
Oppor tun is t i c Memory * 

K r i s t i a n J - H a m m o n d 
Department of Computer Science 

1100 East 58th Street 
The University of Chicago 

Chicago, IL 60637 

A b s t r a c t 

In this paper, we present a model of oppor
tunistic planning that uses planning-t ime rear 
soning about the opportunit ies that might arise 
during plan execution. The model is com
posed of three parts: a planning-time mech
anism that places blocked goals into mem
ory for later activation, an understanding sys
tem that activates suspended goals as a by-
product of parsing the wor ld, and an execution-
time process for evaluating opportunit ies and 
merging newly activated goals into the plan
ning/execution agenda. We discuss this model 
in terms of examples from T R U C K E R , a route-
scheduling system, and RUNNER, an errand 
planner. 

1 P l a n n i n g and A c t i n g 

Current research in planning has taken a rather dramatic 
change in course in the past few years. The notion that a 
planner can exhaustively preplan for a set of goals prior 
to execution has been largely abandoned. In part, this 
change is the result of demonstrations that planning for 
conjunctive goals is undecidable [Chapman, 1987]. A 
more important factor has been the realization that the 
dual assumptions of t radi t ional planning (a closed world 
and complete knowledge) are untenable in any but the 
simplest domains. 

The planning theories that have grown out of this shift 
in paradigm differ f rom earlier theories in that they at
tempt to integrate planning and execution into a single 
process. The most extreme example of this has been the 
idea of situated activity [Agre & Chapman, 1987], which 
argues that plan-like behavior rises out of reflexive re
sponses to external cues rather than from the guidance of 
a declarative plan. Less extreme theories center around 
the notion that plans have to be refined and repaired at 
execution t ime. These theories include: 

• Alterman's Adaptive Planning [1985], in which 
execution-time problems are handled by moving be
tween "semantically" similar plan steps. 

*This work was supported in part by the Office of Naval 
Research under contract number N00014-88-K-0295 and by 
DARPA contract F4962-88-C-058. 

• Firby's RAPs [1987], which allow a hierarchical 
planner to select between alternative plans on the 
basis of bot tom-up information obtained at execu
t ion t ime. 

• Georgeff and Lansky's Procedural Reasoning System 
[1987], in which changing goals and beliefs about the 
state of the world determine which plans are chosen 
to be put on the execution stack. 

• Hammond's Case-Based Planning [1989] and Sim
mon's and Davis' Generate, Test, and Debug [1987], 
both of which use causal explanations of execution-
time failures to choose between a variety of repairs. 

Moderate or extreme, each of these theories argues 
that the world changes, and that a planner must re
spond to those changes. They define a class of planners 
which, for lack of a better name, we wi l l refer to as ac
tive planners: planners that both produce a plan and 
then actively alter that plan in the face of a changing 
environment. 

Thus far, the stress on integrat ing planning and exe
cution in this work has been on the issue of recovering 
from plans that unexpectedly fai l . L i t t le work has been 
done on the corollary concern of exploit ing unexpected 
opportunit ies. In this paper, we wi l l examine this con
cern and suggest a memory organization that addresses 
this issue. We wi l l also describe two planners that are 
aimed at implementing the theory: T R U C K E R , a plan
ner developed at Chicago in the domain of pickup and 
delivery scheduling, and R U N N E R , a new planner un
der development in the more general domain of errand 
running. 

2 O p p o r t u n i s t i c M e m o r y 

Our approach in both T R U C K E R and RUNNER uses 
episodic memory to organize, recognize and exploit op
portunit ies. Briefly, the algor i thm includes the following 
features: 

• Goals that cannot be fit in to a current ongoing plan 
are considered blocked and, as such, are suspended. 

• Suspended goals are associated w i th elements of 
episodic memory that can be related to potential 
opportunit ies. 

• These same memory structures are then used to 
parse the world so that the planner can make rou-

504 Cognitive Models 



t ine execution-time decisions. 

• As elements of memory are activated by conditions 
in the wor ld , the goals associated wi th them are also 
activated and integrated into the current processing 
queue. 

In this way, suspended goals are brought to the planner's 
attention when conditions change so that the goals can 
be satisfied. 

Because the planner's recognition of opportunities de
pends on the nature of its episodic memory structures, 
we call the overall algori thm presented here opportunistic 
memory. 

3 An Example 
Before we get into any details, it is important to under
stand the type of behavior we want to capture. We wi l l 
do this by looking at a simple example. Although this 
example is couched in terms of a story, we are interest
ing in modeling the planning behavior described, not in 
understanding the text. 

This example is taken from the RUNNER domain of 
errand running: 

On making breakfast for himself in the morn
ing, John realized that he was out of orange 
juice. Because he was late for work he had no 
t ime to do anything about i t . 
On his way home from work, John noticed that 
he was passing a Seven-Eleven and recalled 
that he needed orange juice. Having t ime, he 
stopped and picked up a quart and then con
tinued home. 

There are a number of interesting aspects to this ex
ample. First of al l , the planner is confronted with new 
goals dur ing execution as well during planning. This 
makes complete preplanning impossible. Second, the 
planner is able to stop planning for a goal before de
ciding exactly how to satisfy i t . In effect, he is able 
to say "I don't have all the information or the time to 
completely integrate a plan for this goal into my cur
rent agenda." Using Schank's vocabulary, we call this 
the abi l i ty to suspend a goal [Schank & Abelson, 1977]. 
And th i rd , although the goal is suspended, the planner 
is able to recognize the conditions that potentially lead 
to its satisfaction.1 

There is a final element to this example that does not 
lie quite so close to the surface: in order to decide to 
suspend planning for the goal to possess orange juice, 

*One could argue that in this example the planner does 
completely preplan for this goal and that the plan is to get 
the orange juice on the way home. But this is begging the 
question, in that we can take any version of a plan designed to 
satisfy this goal and still argue that opportunities to satisfy 
it in other ways should be exploited. For example, if John 
passes by someone giving away free samples of orange juice 
on the way to work, we would certainly want him to recognize 
that this is a chance to satisfy a currently suspended goal. 
The point is that we want a planner to exploit opportunities 
to satisfy goals, whether or not it has already planned for 
them. 

John has to do some reasoning about what a plan for 
that goal entails. That is, he has to see that the goal is 
blocked by lack of t ime to go to the store. As a result, 
he has a clear idea, at planning t ime, as to what an 
execution-time opportunity would look like. 

4 Opportunistic Planning 
The idea of opportunistic memory builds on two views 
of opportunism in planning—that of Hayes-Roth and 
Hayes-Roth [1979], and that of Birnbaum and Collins 
[1984]. 

Hayes-Roth and Hayes-Roth presented the view that a 
planner should be able to shift between planning strate
gies on the basis of perceived opportunities, even when 
those opportunities are unanticipated. Their model, 
which they called opportunistic planning, consisted of 
a blackboard architecture [Lesser et a/., 1975] and plan
ning specialists that captured planning information at 
many levels of abstraction. These specialists included 
domain-level plan developers (e.g., specialists that know 
about routes, stores, or conditions for specific plans) as 
well as more strategic operators (e.g., specialists that 
would look for clusters of goals and goals wi th similar 
preconditions). The planner could jump between strate
gies as different specialists "noticed" that their activa
tion conditions were present. For example, in scheduling 
a set of errands, a specialist wi th knowledge of cluster
ing of errands by location could be invoked while another 
specialist was scheduling them by goal priority. In this 
way, the planner could respond to opportunities noticed 
at planning time. 

Unfortunately, there are some problems wi th this view 
of opportunism. Primarily, it includes no model of exe
cution. As with many planners, all planning is done in 
the absence of the abil ity to execute the plan and thus 
respond to the effects of that execution. It is a model 
of opportunism at planning time rather than execution 
time. It fails to capture the behavior we are interested 
in modeling. 

