
An App rox ima te Solver for Symbolic Equat ions 

El isha Sacks 
Department of Computer Science 

Princeton University 
Princeton, NJ 08544, USA 

A b s t r a c t 

This paper describes a program, called NEW­
TON, that finds approximate symbolic solu­
tions to parameterized equations in one vari­
able. N E W T O N derives an ini t ial approxima­
t ion by solving for the dominant term in the 
equation, or if this fails, by bisection. It re­
fines this approximation by a symbolic version 
of Newton's method. It tests whether the first 
Newton iterate lies closer to the solution than 
does the in i t ia l solution. If so, it returns this 
iterate; otherwise, it chooses a new ini t ia l solu­
tion and tries again. 

1 I n t r o d u c t i o n 

Research in symbolic equation solving has focused on ex­
act solution methods. The resulting programs, such as 
MACSYMA [Mathlab Group, 1983] and PRESS [Bundy and 
Welham, 198l], either return an exact solution or fail. 
Yet, scientists and engineers routinely must solve prob­
lems that have no exact closed-form solution. They need 
an equation solver that finds adequate approximate solu­
tions to such problems, rather than fail ing. In fact, they 
often prefer a simple approximate solution even when 
a complicated exact solution is available. For example, 
the equation x5 + x — k cannot be solved for x in closed 
form, but x = k is an accurate approximation to the 
solution for k near 0. One might well prefer this approx­
imat ion to the ful l solution of x4 + x = k, which is very 
long and complicated. This paper describes an equation 
solver, called NEWTON, that finds approximate solutions 
to parameterized equations in one unknown. 

Numeric analysis provides many algorithms for solv­
ing indiv idual equations approximately, but says l i t t le 
about parameterized equations. One could solve numer­
ically for specific parameter values and interpolate the 
results. This would provide l i t t le general understanding 
and require prohibit ive amounts of computation, espe­
cially for equations containing mult iple parameters. In­
stead, NEWTON constructs a single parameterized solu­
t ion, such as x = k above, for all legal parameter values. 
Users can instantiate a solution w i th mult iple parame­
ter values, rather than rederiving it numerically for each 
value. They can examine the influence of parameters 
on a solution analytically instead of by experimentation. 

For example, the approximate solution x — k increases 
linearly in k. 

2 The A l g o r i t h m 

N E W T O N takes as input a parameterized function / ( x ) , 
an interval domain for x, and a set of constraints. Each 
constraint is a strict or nonstrict inequality between real-
valued functions of the parameters, for example k > 1 
and k2 < 2 m . The constraints and f(x) must be ex-
tended elementary functions: polynomials and compo­
sitions of exponentials, logarithms, trigonometric func­
tions, inverse trigonometric functions, and absolute val­
ues. NEWTON assumes that f(x) is d i f ferent iate and 
has a single, simple root1 in the domain of x. I discuss 
mult iple and nonsimple roots in the concluding section. 

N E W T O N narrows in on the root in stages. First, it 
brackets the root wi thin an interval on which f(x) is 
monotonic by the following algorithm: 

1. let [a, 6] be the domain of x 

2. if f'(x) has a fixed sign on [a, 6] then return [a, 6] 

3. let m=(a + b ) /2; if f(a)f(m) < 0 then 6 <- m else 
a <— m 

4. go to step 2. 

If a = —oo or b = oo, it chooses a very small or very large 
finite number instead. It uses the BOUNDER inequality 
prover [Sacks, 1987a, Sacks, 1987b] to test whether the 
inequalities in steps 2 and 3 hold for all parameter val­
ues that satisfy the input constraints. The simple root 
assumption ensures that the algorithm terminates. For 
example, the function f(x) = x4+kx-l6 wi th parameter 
k and constraints — 1 < k < 1 is monotone on the domain 
x E [1,10] because / ' ( x ) = 4x3 + k > 4 - 1 = 3 > 0. 

Next, NEWTON calculates an init ial approximate root, 
X0 for f(x). If f(x) is a sum, it finds the addend of max­
imal absolute value among those containing x, deletes 
the remaining addends that contain x, and solves the 
resulting equation.2 In our example, the addends x4 

and xk contain x wi th |x4| > \kxI so NEWTON solves 
x4 - 16 = 0 to obtain x0 = 2. It rejects x0 = -2 be­
cause that root lies outside the domain. NEWTON tries 
to calculate x0 for general equations by reducing them 

1A root r is simple if f(r) = 0 and f'(r) ^ 0. 
2McAllester [McAllester, 198l] uses a similar strategy. 
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to sums, as shown in Table 1. These reductions suf­
fice for all rat ional functions and for all the examples 
in this paper. If NEWTON cannot reduce a function or 
cannot solve a reduced equation, it sets xo to be the 
middle of the monotone domain of x. One such case is 
f(x) = x * - 2. 

Table 1: Reduction rules for calculating x o . 

