 be­
cause that root lies outside the domain. NEWTON tries
to calculate x0 for general equations by reducing them

1A root r is simple if f(r) = 0 and f'(r) ^ 0.
2McAllester [McAllester, 198l] uses a similar strategy.

Sacks 431

to sums, as shown in Table 1. These reductions suf­
fice for all rat ional functions and for all the examples
in this paper. If NEWTON cannot reduce a function or
cannot solve a reduced equation, it sets xo to be the
middle of the monotone domain of x. One such case is
f(x) = x * - 2.

Table 1: Reduction rules for calculating x o .

N E W T O N tries to improve upon x0 by applying New-
ton's method symbolically. It tests whether the first
Newton iterate

It must test this condit ion indirectly because r is un-
known. If the test succeeds, NEWTON assumes that x1

approximates r sufficiently well and returns x1. This
assumption normally works well. In our example,

has a relative error of at most 0.0015 for all k that satisfy
the input constraint. A more sophisticated implementa­
t ion could check x1 against an accurate numeric solution
for several parameter values and calculate further iter­
ates when x1 proved inadequate. The stopping condition
would involve a tradeoff between the accuracy and the
complexity of the approximate solution, both of which
grow w i th each i terat ion.

To understand how NEWTON tests x1, suppose first
that / (x) increases monotonically and that xo > r. Fig­
ure 1 depicts the geometric interpretat ion of Newton's
method in this si tuat ion: x1 is the intersection point
between the tangent to / (x) at Xo and the x axis. As
/ ' (x o) decreases f rom oo to 0, x1 decreases f rom xo to
—oo via r. Any x1 > r satisfies equation (1), as Fig­
ure la il lustrates. If x1 < r (Figure l b) , equation (1)
becomes

432 Automated Deduction

for x in [1,2]. The cases of x0 < r and of / (x) mono-
tone decreasing are analogous. The complete test for
equation (1) appears in Figure 2. N E W T O N resolves the
inequalities w i th B O U N D E R as before.

N E W T O N tests progressively narrower intervals unt i l
it succeeds or the interval shrinks beneath a prespecified
w id th . It starts w i th the monotone interval [a, 6] and
repeatedly bisects the distance from X0 to each current
boundary. If the in i t ia l guess really is a good candidate
for i terat ion, the shrinking should eventually make the
test work, at which point NEWTON returns the first iter­
ate. If not, NEWTON must choose a different value for x0

by bisection and start over. If the test had failed in the
example, the next test interval would have been [1.5,6],
spl i t t ing the distance f rom the ends of [1,10] to X0 = 2.

The previous examples are all separable, that is ex­
pressible in the form / (x , i k) = g(x) + h(k). The final
example,

wi th _ demonstrates that NEW-
TON handles nonseparable functions as well. The func­
tion increases monotonically and has a unique root. The
convergence condition holds for all k. Given the modest
constraint NEWTON can calculate x0 = k

and

The relative error of x1 is 0 for k = 0.5, 0.048 for k — 1,
and less than 0.002 for k > 4. One can obtain even bet­
ter results wi th a more sophisticated choice of x o , setting
x = 0 in log(x+Ar), the dominated term of f (x) , and solv­
ing the resulting equation to obtain
N E W T O N does not implement this strategy. Newton's
method appears to work for 0 < k < 0.5, even though
the convergence condition fails. A more experimental
implementation could validate x1 empirically on a large
number of sample parameter values, rather than give up.

Table 3 summarizes the examples in this paper.

4 Conclusions

This paper describes NEWTON, an equation-solver that
finds approximate roots to parameterized functions by
a symbolic version of Newton's method. If this fails, it
turns to a symbolic bisection algorithm. N E W T O N re­
quires that the function have a single, simple root in its
domain. One can handle a nonsimple root, r, of / (x)
by applying NEWTON to / i (x) = / (x) / / ' (x) , which has a
simple root at r. One can find mult iple roots by part i ­
t ioning the domain into intervals on which / (x) is mono-
tone, hence has at most one root, and applying NEWTON
to each subinterval [a, 6] for which f(a)f(b) < 0. I de­
scribe a program that calculates the monotone intervals
elsewhere [Sacks, 1985].

N E W T O N can only find a root r of / (x) for which the
sign of / ' (r) is fixed for all legal parameter values. Oth­
erwise, it can neither bracket the root wi th in a monotone
domain nor prove that Newton's method converges. For
example, the function / (x) = (ax - \)ex has a unique
root of l/a for a not= 0, but / ' (1 / a) = aella can be positive
or negative. A possible solution is to part i t ion the space
of legal parameter values into regions on which f ' (x)
has a fixed sign and solve for each subset separately. In
our example, one can solve for a > 0 and for a < 0.
Part i t ion algorithms exist for polynomials [Arnon et a/.,
1984]; part i t ioning other functions is a topic for future
research.

The strategy of applying numeric techniques symbol­
ically to parameterized problems has many other appli­
cations. Newton's method generalizes to vector equa-
tions. Addit ional numeric techniques, such as the se­
cant method and fixed-point iteration [Press et a/., 1987],
also extend directly to parameterized equations. Other
domains for symbolic application of numeric algorithms
include Markov theory (which I have worked on wi th

Sacks 433

J. Doyle [Doyle and Sacks, 1989]), integrat ion, and dy­
namic systems theory.

Acknow ledgemen ts

Harry Mynick of the Princeton Plasma Physics Labo­
ratory motivated me to develop NEWTON. Forman Ac-
ton, Woody Bledsoe, Joel Friedman, Dick L ip ton, Harry
Mynick, and especially Mike Wel lman provided valuable
comments on this paper.

References

[An ion et ai, 1984] Dennis S. Arnon, George E. Collins,
and Scott McCal lum. Cyl indr ical algebraic decompo­
sit ion I: the basic algor i thm. SI AM Journal of Com-
puttng, 13(4):865-877, 1984.

[Bundy and Welham, 1981] A lan Bundy and Bob Wel-
ham. Using meta-level descriptions for selective appli­
cation of mul t ip le rewrite rules in algebraic manipula­
t ion. Artificial Intelligence, 16(2):189-211, May 1981.

[Doyle and Sacks, 1989] Jon Doyle and Elisha P. Sacks.
Stochastic analysis of quali tat ive dynamics. In Pro-
ceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence, 1989.

[Mathlab Group, 1983] Mathlab Group. Macsyma Ref-
erence Manual M I T Laboratory for Computer Sci­
ence, Cambridge, Mass., version 10 edit ion, January
1983.

[McAllester, 1981] David A. McAllester. Algebraic ap­
proximat ion. In Proceedings of the Seventh Inter­
national Joint Conference on Artificial Intelligence,
pages 1024-1026, 1981.

[Press et ai, 1987] Wi l l i am H. Press, Br ian P. Flannery,
Saul A. Teukolsky, and Wi l l i am T. Vetter l ing. Numer­
ical Recipes. Cambridge University Press, Cambridge,
England, 1987.

[Sacks, 1985] Elisha P. Sacks. Qual i tat ive mathematical
reasoning. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pages 137-
139, 1985.

[Sacks, 1987a] Elisha P. Sacks. Hierarchical inequality
reasoning. TM 312, Massachusetts Inst i tute of Tech­
nology, Laboratory for Computer Science, 545 Tech­
nology Square, Cambridge, M A , 02139, 1987.

[Sacks, 1987b] Elisha P. Sacks. Hierarchical reasoning
about inequalities. In Proceedings of the National
Conference on Artificial Intelligence, pages 649-654.
American Association for Art i f ic ia l Intelligence, 1987.

434 Automated Deduction