More recently, Birnbaum and Collins [1984] presented 
a view of opportunism that does include a role for exe
cution. Under their model, goals are viewed as indepen
dent processing entities that have their own inferential 
power. When a goal is suspended because of resource 
constraints, it continues to examine the ongoing flow of 
objects and events that pass by the agent. If circum
stances that would allow for the satisfaction of the goal 
arise, the goal itself recognizes them and projects a plan 
into the current action agenda. 

They present a simple yet compelling example of the 
behavior that interests them in a description of an agent 
t ry ing to obtain both food and water in the wi ld. In their 
example, the agent suspends the goal to find water while 
t ry ing to satisfy the goal to find food. While searching 
for food, however, the agent jumps over a stream and is 
able to recognize that the stream affords an opportuni ty 
to satisfy a suspended goal. 

Birnbaum and Collins argue that this is managed by 
giving the suspended goal the abil i ty to examine the cur
rent situation and inference directly off of i t . They argue 
that this must be the case, since there can be no way to 

Hammond 505 



decide, at the t ime of suspending a goal, the exact con
ditions under which it should be activated. Any planner 
that has to store and then activate suspend goals wi l l 
miss opportunit ies that it could not anticipate. 

Birnbaurn [1986] has argued further that indexing of 
suspended goals by descriptions of the conditions that 
allow their satisfaction is an unworkable approach. Not 
only wi l l the indices be too complex, but the planner wi l l 
have to constantly compare the current state of the world 
to the features used to index suspended goals in what 
amounts to a memory of unsatisfied tasks. As Birnbaurn 
says, this is hardly opportunism. 

We share Birnbaum's and Coll ins' philosophical stance 
of t ry ing to explain complex opportunist ic behavior 
(even up to the subtle form of opportunism exhibited in 
Freudian slips). However, we disagree that this behav
ior results f rom goals constantly monitor ing the wor ld. 
We believe that indexing suspended goals is a far better 
explanation. 

Birnbaum's arguments against indexing apply to mod
els that separate a memory of goals f rom the planner's 
memory and understanding of the wor ld. Under our 
model, however, there is no such dist inction between 
types of memory. There is only one memory that is used 
to understand the world and to store suspended goals. 
Thus the act of recognition is the same as the act of 
indexing. 

5 T h e A s s u m p t i o n s 

The ideas of opportunist ic memory in this paper exist in 
the context of a more general theory of planning and 
memory called case-based planning [Hammond, 1989; 
Kolodner et a/., 1985]. Case-based planning views plan
ning as a memory task. Memories of past successes are 
used as prototypes for new plans, memories of past fai l
ures are used to avoid repeating the failures, and mem
ories of past plan modifications are used to tailor old 
plans to new situations. This contrasts wi th the view of 
planning as a task of composition in which large plans 
are constructed piece-by-piece out of pr imi t ive actions. 

There are certain assumptions that we make in case-
based planning: first, we do not have a closed world. 
This l imits the usefulness of preplanning and projection. 
Second, we have an incomplete and imperfect model of 
the world. This is assumed of not just the domain in gen
eral but also of the steps in plans that we use on a regu
lar basis. In practice, this means that a planner cannot 
ful ly trust either its knowledge of the world's physics or 
its understanding of the world's current state. Th i r d , we 
cannot do project ion. Tha t is, we cannot run complete 
simulations of our plans in order to tease out problems 
due to step interactions. This follows f rom our first and 
second assumptions. Whi le we can project on the basis 
of what the planner knows, there is no guarantee that 
the projection wi l l match what really happens. 

We do not make these assumptions because we want 
to. We make them because we have been forced to. Such 
is the nature of real-world domains. But human planners 
are able to plan in complex domains, often wi th l i t t le 
knowledge of the true physics of those domains. This 

makes us believe that it is possible for a planner to plan 
and do where it cannot understand. 

Strangely enough, the need for opportunist ic reason
ing and the tools for developing it both grow out of these 
assumptions. Having assumed that the planner cannot 
completely model the effects of its own actions or predict 
those of other agents, we must provide it w i th some sort 
of mechanism that wi l l allow it react to the world as well 
as act in i t . 

Likewise, because the planner cannot completely 
model the wor ld, we must assume a mechanism for pars
ing or understanding the world that provides the planner 
w i th enough information to make execution-time deci
sions. In effect, the lack of a perfect world model re
quires that any planner must watch what it is doing as 
it is doing i t . We wi l l use this understanding process as 
the core of our opportunist ic reasoning mechanism. 

There are other ramifications to the use of a case-based 
planner, having to do w i th what constitutes a planning 
step and the nature of project ion. The most important 
point we want to make in this section, however, is that 
a planner must understand and interact w i th the world 
in which it executes plans. 

6 TRUCKER and RUNNER 
Our opportunistic memory algor i thm is only part of an 
overall approach to planning. Because of this, we must 
include some discussion of the two planners T R U C K E R 
and RUNNER. Both planners are case-based in design 
and active in the sense that they test their plans through 
interaction wi th complex simulated worlds. 

6.1 T R U C K E R 

T R U C K E R is a University of Chicago planner that inter
acts wi th a simulated world in order to test out its plans 
and learn f rom both failure and success. I ts domain is a 
UPS-like pickup and delivery task in which new orders 
are received during the course of a day's execution. Its 
task is to schedule the orders and develop the routes for 
its trucks to follow through town. 

T R U C K E R creates new plans using two means: a map 
and a memory. T R U C K E R uses its map when it in i t ial ly 
builds a route for an area. Once it has bui l t a new route 
and verified it by running it in the wor ld , it stores the 
route in a case memory, indexed by its l i teral endpoints 
as well as by neighborhood and part-of-town descriptors. 
When it is able to find a plan for an order in memory, the 
plan is expanded and placed at the end of TRUCKER 's 
action agenda. T R U C K E R never tries to optimize over 
mult iple goals unless it already has a plan in memory 
that does so. 

T R U C K E R optimizes its planning for mult ip le goals 
only when it notices an opportuni ty to do so during ex
ecution. I f T R U C K E R notices an opportuni ty to satisfy 
a goal that is scheduled later in the queue, it stops and 
reasons about the u t i l i t y of merging the later plan wi th 
the steps it is currently running. If it is able to construct 
a plan that is significantly better than one which treats 
the plans independently, it uses the new plan. It also 
stores the new plan in memory, indexed by each of the 
separate goals. When either goal reoccurs, T R U C K E R 

506 Cognitive Models 



searches i ts action queue for for the partner goal and 
uses the plan that it has created for the pair. 

Even when a goal is placed on the action queue, 
T R U C K E R treats it as though it were blocked. That 
is, it establishes the conditions that would allow 
T R U C K E R to satisfy the goal and then associates the 
goal w i th the memory structures that would be active 
dur ing the recognition of those conditions. For example, 
while planning for a pickup at the Sears Tower later in 
the day, T R U C K E R associates the goal w i th its internal 
representation of the Tower. This allows it to activate 
and then satisfy the goal if it recognizes the Sears Tower 
earlier in the day. 

6.2 R U N N E R 

The R U N N E R project is the direct descendent of 
T R U C K E R . RUNNER'S domain is similar to the errand-
running domain used by Hayes-Roth and Hayes-Roth to 
study opportunist ic planning [1979]. Unlike T R U C K E R , 
R U N N E R has only a single agent to control, but RUN
NER'S agent is capable of a wider range of activity, and 
its domain allows for a richer set of goal interactions than 
does T R U C K E R ' s . This change of domain was mot i
vated by our desire to study a wider range of issues in 
both opportunism and execution-time failure recovery. 

RUNNER's plans are M O P structures [Schank, 1982] 
that organize steps by their functions: establishing pre
conditions, side conditions, goal satisfaction, or postcon
di t ion cleanup. For each new goal being planned for, 
R U N N E R checks for prototypical plan interactions that 
would allow it to merge preconditions, piggyback plans, 
or subsume them under single plans. For example, RUN
NER looks for plans that have similar precondition steps 
in order to splice them together. 