N E W T O N tries to improve upon x0 by applying New-
ton's method symbolically. It tests whether the first 
Newton iterate 

It must test this condit ion indirectly because r is un-
known. If the test succeeds, NEWTON assumes that x1 

approximates r sufficiently well and returns x1. This 
assumption normally works well. In our example, 

has a relative error of at most 0.0015 for all k that satisfy 
the input constraint. A more sophisticated implementa­
t ion could check x1 against an accurate numeric solution 
for several parameter values and calculate further iter­
ates when x1 proved inadequate. The stopping condition 
would involve a tradeoff between the accuracy and the 
complexity of the approximate solution, both of which 
grow w i th each i terat ion. 

To understand how NEWTON tests x1, suppose first 
that / ( x ) increases monotonically and that xo > r. Fig­
ure 1 depicts the geometric interpretat ion of Newton's 
method in this si tuat ion: x1 is the intersection point 
between the tangent to / ( x ) at Xo and the x axis. As 
/ ' ( x o ) decreases f rom oo to 0, x1 decreases f rom xo to 
—oo via r. Any x1 > r satisfies equation (1), as Fig­
ure la il lustrates. If x1 < r (Figure l b ) , equation (1) 
becomes 
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for x in [1,2]. The cases of x0 < r and of / ( x ) mono-
tone decreasing are analogous. The complete test for 
equation (1) appears in Figure 2. N E W T O N resolves the 
inequalities w i th B O U N D E R as before. 

N E W T O N tests progressively narrower intervals unt i l 
it succeeds or the interval shrinks beneath a prespecified 
w id th . It starts w i th the monotone interval [a, 6] and 
repeatedly bisects the distance from X0 to each current 
boundary. If the in i t ia l guess really is a good candidate 
for i terat ion, the shrinking should eventually make the 
test work, at which point NEWTON returns the first iter­
ate. If not, NEWTON must choose a different value for x0 

by bisection and start over. If the test had failed in the 
example, the next test interval would have been [1.5,6], 
spl i t t ing the distance f rom the ends of [1,10] to X0 = 2. 

The previous examples are all separable, that is ex­
pressible in the form / (x , i k ) = g(x) + h(k). The final 
example, 

wi th _ demonstrates that NEW-
TON handles nonseparable functions as well. The func­
tion increases monotonically and has a unique root. The 
convergence condition holds for all k. Given the modest 
constraint NEWTON can calculate x0 = k 

and 

The relative error of x1 is 0 for k = 0.5, 0.048 for k — 1, 
and less than 0.002 for k > 4. One can obtain even bet­
ter results wi th a more sophisticated choice of x o , setting 
x = 0 in log(x+Ar), the dominated term of f (x ) , and solv­
ing the resulting equation to obtain 
N E W T O N does not implement this strategy. Newton's 
method appears to work for 0 < k < 0.5, even though 
the convergence condition fails. A more experimental 
implementation could validate x1 empirically on a large 
number of sample parameter values, rather than give up. 

Table 3 summarizes the examples in this paper. 

4 Conclusions 

This paper describes NEWTON, an equation-solver that 
finds approximate roots to parameterized functions by 
a symbolic version of Newton's method. If this fails, it 
turns to a symbolic bisection algorithm. N E W T O N re­
quires that the function have a single, simple root in its 
domain. One can handle a nonsimple root, r, of / ( x ) 
by applying NEWTON to / i (x) = / ( x ) / / ' ( x ) , which has a 
simple root at r. One can find mult iple roots by part i ­
t ioning the domain into intervals on which / ( x ) is mono-
tone, hence has at most one root, and applying NEWTON 
to each subinterval [a, 6] for which f(a)f(b) < 0. I de­
scribe a program that calculates the monotone intervals 
elsewhere [Sacks, 1985]. 

N E W T O N can only find a root r of / ( x ) for which the 
sign of / ' ( r ) is fixed for all legal parameter values. Oth­
erwise, it can neither bracket the root wi th in a monotone 
domain nor prove that Newton's method converges. For 
example, the function / ( x ) = (ax - \)ex has a unique 
root of l/a for a not= 0, but / ' ( 1 / a ) = aella can be positive 
or negative. A possible solution is to part i t ion the space 
of legal parameter values into regions on which f ' (x ) 
has a fixed sign and solve for each subset separately. In 
our example, one can solve for a > 0 and for a < 0. 
Part i t ion algorithms exist for polynomials [Arnon et a/., 
1984]; part i t ioning other functions is a topic for future 
research. 

The strategy of applying numeric techniques symbol­
ically to parameterized problems has many other appli­
cations. Newton's method generalizes to vector equa-
tions. Addit ional numeric techniques, such as the se­
cant method and fixed-point iteration [Press et a/., 1987], 
also extend directly to parameterized equations. Other 
domains for symbolic application of numeric algorithms 
include Markov theory (which I have worked on wi th 
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J. Doyle [Doyle and Sacks, 1989]), integrat ion, and dy­
namic systems theory. 
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