Like T R U C K E R , R U N N E R is designed to put off op
t imizat ion unt i l it obtains cues during execution that in
form it of positive plan interactions. So RUNNER ends 
up suspending many of its goals in much the same way 
that T R U C K E R does. The content of RUNNER's goals 
and plans, however, is more than just the simple pickup 
and delivery structures used by T R U C K E R . As a re
sult, R U N N E R must do more of an analysis of what 
might constitute an opportuni ty to satisfy a goal than 
T R U C K E R was forced to do. 

RUNNER analyzes blocked plans and goals using two 
knowledge sources: precondition information associated 
wi th each plan and knowledge of opportunities wi th 
which it should be concerned. For example, in the case 
of John realizing that he cannot go to the grocery store 
to get orange juice, R U N N E R would examine the pre
conditions (e.g., the planner has money, is at the store, 
and has t ime) and look for specific conditions that might 
lead to an opportuni ty (e.g., the planner has a missing 
resource, the planner is at the appropriate location or 
the planer has a t ime window). Each potential oppor
tun i ty is evaluated as to how normative it is—with non-
normative features ranking as better opportunities—as 
well as whether or not it is actually blocked in the cur
rent s i tuat ion. 

In our example, having money, being at a grocery 
store, and having t ime are all preconditions for buying 

orange juice. But there is a difference between them, in 
that having money is a normative condition and as such 
does not constitute an opportunity, while being near a 
store is a non-normative precondition and as such does 
constitute an opportunity. 

7 Opportunism in T R U C K E R and 
R U N N E R 

In both T R U C K E R and RUNNER, blocked goals are 
associated wi th the elements of memory that wi l l be 
active when opportunities to satisfy those goals arise. 
The main difference between the two planners is that 
establishing these conditions is relatively t r iv ia l in the 
T R U C K E R domain—goals are of the same basic type. 
While the details of goal blockage and the analysis of 
opportunity differs between these planners, the basic ap
proach to dealing wi th blocked goals is the same. 

While these two planners are different, both require 
the abil i ty to halt planning on a goal, suspend i t , and 
then recall it when opportunities for execution present 
themselves. The approach used by T R U C K E R and 
RUNNER to suspend and recall blocked goals has three 
basic parts. 

First, the planner suspends the blocked goals by asso
ciating them wi th the elements of memory that describe 
potential opportunities. This requires that the planner 
have access to a vocabulary that differentiates between 
the different types of planning problems (e.g., resource 
l imitations, t ime constraints, and the planner's l imita
tions). 

Next, the planner executes the plans for its active 
goals. During execution, it has to monitor the ongo
ing effects of its plan as well as the effects of the plans of 
others in its world. The representational elements used 
to do this parsing are the same elements wi th which sus
pended goals have been associated. As a result, the plan
ner's general recognition of a situation that constitutes 
an opportunity can immediately activate any goals that 
have previously been associated wi th that si tuat ion. 

Finally, any activated goals are integrated into the cur
rent set of scheduled steps, and the plan is executed. 
This requires reasoning about resources and protections, 
as well as the effects of actions. 

In our example of John and the orange juice, these 
steps translate into: 

• John's goal to possess orange juice is blocked by 
lack of time to run the default plan. He decides, on 
the basis of the preconditions on his plan to possess 
orange juice, that being at a store would constitute 
an opportunity to get the orange juice.2 As a result, 
he links the suspended goal to the condition of being 
near a store. 

• While coming home, he sees and recognizes a Seven-
Eleven. This activates the goal to obtain orange 
juice that he associated wi th this condition earlier 
in the day. 

2Other preconditions are noted as well (e.g., having money 
and time) but these conditions are discarded because the first 
is a normative condition of the planner and the second is 
difficult to recognize. 

Hammond 507 



• He then tests the preconditions on the plan and 
merges it into his current agenda. 

7.1 S u s p e n d i n g b l o c k e d goals 

When either T R U C K E R or R U N N E R finds a goal 
blocked, that goal is suspended. In T R U C K E R , this 
requires associating a request w i th the memory token 
for the locations it involves. For RUNNER, this requires 
somewhat deeper reasoning about the various conditions 
that might provide opportunit ies to satisfy a blocked 
goal. 

When T R U C K E R receives a new request for a pickup 
and delivery, it attempts to satisfy the order using a va-
riety of methods. First it checks all active requests on 
its truck's agendas for one that has a known positive in
teraction w i th the new request. If this fails, T R U C K E R 
attempts to find a truck that is currently idle to take 
up the order. If this also fails, T R U C K E R searches its 
"desktop" for a suspended request that might be usefully 
combined w i th the new order. If all else fails, T R U C K E R 
is forced to place the request on a queue of orders wait ing 
for idle trucks. 

When this is done, T R U C K E R considers the goal 
blocked, and thus suspends i t . To suspend a goal, 
T R U C K E R marks its representation of the goal's pickup 
and delivery points w i th an annotation that there is 
a goal related to those locations. Because T R U C K E R 
plans for only one type of goal, it doesn't have to do any 
more reasoning than this to identify good opportunit ies 
to satisfy the suspended goals. 

RUNNER's domain and the goals it must plan for are 
more complex than TRUCKER 's . As a result, it must 
reason far more than T R U C K E R about the conditions 
that might constitute opportunit ies to satisfy a blocked 
goal. 

In general, opportunit ies to run plans can be derived 
from the preconditions on each of the steps of a plan. A 
planner could, given t ime, move through a plan step by 
step and collect the preconditions that have to obtain at 
that point in the plan. But this would require the ex
amination of many conditions that are not part icularly 
useful in the context of opportunism. Some precondi
tions for obtaining orange juice—having money, having 
t ime, and being able to carry the carton—are not useful 
if we are looking for the features that wi l l allow us to 
recall the suspended goal at the appropriate t ime. This 
is because there are more constraints on "opportunit ies" 
than on simple preconditions. These constraints include 
features such as ease of recognition, l ikelihood of occur
rence, and predictiveness. 

For example, having money is a strong precondition 
for buying orange juice, but it is also a normative con
di t ion. As a result, it is a bad predictor of an oppor
tun i ty to satisfy the goal to have orange juice. If the 
suspended goal is tied to having money, the planner wi l l 
be reminded of the goal far too often. 

Rather than test all preconditions of a plan for these 
constraints, R U N N E R uses a taxonomy of opportunity 
types to derive the conditions that wi l l serve as opportu
nities to satisfy the plan. This taxonomy guides RUN
NER's search through the plan for appropriate precon

ditions. Once a plan has been analyzed in terms of this 
taxonomy, it is annotated w i th pointers to the features 
associated wi th opportunit ies to run i t . Features are re
moved from this list if they cause the goal and plan to 
be recalled at inappropriate times. 

This taxonomy takes the form of a set of tests or ques
tions that R U N N E R asks of a plan: 

• Is t h e r e a spec ia l 3 r esou rce t h a t is needed to 
r u n t h e p l a n ? 
If so, associate the goal wi th the resource. 

• Is t h e r e a spec ia l t o o l t h a t i s needed to r u n 
t h e p l a n ? 
If so, associate the goal w i th the tool . 

• Is t h e r e a spec ia l l o c a t i o n assoc ia ted w i t h t h e 
p l an? 
If so, associate the goal w i th the location. 

• Is t h e r e a spec ia l agent or s k i l l assoc ia ted 
w i t h t h e p l an? 
If so, associate the goal w i th the agent or ski l l . 

• Is t h e r e a spec i f ic t i m e c o n s t r a i n t assoc ia ted 
w i t h t h e p lan? 
If so, associate the plan wi th the t ime. 

There are also special-purpose rules for suspending par
ticular goals. Possession goals, for example, are associ
ated wi th the object of the possession. 

Using these rules, R U N N E R associates the blocked 
goal to possess orange juice wi th the location, 
GROCERY-STORE, and the object itself, ORANGE-
JUICE. This association takes the form of a SUSPEND 
l ink f rom the representations of these items to the sus
pended goal itself. R U N N E R associates the goal wi th 
the least likely conditions w i th the hope that most of 
the other conditions wi l l obtain when the suspended goal 
is activated. The other conditions are checked when the 
goal is recalled, but they are not linked to the suspended 
goal in memory. 

7.2 R e c a l l i n g suspended goals 

Both T R U C K E R and R U N N E R tie execution of actions 
to locations, landmarks and addresses that they recog
nize in the world. Thus they must parse and interpret 
the objects in the world. It is during this parse that they 
both recognize and recall previously suspended goals. 

A typical T R U C K E R plan, when ful ly expanded, is a 
route in the form of a list of the turns that have to be 
made, described in terms of street names and compass 
directions. So the plan step (GOTO (920 E -55 th ) ) after 
a pick-up at (5802 S-V00DLAWN) expands into: 

(START NORTH (5802 W00DLAWN)) 
(TURN EAST E-57TH) 
(TURN NORTH S-CORNELL) 
(TURN EAST E-55TH) 
(STOP (920 E-55TH)) 

As T R U C K E R moves through its wor ld, i t parses 
the objects at its current location and responds to any 

3 A feature is "special" if it does not predictably reoccur 
as a product of the planner's policy decisions. 

508 Cognitive Models 



changes that the tokens it has recognized suggest: turn
ing, for example, when it recognizes the 5700 block of 
Woodlawn. But T R U C K E R does more than this when 
it recognizes an individual token. It also checks the to
ken for any annotation of a goal that might be associated 
wi th i t . If one is found, T R U C K E R activates the sus
pended goal and attempts to integrate it into the current 
schedule. This allows T R U C K E R to easily and effec
tively activate suspended goals when the opportunities 
to satisfy them arise. Further, the overhead on this ac
t ivation is t r iv ia l , in that all that T R U C K E R has to do 
is look for a specific type of l ink on each of the objects 
it recognizes. 

RUNNER has a wider variety of planning options for 
any one goal. R U N N E R can pick up orange juice at any 
grocery store, not just a particular one. As a result, we 
are using a much more general and realistic approach to 
parsing than we used in T R U C K E R . 

To deal w i th this, R U N N E R is designed to use the 
D M A P parser [Mar t in &, Riesbeck, 1986] as its recogni
tion system. D M A P uses MOPs [Schank, 1982] to repre
sent concept sequences to recognize concepts by recogni
tion of their parts. D M A P uses a smart marker-passing 
algori thm in which two types of markers are used to ac-
tivate and predict concepts in an ISA and PART-OF net
work. Activation markers are passed from primit ive fea
tures up an abstraction hierarchy. In RUNNER, these 
features include type descriptions such as "road", "wal l " , 
"window", and "sign" but no tokens such as "the Seven-
Eleven on Cornell and 47th" . When any PART-OF a 
concept is active, prediction markers are spread to its 
other parts. When a predicted concept is handed an ac
t ivat ion marker, it becomes active. Likewise, when all 
parts of a concept are activated, the concept itself is ac
t ivated. 

For our uses, we add a new type of link to DMAP. 
This link associates suspended goals wi th concepts that 
represent opportunit ies to achieve them. Pointing from 
concepts to goals, this SUSPEND link is traversed by 
any activation marker that is placed on the concept. So, 
the activation of a concept also activates any suspended 
goals associated wi th i t . 

In our example, the suspended goal to get the or
ange juice is associated wi th the concept representing 
' the planner is at a grocery store". As the world 
is parsed, a Seven-Eleven is recognized as a sequence 
of "parking lo t " , "bu i ld ing" , and "Seven-Eleven sign". 
Because D M A P is passing activation markers up ISA 
links, the Seven-Eleven is recognized as a particular 
Seven-Eleven, an instance of Seven-Elevens in general, a 
CONVENIENCE-STORE, a GROCERY-STORE, and 
a STORE. Whi le the suspended goal is not directly as
sociated wi th the concept "Seven-Eleven", it is asso
ciated w i th GROCERY-STORE. So the recognition of 
the Seven-Eleven causes the activation of the suspended 
goal. In general, RUNNER uses this property of D M A P 
to recall goals associated wi th general characterizations 
of opportunit ies through the recognition of specific situ
ations. 

In both planners, the basic approach is the same. In 
order to execute a plan, the low-level features must be 

disambiguated into tokens representing specific objects 
in the world. As this is done, each token is checked for an 
associated goal. And if any goal is found, it is considered 
a candidate for immediate satisfaction. 

7.3 E x p l o i t i n g t h e o p p o r t u n i t i e s 

Once a suspended goal is reactivated, it has to be eval
uated for integration into the current execution agenda. 

Here again, the T R U C K E R approach uses special-
purpose techniques tailored to the domain. When a sus
pended goal is recalled by the planner, it attempts to find 
the best placement in the current route for the awakened 
request. Scheduling the pickup is t r iv ia l , in that a truck 
is at the pickup location. The difficulty lies in scheduling 
the delivery. T R U C K E R does this by stepping through 
each location already scheduled and finding the section 
of the route that wil l be the least altered by the insertion 
of the delivery. This can be done even before the exact 
routes are selected, by using the map and simple rules 
of geometry. 

Because this optimization is fairly time-consuming, 
T R U C K E R saves the resulting route, so that it can reuse 
it when the same conjunct of goals arises again. We see 
the recognition of execution-time opportuni ty as a spe
cial case of expectation failure [Schank, 1982] and treat 
it as an indication of a gap in TRUCKER's knowledge 
base.4 

RUNNER deals wi th a wider variety of goals than does 
TRUCKER. As a result, the special-purpose techniques 
used in T R U C K E R are not applicable. St i l l , RUNNER's 
plan-merging techniques are not as general as those used 
by most planners. RUNNER falls back on the same tech
niques for merging plans that it uses for plan construc
t ion. 

Steps in RUNNER's plans are specifically labeled 
as to function (PRECONDIT ION, GOAL-SATISFAC
T I O N , POST-CONDITION, CLEAN-UP) . RUNNER 
uses these labels to search for specific ways to merge 
plans. Although RUNNER goes through the same 
process during preplanning, the task is somewhat eas
ier when applied to a newly activated goal. Just as 
T R U C K E R knows that it is already at the pickup lo
cation, RUNNER knows that the conditions associated 
with the activation of the suspended goal are already 
satisfied. If they were not, the suspended goal would 
not have been noticed in the first place. 

In our orange-juice example, the steps required to get 
the planner to a store can be ignored, in that being at 
the store is the condition that activated the goal in the 
first place. But the planner can also ignore other steps. 
In particular, the steps that are used to "recover" from 
the precondition of being at the store once the plan is 
over can be ignored. Because the planner did not need to 
run the steps in the GROCERY-STORE plan to get to 
the store, it wi l l not have to run the steps in that plan 
that wi l l get it away from the store. In general, pre
condition/cleanup pairs can be canceled together. The 
planner knows that the running plan must include the 

4 For a more detailed discussion of this type of learning, 
see [Hammond et a/., 1988]. 

Hammond 509 



same pair, and need not be concerned wi th the part of 
the recalled plan that includes i t . 

The remaining steps—going into the store, buying the 
orange juice, and exiting—have to be integrated in a 
fair ly t radi t ional way. The planner checks the precondi
tions not set by the activation conditions, and it notes 
the use of resources and their interactions w i th existing 
protections. The final product is a small change in the 
overall plan that takes the planner into the store for a 
moment before resuming his t r ip home. 

In both T R U C K E R and RUNNER, the task of in
tegrating recalled goals is essentially the same as the 
task of creating an in i t ia l plan. The only difference is 
that both planners have addit ional information about 
the conditions that currently hold and, as a result, are 
able to avoid consideration of the steps that establish 
those conditions. R U N N E R is able to go beyond this 
and avoid consideration of steps involving postcondition 
cleanup. 

8 Conc lus ions 

In this paper, we have argued the need for an execution-
time abi l i ty to recognize and exploit planning opportu
nities. Our goal was to present a model of opportunistic 
planning that provides this abi l i ty w i th l i t t le overhead. 

We argue that our model of opportunistic memory 
does exactly that . By associating blocked goals wi th the 
same structures used to represent the planner's world, 
we are able to get activation of suspended goals as a 
by-product of the understanding process. 

The process, implemented in T R U C K E R and cur
rently being expanded upon in RUNNER, requires three 
basic steps. Suspended goals are associated wi th the el
ements of memory that are related to potential opportu
nities. These memory structures are then used to parse 
the world dur ing execution. As elements of memory are 
activated by conditions in the wor ld, any goals associ
ated w i th them are also activated and integrated into 
the current planning queue. 

This combination of planning-t ime suspension and 
execution-time activation gives both T R U C K E R and 
RUNNER the abi l i ty to halt consideration of a goal w i th 
the assurance that the goal wi l l be brought back to mind 
when conditions change to allow its satisfaction. 

9 Acknow ledgemen ts 

I'd like to thank Mi tch Marks and T i m Converse for their 
work on T R U C K E R as well as Jeff Berger, Neil Hurwi tz, 
and Greg Hajek for their comments and conversation. 
I 'd also like to thank Larry Birnbaum and Gregg Collins 
for let t ing me steal these ideas in the first place. 

10 References 

[Agre k Chapman, 1987] Agre, P.E. k Chapman, D. 
Pengi: An implementat ion of a theory of activity. I n : 
Proceedings of the Sixth National Conference on Artifi
cial Intelligence, Seattle, Washington, July 1987. 

[Al terman, 1985] A l terman, R. Adaptive planning: Re
f i t t ing old plans to new situations. I n : Proceedings of 

the Seventh Annual Conference of the Cognitive Science 
Society, I rv ine, Cali fornia, August 1985. 
[Birnbaum, 1986] B i rnbaum, L. Integrated processing 
in planning and understanding. Yale Technical Report 
#480, 1986. 
[Birnbaum k Collins, 1984] B i rnbaum, L. k Collins, G. 
Opportunist ic planning and Freudian slips. I n : Proceed
ings of the Sixth Annual Conference of the Cognitive Sci-
ence Society, Boulder, Colorado, June 1984. 
[Chapman, 1987] Chapman, D. Planning for Conjunc-
tive Goals. Technical Report TR 802, M I T Art i f ic ia l 
Intelligence Laboratory, 1985. 

[Firby, 1987] Firby, R.J. An investigation into reac
tive planning in complex domains. I n : Proceedings of 
the Sixth National Conference on Artificial Intelligence, 
Seattle, Washington, July 1987. 

[Georgeff & Lansky, 1987] Georgeff, M.P. k Lansky, A.L. 
Reactive reasoning and planning. I n : Proceedings of 
the Sixth National Conference on Artificial Intelligence, 
Seattle, Washington, July 1987. 
[Hammond, 1989] Hammond, K. Case-based planning: 
Viewing planning as a memory task. Academic Press, 
Cambridge, Massachusetts, 1989. 

[Hammond et al, 1988] Hammond, K., Converse, T., 
k Marks, M. Learning from opportunit ies: Storing and 
reusing execution-time optimizations. In : Proceedings 
of the Seventh National Conference on Artificial Intelli
gence, St. Paul, Minnesota, August 1988. 

[Hayes-Roth k Hayes-Roth, 1979] Hayes-Roth, B., k 
Hayes-Roth, F. A cognitive model of planning. Cognitive 
Science 2:275-310. 

[Kolodner et al, 1985] Kolodner, J.L., Simpson, R.L., & 
Sycara-Cyranski, L. A process model of case-based rea
soning in problem solving. In : Proceedings of the Ninth 
International Joint Conference on Artificial Intelligence, 
Los Angeles, Cali fornia, August 1985. 

[Lesser et al, 1975] Lesser, V.R. , Fennell, R.D., Erman, 
L.D., k Reddy, D.R. Organization of the Hearsay-II 
speech understanding system. In : IEEE Transactions 
on Acoustics, Speech and Signal Processing. ASSP-23, 
1975, 11-23. 

[Mart in k Riesbeck, 1986] Mar t i n , C, k Riesbeck, C. 
Uni form parsing and inferencing for learning. In : Pro
ceedings of the Fifth National Conference on Artificial 
Intelligence, Philadelphia, Pennsylvania, August 1986. 

[Schank, 1982] Schank, R. Dynamic memory: A the
ory of reminding and learning in computers and people. 
Cambridge University Press, Cambridge, England, 1982. 

[Schank k Abelson, 1977] Schank, R. k Abelson, I t . 
Scripts, plans, goals and understanding. Lawrence Er l -
baurn Associates, Hillsdale, New Jersey, 1977. 

[Simmons k Davis, 1987] Simmons, R., k Davis, R. Gen
erate, test, and debug: Combining associational rules 
and causal models. In Proceedings of the Tenth Interna-
tion Joint Conference on Artificial Intelligence, Mi lan, 
I taly, August 1987. 

510 Cognitive Models 



An Adaptive Model of Decision-Making in Planning 

Gregg Collins1 Lawrence Birnbaunv Bruce Krulwiclv 
University of Illinois Yale University Yale University 

Dept of Computer Science Dept. of Computer Science Dept. of Computer Science 
Urbana, Illinois New Haven, Connecticut New Haven, Connecticut 

61801 06520-2158 06520-2158 
Collins@p.cs.uiuc.edu Birnbaum@yale.arpa Krulwich@yale.arpa 

Abstract 

Learning how to make decisions in a domain is a 
critical aspect of intelligent planning behavior. The 
ability of a planner to adapt its decision-making to a 
domain depends in part upon its ability to optimize 
the tradeoff between the sophistication of its deci
sion procedures and their cost. Since it is difficult to 
optimize this tradeoff on a priori grounds alone, we 
propose that a planner start with a relatively simple 
set of decision procedures, and add complexity in re
sponse to experience gained in the application of its 
decision-making to real-world problems. Our model 
of this adaptation process is based on the explana
tion of failures, in that it is the analysis of bad 
decisions that drives the improvement of the deci
sion procedures. We have developed a test-bed 
system for the implementation of planning models 
employing such an approach, and have demon
strated the ability of such a model to improve its 
procedure for projecting the effects of its moves in 
chess. 

1 Introduction 

The ability to plan effectively involves many different 
forms of reasoning: projecting the effects of actions in a 
current or hypothetical situation, deciding which goal to 
pursue from among the many that might be pursued at 
any given time, constructing sequences of actions that 
can achieve a given goal, determining whether to exe
cute such a sequence, and so on. By and large, most 
research on planning in Al has concentrated on those 
aspects of planning that in vol ve reasoning about actions, 
and more specifically, on how sequences of actions can 

1This research was supported in part by the Defense Advanced 
Research Projects Agency, monitored by the Air Force Office of 
Scientific Research, under contract number F49620-88-C-0058, 
and in part by the Office of Naval Research under contract 
number N0014-85-K-010. 

be constructed to achieve particular and well-defined 
goals. Considerably less attention has been devoted to 
those aspects of planning that we might term decision
making: Deciding whether (or when) to pursue a given 
goal, or whether to use a given plan for the goal, or for 
that matter whether even to consider the goal in the first 
place. 

To make such decisions correctly, a planner must know 
a great deal about the particular environment in which 
they arise. For example, a person's decision about whether 
to turn around and look if he hears footsteps behind him 
depends crucially on the situation in which he finds 
himself: His decision is likely to be quite different on a 
moderately populated suburban street in the middle of 
the day than in an empty city street late at night. The 
relevant characteristic of the environment, obviously, is 
the rate at which threats can be expected to arise, and in 
particular the threat of being victimized by a criminal. 

One of the major issues confronting any planner is deter
mining how much effort to expend on evaluating a given 
decision. Decision-making in general is subject to a trade
off between the sophistication of the procedure em
ployed to make the decision, and the time and effort 
required to perform the analysis. A more sophisticated 
decision-making procedure wi l l , generally speaking, 
either consider more alternatives, consider each alterna
tive in more depth, or do both. This requires more 
reasoning, and is correspondingly more expensive. 
Whether a more sophisticated procedure is worth using 
depends on whether the gain from its superior perform
ance outweighs this extra cost. Consider, for example, 
the tradeoffs involved in deciding which goal to pursue: 
The planner must first determine which of a myriad 
possible goals—including goals to acquire resources, 
protect desired states, or improve the current situation, 
among others—are reasonable candidates, and then 
compare the expected benefits from each of these candi
dates. Obviously, the more goals the planner considers 
as reasonable candidates, the more likely it wi l l be to find 
a better goal to pursue. On the other hand, the more goals 

Collins, Birnbaum and Krulwich 511 



the planner must compare in making its decision, the 
more this procedure wi l l cost. 

The key point about such tradeoffs in the sophistication 
of the decision-making process is that, like the decisions 
themselves, they are highly dependent upon the particu
lar planning environment. For example, in a highly time-
limited situation (e.g., basketball or some other fast-
paced game), a planner simply cannot afford to consider 
very many candidate goals when trying to determine 
what it should do next. Thus, when confronted wi th a 
novel planning environment, a planner must be pre
pared to adapt its decision-making processes to that 
environment, balancing the tradeoff between their so
phistication and their cost. 

It seems difficult to imagine how an agent might find the 
roughly optimal level of decision-making sophistication 
on the basis of a priori reasoning alone. This suggests that 
planners should be prepared to alter their decision
making processes on the basis of experience within a 
new planning environment. The approach we have taken, 
therefore, is to start with a relatively simple model of 
decision-making—one that ignores many potential al
ternatives, and many of the factors that might bear on 
deciding among them—and to progressively make it 
more sophisticated in response to poor decisions, i.e., de
cisions to pursue goals and plans that ultimately fail. In 
other words, our model of how a planner adapts its 
decision-making to new planning domains is failure-
driven (see, e.g., Sussman, 1975; Schank, 1982; Hayes-
Roth, 1983; Minton, 1984; Hammond, 1986). In such an 
approach, when a plan fails, the goal of preventing a 
similar failure in the future leads to an attempt to explain 
the current failure.1 The explanation of the failure, in 
turn, suggests ways in which similar failures might sub
sequently be avoided. 

We have elsewhere presented our model of failure-
driven learning in planning domains (Birnbaum and 
Collins 1988;Collinsand Birnbaum, 1988a and 1988b). In 
our approach, the planner encodes a description of the 
intended functioning of its plans in explicit justification 
structures. When the expectation that a plan wi l l succeed 
is violated, the planner can trace back through the justi
fication structure to identify the culprit among the initial 
assumptions (see, e.g., deKleer, et ah, 1977; Doyle, 1979). 
By identifying which assumptions have failed, the plan
ner is able to arrive at a characterization of how the 
particular si tuation brought about this failure, which can 
then serve as the basis for a rule that suggests what to do 
when similar situations arise subsequently. 

1Thus the approach can also be viewed as a form of explanation-
based learning (see, e.g., Dejong and Mooney, 1986; Mitchell, 
Keller, and Kedar-Cabelli, 1986). 

This paper describes the application of our model to the 
progressive adaptation of decision-making procedures 
to new planning environments. Such an application 
requires spelling out the assumptions involved in the 
expectation that simple decision procedures wi l l suffice, 
how those assumptions can fail, and how the procedures 
can be improved upon the diagnosis of such failures. We 
first discuss how these issues arise in a case study of the 
chess fork. We next briefly describe a program which 
implements some of our ideas, and then discuss its 
application to a second case study, concerning the devel
opment of a planner's ability to predict its opponent's 
move in deciding its own move in chess. 

2 Case study: The fork 

As our first case study in improving decision-making in 
planning, we wi l l consider how a novice chess planner 
can learn to deal with a fork—a situation in which the 
planner's opponent confronts it with an attack on two 
pieces simultaneously. Unless a move can be made that 
wi l l defend both pieces at once—or alternatively one 
piece can be moved or defended in a way that at the same 
time poses a strong counter-threat to the opponent—one 
of the pieces in question wi l l surely be captured. The fork 
is something that all chess players eventually learn about, 
usually as a result of being victimized by it. The question 
is, what does a novice learn about the fork from this 
experience? 

A planner victimized by an opponent's tactic should 
learn two things: how to avoid being victimized in the 
future, and how to use the same tactic to victimize others. 
We wi l l concentrate here on the first of these, the ques
tion of how a planner learns to avoid the fork. Since the 
fork takes advantage of the planner's plan for defending 
its pieces, we must begin by considering what the plan
ner knows about this plan, and in particular, what he 
knows about the assumptions upon which its efficacy 
depends. 

The plan that almost every novice chess player seems to 
have for defending his pieces is this: Before each turn, 
check to see if any of the opponent's pieces is in position 
to move to the location of one of your pieces. If this is the 
case, then you can prevent the execution of the threat by 
moving the threatened piece, or by guarding it with 
another piece. This plan makes the assumption that a 
one-move warning of a threat to a piece is sufficient to to 
allow it to be defended, and this is generally the case. It 
is this assumption, however, that the fork takes advan
tage of: When two imminent threats are detected on the 
same turn, there is not time to block both of them. 

Given that a novice planner understands that its plan 
depends upon this assumption, a plausible explanation 

512 Cognitive Models 



for how it comes to understand the fork can be con
structed. The fork results in the failure of the plan to 
protect materiel, since it results in the capture of a piece. 
This failure can be traced to the violation of an underly
ing assumption of the plan, namely that a one-move 
warning of any threat would be sufficient.1 The violation 
of this assumption was, in turn, brought about by the 
opponent's positioning of a piece so that it attacked two 
pieces simultaneously. The key point here is this: Such an 
analysis not only explains the fork, it suggests the way to 
guard against it. The failure of the assumption that a one-
move warning is sufficient implies the need to detect at 
least one of the two threats earlier. Moreover, the fact that 
the failure was brought about by the positioning of a 
piece to attack two pieces at once means that efforts at 
earlier detection can be limited to situations where the 
opponent can, with a single move, produce a threat to 
two pieces. Thus, understanding how the fork violates 
its assumptions enables a planner to determine how it 
can avoid being victimized by the fork in the future: It 
must modify its plan for scanning the board to include a 
check for opponent's pieces that can be moved into 
position to attack two unguarded pieces of its own. 

This explanation of how a novice planner learns from 
experiencing the fork leaves us with a question, how
ever: Why would the planner have assumed that a one-
move warning was enough in the first place? The most 
obvious answer is that the planner was simply unable to 
imagine a circumstance in which this would not be the 
case. Unfortunately, this explanation does not hold up 
upon further reflection. The idea that multiple threats 
pose a problem for defenses that involve detecting and 
blocking individual threats is well known to all human 
planners: This is the fundamental reason, for example, 
why "ganging up" allows a superior force to be defeated 
by a collection of inferior forces in any competitive 
situation. It seems likely that any human planner would 
have experienced this phenomenon, and grasped its 
significance, long before learning to play chess. But 
given the knowledge that detection-based plans for 
blocking threats are vulnerable to an overload of threats, 
plus the lack of any particular reason to believe that this 
problem would not arise in chess, it seems unlikely that 
the planner would nevertheless conclude that a one-
move warning would always be enough. To argue this 
would be to conclude that vulnerability to the fork is the 
result of a mistake—a mistake made consistently by 
almost every person who ever learns the game of chess. 
It would be difficult to explain why such an error in 
reasoning should be made by nearly everyone. 

In fact, the answer lies not in the logic of the situation, but 
in its economics. The reason for not detecting threats two 

'See Collins and Birnbaum, 1988b, for a discussion of how this is 
accomplished. 

moves in advance is that it would cost too much to do so: 
The planner would be swamped by the need to respond 
to a massive number of threats, since in two moves most 
of the opponent's pieces would be able to move to at least 
one square currently occupied by one of the planner's 
pieces. Most of these "threats" would never develop, 
and the planner would at best waste a great deal of time 
that could better be used plotting strategy. There is, in 
other words, a tradeoff: By detecting threats early, the 
planner provides more time to deal with multiple threats, 
but at the cost of being forced to consider an enormous 
number of possible—but unlikely—threats. By detecting 
threats later, the planner runs the risk of not having 
enough time to deal with multiple threats, but avoids 
being swamped with too many low probability reports. 
In this case, the tradeoff clearly is on the side of later 
detection, and this is likely to be true in many domains. 

A key characteristic of the appropriate defense against 
the fork is that it avoids a blow-up in the number of 
detected threats by looking only for cases in which one 
piece can be moved so as to attack two pieces at once. In 
other words, by looking for forks in particular, rather 
than detecting all threats two moves in advance, the 
planner focusses its attention narrowly enough to make 
the extra effort worthwhile. So this is what the planner 
really learns from the fork: Not that one move's warning 
might not be enough—it already knew that—but a 
characterization of the circumstances in which it is not 
that is precise enough to allow them to be detected effi
ciently. 

We can now provide a coherent account of how the fork 
is learned. The planner begins with the understanding 
that threats to pieces will arise periodically in chess. The 
standard strategy for dealing with threats in any domain 
is this: First, construct methods for detecting individual 
instances of threats in advance. Second, construct meth
ods for blocking threats that can be executed when a 
threat is spotted. And third, ensure that all threats wi l l be 
detected in time for a blocking routine to be carried out. 

In chess, first, the obvious method for detecting threats is 
to determine which of the opponent's pieces could move 
to locations occupied by the planner's pieces in some 
particular number of moves. Second, the obvious method 
for blocking these threats is to move the threatened piece 
out of harm's way; a slightly more sophisticated plan is 
to guard the piece with another. And third, since any 
piece can generally either be moved or guarded in a 
single turn, and since—all other things being equal—it is 
best to detect threats as late as possible, a planner can 
conclude that one move's warning wi l l generally be 
enough. However, the planner cannot prove that one 
move wil l always be enough, and so is forced to make the 
assumption that this wil l generally be the case. By 

Collins, Birnbaum and Krulwich 513 



making this assumption explicit, and by ensuring that it 
is monitored whenever a threat arises, the planner as
sures itself of being alerted to cases in which the assump
tion fails, as it does in the fork. So, while the planner is 
forced to accept the cost of a few failures as the price of 
an efficient threat-detection strategy, by monitoring the 
assumptions it is forced to make, and analyzing the 
failures that occur, it is able to gradually improve its 
performance by dealing wi th problematic cases one at a 
time. 

In a sense, this explanation argues that a planner is 
deliberately courting failure as a shortcut to a better plan. 
Viewed this way, the alternative would have been for the 
planner to reason out, a priori, the circumstances in which 
multiple threats could occur, rather than waiting for 
those circumstances to arise in practice. In effect, this 
would mean inventing the fork before actually playing 
the game. While this is possible in principle, in practice 
the computational cost is likely to be extremely high— 
high enough that it is almost certainly cheaper to wait for 
the fork to happen. We believe that similar explanations 
underlie the acquisition of a wide range of decision
making strategies employed by planners. 

3 An implementation and a second case study 

In order to explore more concretely our failure-driven 
approach to the adaptation of decision-making proc
esses in planning, we have constructed a test-bed— 
comprising mechanisms for inference and rule applica
tion, justification maintenance, expectation handlers, 
failureexplanation, and rule patching—and implemented 
within it a simple model of decision-making and plan
ning for turn-taking games. This model, in turn, has been 
used for exploring rudimentary planning and learning 
in tic-tac-toe and in chess. 

(def-brule proj-factor-2 
(world (move move) (player player) result (weight integer) 

(opp-move move) (time time) 
(better-move move) (better-goal goal) 
(better-value integer) (orig-value integer) ) 

(project-factor proj-factor-1.5 world move player result weight) 
(and (= world (world-at-time time)) 

(decide (player-opponent player) 
(possible-moves-at-time (player-opponent player) time) 
world simple-dec-factors opp-move) 
(= result (world-after-move opp-move (world-after-move 

move world))) 
(= weight 1) 

) 
[Justification herel) 

Figure 1: Initial Projection Method 

The planning model is implemented in 14 fairly general 
rules, concerning the detection of threats and opportuni
ties, making choices, forming and checking expecta
tions, and the like; some typical rules are shown later in 

this section. In addition, there are 22 chess-specific rea
soning rules. A l l of these rules, general as well as 
specific, have associated justification structures, as do all 
particular facts and expectations contained in the sys
tem's data base. These justification structures are con
structed and utilized by the rule applier, the failure 
explanation algorithm, and the rule patching mecha
nism. We devote the rest of this section to describing the 
program's application to a second case study, concern
ing the development of a planner's ability to predict its 
opponent's move in deciding its own move in chess. 

The decision-making process within our planning model 
is composed of three interleaved components: a decider, 
which determines what move to make, a projector, which 
projects the results of a possible move in a given situ
ation, and an evaluator, which evaluates a situation from 
a given player's perspective. Our planner starts with 
extremely primitive methods for accomplishing each of 
these decision-making tasks. First, to decide what move 
to make it simply projects the results of each move 
available to it, evaluates each resulting situation, and 
chooses the move that yields the best result. To project 
the results of making a given move, the planner simply 
assumes that its opponent wi l l behave as it would in any 
given situation; the projection method that implements 
this is shown in figure 1. Finally, to evaluate a given 
situation, the planner computes the difference between 
the total values of the two player's pieces remaining on 
the board. 

Consider now how a planner endowed with these primi
tive decision-making methods would behave in the situ
ation shown in figure 3. To such a planner, moving the 
rook to take the knight looks like the best move. This 
decision is based on the erroneous expectation that its 
opponent wi l l take the planner's knight. It forms this 
expectation because the projection method shown in 
figure 1 simply evaluates the opponent's options in the 
original situation, i.e., without taking into account the 
effects of the planner's own move. The use of such an 
unsophisticated procedure considerably simplifies the 
projection problem, because it obviates the need to re
compute the opponent's response individually for each 
move contemplated by the planner. However, its valid
ity, and hence the validi ty of theexpectationsthe planner 
generates concerning the opponent's moves, depends 
on an assumption that nothing wi l l occur that wi l l enable 
the opponent to make a better move than those currently 
available to it. This assumption, is an instance of what is 
sometimes referred to as an inertia assumption, namely an 
assumption that things wi l l stay as they are as much as 
possible. In our planner, this assumption is itself justi
fied by a conjunction that says roughly "Nothing wi l l 
happen to give him a better move because he can't do 
anything to give himself one, I won't do anything to give 

5 1 4 Cognit ive Models 



Figure 3: Game Board Sequence 

him one, and no outside forces wi l l give him one." 
Because the planner's decision to take the knight is 
justified by its projection that its opponent wi l l take a 
knight in response, it monitors the status of this expecta
tion. The expectation, in turn, is justified by the assump
tions underlying the projection method used to produce 
it. 
Applying rules in NEW-EXPECTATION-FAILURE-RULES 
—Expectation failure: 

item=(move-to-make (move opponent move-take pawn 
(ro>loc 2 3) (rc->loc 3 4) knight) 

opponent (goal-unknown) 2) 
Traversing... 
Checking fact 
#(fact 1785: (project (move computer move-take rook 

(move opponent move-take pawn 
(rc->loc 2 3} (rc->loc 3 4) knight) 

Checking b-rule #{b-rule proj-factor-2) 
—> Valid: 
(not (exists (c event) 

(move-to-make ?e.216 opponent ?better-goal.209 1))) 
—> Valid: 
(not (exists (e event) 

(and (extraneous-event ?e.2l7) 
(event-enables-event ?e.217 ?better-move.208)))) 

—> Found a bug: 
(no (and (move-enables-move ?move.210 ?better-move.208) 

(move-possible ?better-move.208 ?time.207) 
(move-legal ?better-move.208) 
(evaluate (world-after-move ?better-move.208 

(world-after-move ?move.210 ?world.211) 
eval-factors 
(player-opponent ?player.212) 
?better-value.213) 

(evaluate (world-after-move ?opp-move.214 
(world-after-move ?move.210 ?world.21D) 

eval-factors 
(player-opponent ?player.212) 
?orig-value.215) 

(> ?better-valuc.213 ?orig-value.215))) 
*** Returning a BUG *** 

Figure 4: Traversing an Expectation's Justification 

Unfortunately, as we can see, the opponent is not going 
to make the move that the computer expected, and the 
move that he will make—namely taking the planner's 
rook—is a better move than the one the planner ex

pected. When this happens, the planner detects that its 
expectation that the opponent wil l take the knight has 
failed. This then causes the planner to traverse the 
justification structure for that expectation, checkingthe 
assumptions upon which it depends. 

In particular, the planner wil l discover that its assump
tion that the opponent wi l l not have a better move has 
been violated. A partial transcript of this process is 
shown in figure 4, but it should be clear that the assump
tion in the justification that wil l fail is the inertia assump
tion that no event wil l occur that wil l give the opponent 
a better move than we expect him to have, and in particu
lar the assumption that no action of the program's wil l 
give the opponent a better move. 

As can be seen in figure 4, the system knows more than 
just the identity of the assumption that failed: It also 
knows how that assumption failed. The program's domain 
knowledge allows it to determine that the opponent's 
move was in fact a legal one, and a comparision of the jus
tification for this belief with the program's prior expec
tation reveals that the event that enabled the opponent to 
make a better move than expected was in fact the com
puter's own move. Once the program discovers this, it 
must modify its reliance on the inertia assumption to 
take the problem into account, using the information 
provided in its justification structures and its analysis of 
the failure. The program uses standard goal regression 
techniques (see, e.g., Dejong and Mooney, 1986; Mitchell 
etal., 1986) todetermine just those aspectsof the situation 
that caused the expectation to fail. 
The resulting generalized explanation for the failure is 
used to patch the method that predicts the opponent's re
sponse, as utilized by the projection component, so that 
it checks for opportunities presented to the opponent by 
the planner's own move, thus ensuring that this mistake 
wil l be avoided in the future (see figure5). The new rule 
says roughly the following: 'To see what the world wi l l 
be like after making move M, see what you would do in 
the opponent's situation at the current time, and assume 

Coll ins, Birnbaum and Kru lwich 5 1 5 



that he wi l l make that move, as long as your move M 
doesn't enable a better move for him." When the same 
example is run with the new rule antecedant, the com
puter does not make the same mistake. 

(def-brule proj-factor-3 
(world (move move) (player player) result (weight integer) 

(opp-move move) (time time) 
(better-move move) (better-goal goal) 
(better-value integer) (orig-value integer) ) 
(project-factor proj-factor-1.5-mod world move player 

result weight) 
(and (= world (world-at-time time)) 

(decide (player-opponent player) 
(possible-moves-at-time (player-opponent player) time) 

world simple-dec-factors opp-move) 
(= result (world-after-move opp-move 

(world-after-move move world))) 
(= weight 1) 
; here's the new stuff: 
(no (and (move-enables-move move better-move) 

(move-possible better-move (current-time)) 
(move-legal better-move) 
(evaluate result eval-factors 

(player-opponent player) orig-value) 
(evaluate (world-after-move better-move 

(world-after-move move world)) 
eval-factors (player-opponent player) 
better-value) 

(> better-value orig-value) ) ) ) ) 

Figure 5: The Modified Projection Method 

4 Conclusion 

Learning how to make decisions in a domain is a critical 
aspect of intelligent planning behavior. The ability of a 
planner to adapt its decision-making to a domain de
pends in part upon its ability to optimize the tradeoff be
tween the sophistication of its decision procedures and 
their cost. Since it is difficult to optimize this tradeoff on 
a priori grounds alone, we propose that a planner start 
with a relatively simple set of decision procedures, and 
add complexity in response to experience gained in the 
application of its decision-making to real-world prob
lems. Our model of this adaptation process is based on 
the explanation of failures, in that it is the analysis of bad 
decisions that drives the improvement of the decision 
procedures. We have developed a test-bed system for 
the implementation of planning models employing such 
an approach, and have demonstrated the ability of such 
a model to improve its procedure for projecting the 
effects of its moves in chess. 

References 

Birnbaum, L. and Collins, G. 1988. The transfer of expe
rience across planning domains through the acquisition 
of abstract strategies. In J. Kolodner, ed., Proceedings of 
a Workshop on Case-Based Reasoning, Morgan Kaufmann, 
San Mateo, CA, pp. 61-79. 

Collins, G. and Birnbaum, L. 1988a. An explanation-
based approach to the transfer of planning knowledge 
across domains. Proceedings of the 1988 AAAI Spring 
Symposium Series: Explanation-Based Learning, Stanford, 
CA, pp. 107-111 

Collins, G. and Birnbaum, L. 1988b. Learning strategic 
concepts in competitive planning: An explanation-based 
approach to the transfer of knowledge across domains. 
Research report no. UIUCDCS-R-88-1443, University of 
Illinois, Dept. of Computer Science, Urbana, IL, 1988. 

Dejong, G. and Mooney, R. 1986. Explanation-based 
learning: An alternative view. Machine Learning, vol. 1, 
pp. 145-176. 

deKleer,J.,Doyle,J.,Steele,G.andSussman,G..AMORD: 
Explicit control of reasoning. Proceedings of the ACM Sym
posium on Artificial Intelligence and Programming Lan
guages, Rochester, NY, pp. 116-125. 

Doyle, J. 1979. A truth maintenance system. Artificial 
Intelligence, vol. 12, pp. 231-272. 

Hammond, K. 1986. Case-based planning: An inte
grated theory of planning, learning, and memory. Re
search report no. 488, Yale University, Dept. of Com
puter Science, New Haven, CT. 

Hayes-Roth, F. 1983. Using proofs and refutations to 
learn from experience. In R. Michalski, J. Carbonell, and 
T. Mitchell, eds., Machine Learning: An Artificial Intelli
gence Approach, Vol. 1, Tioga, Palo Alto, CA, pp. 221 -240. 

Minton,S. 1984. Constraint-based generalization: Learn
ing game-playing plans from single examples. Proceed
ings of the 1984 AAAI Conference, Austin, TX, pp. 251-254. 

Mitchell,T., Keller, R. and Kedar-Cabelli,S.1986. Expla
nation-based generalization: A unifying view. Machine 
Learning, vol. 1, pp. 47-80. 

Schank, R. 1982. Dynamic Memory: A Theory of Reminding 
and Learning in Computers and People. Cambridge Univer
sity Press, Cambridge, England. 

Sussman, G. 1975. A Computer Model of Skill Acquisition. 
American Elsevier, New York. 

516 Cognitive Models 


