
Learning to Diagnose by Doing 

Jayant Kalagnanam* 
Department or Engineering and Public Policy 

Carnegie Mellon University 
Pittsburgh, PA 15213 

Abstract 

This paper is a study on the process of evolution 
of a novice to an expert in a diagnostic context. In 
this paper, we have chosen an abstract example of 
a diagnostic problem. The results in this article are 
based on a longitudinal study of a single subject. 
The empirical base is a protocol of the subject as 
he solved this problem until he mastered the most 
sophisticated strategy. Based on an analysis of 
the protocol, we have identified four different 
strategies that were used by the subject to solve 
the given set of problems. These strategies vary 
in their efficiency of diagnosis and in their modes 
of reasoning. We also identify the different 
operators that were used by the subject to trans­
form one strategy into a more efficient one. The 
learning process has been implemented as a com­
puter simulation. Finally, we discuss the 
hypotheses that are suggested by this experiment 
and the implications of our observations. 

1 Introduction 

A complex problem-solving task generally allows for many 
different strategies, all of which could potentially lead to a 
solution. However, all the strategies are not equivalent. 
They differ in terms of their efficiency in arriving at the 
solution, the cognitive load they place on the problem-
solver and the generality with which they can be trans­
formed to other problems. For someone encountering a task 
for the first time, some strategies might become apparent 
immediately and others become apparent more slowly as the 
problem-solver becomes familiar with the task. The process 
by which a person who begins a task with "obvious" 
strategies, graduates to more efficient strategies with in­
creasing familiarity is what we call learning or skill 
acquisition1. 

In this paper, we are interested in understanding this 
process for a class of problem-solving tasks called diag­
nosis. More specifically we focus our attention to diagnosis 
of machines. Intuitively machines are defined as devices 
designed to fulfill a function. If such a device produces 
aberrant behavior, we are interested in identifying that part 
of the device which is responsible for such behavior. Typi­
cally, diagnosis begins with a model of the device and a set 
of symptoms indicative of aberrant behavior. This model is 

This research was funded by NSF Grant 1RI-8807061 

1The thread of the argument in this paper is inspired by [Anzai 
and Simon, 1979] 

Eswaran Subrahmanian 
Engineering Design Research Center 

Carnegie Mellon University 
Pittsburgh, PA 15213 

a description of the structure and behavior of the device. 
Given this information, there are many strategies available 
for diagnostic problem-solving. We are interested in the 
learning process that occurs in this problem domain. 

2 The Learning Task 

In this paper, we have chosen an abstract example of a diag­
nostic problem. Although this example is limited in some 
of it's assumptions, it is general enough to be applicable to a 
wide variety of diagnostic problems. The results in this 
article are based on a longitudinal study of a single subject. 
The empirical base is a protocol of the subject as he solved 
this problem until he mastered the most sophisticated 
strategy. Based on an analysis of the protocol [Ericsson and 
Simon, 1980], we have identified four different strategies 
that were used by the subject to solve the given set of 
problems. These strategies vary in their efficiency of diag­
nosis and in their modes of reasoning. We also analyze the 
protocols to identify the different operators that were used 
by the subject to transform one strategy into a more efficient 
one. 

We have characterized each strategy in terms of produc­
tions in an effort to indicate how it could be simulated on a 
computer. Similarly, we characterize the learning operators 
based on the cues used by the subject to provide an account 
of the transformation of a strategy to a more efficient one. 

3 Method 

The experiment was carried out in two sessions. The first 
session lasted about 30 minutes and the second one lasted 
about 45 minutes. The subject is an adult male, a graduate 
student at the business school at Carnegie Mellon. The 
subject was familiar with networks and their analysis prior 
to the experiment although he was not familiar with the 
particular set of problems that were posed to him. Each 
session consisted of solving eight problems. The network 
for each problem is identical but the set of observed 
symptoms are different. 

The subjected was instructed to think aloud while solving 
the problems. The protocol of his verbalizations were 
recorded on tape and later transcribed. The instructions for 
the problems were as follows: 

The task involves fault diagnosis of graphically dis­
played networks. These networks operate as follows. 
Each component has a random number of inputs. 
Similarly a random number of outputs emanate from 
each component. Components are devices that produce 
either a 1 or 0. An output of 1 denotes an acceptable 
output; 0 denotes an unacceptable output. All outputs 
emanating from a component carry the value produced 
by that component. 

556 Cognitive Models 



A component w i l l produce a 1 if: 
1. All inputs to the component carry values of 1 

and 

2. The component has not fai led 
If a component fails, it w i l l produce values of 0 on all 
outputs emanating from it. 

A problem begins with the display of a network with 
the outputs indicated (refer to Figure 1 for an example). 
Based on this evidence you are asked to identify the 
failed component. In order to perform this task you are 
allowed to test connections between components but 
minimize the number of measurements you perform. 
Keep in mind that only one failed component can explain 
the given set of readings. 

Figure 1: A Network of Components 
[Rouse and Hunt, 1984] 

Each session consisted of solving eight problems. As stated 
in the instructions, the network for each problem is identical 
but the set of observed symptoms are different 

Unlike in physics problems we do not have available (for 
this task) any characterizations of the expert and novice be­
havior. Therefore we need a measure to compare the perfor­
mance of novices and experts. Since for this particular task, 
we indicated that expertise is understood in terms of 
problem solving efficiency, we propose to use the number 
of measurements as a metric for comparing performance. 
The cost of of all measurements have been assumed to be 
equal. The network problems of the size we use can be 
solved for optimal solutions. We shall measure the perfor­
mance on a given task in relation to the optimal possible 
performance. 

4 Results 

The protocol consists of a total of 280 statements divided 
into two sessions. In this paper, the set of eight problems in 
each of the two sessions are numbered PI - PI6. Problems 
PI through P8 belong to session 1, and P9 through P16 to 
session 2. The first session consists of 104 statements and 

the second 176 statements. Session 1 contains 52 state­
ments about measurements between connections, 21 per­
taining to reasoning to identify the next component or set of 
components that could be faulty, 7 metastatements about 
strategy, 4 verifications of faults, and the rest are obser­
vations and conjectures; Session 2 contains 41 measure­
ments of connections, 79 pertaining to reasoning to identify 
the next component or set of components that could be 
faulty, 25 metastatements about strategy, and the rest are 
observations, explanations and conjectures. 

The protocols for both the sessions are explicit enough to 
leave no doubt about the strategy that is being used by the 
subject at any given moment However, the protocols are 
not sufficiently complete as to identify how the subject ac­
quired or used information to transform his strategy. This 
lack of explicit evidence for the process of adaptation is also 
reported by (Anzai and Simon, 1979]. The rest of the 
analysis is based on the four strategies developed by the 
subject to solve the problems. 

4.1 Depth-First Strategy 
The strategy that the subject used PI - P7, except P5 is what 
we call the depth-first strategy. From the problem defini­
tion the subject hypothesized correctly that a faulty com­
ponent has all inputs as 1 and all outputs as 0. The search 
for a faulty component was not random. He chose the first 
0 (from the top) for a given set of outputs and checked for 
it 's inputs. If one of the inputs was a 0, then he concluded 
two things: (a) The component under consideration is not 
faulty and (b) the faulty component could be traced to the 
component whose corresponding output was 0 or a com­
ponent before that. This strategy always leads to the solu­
tion and restricts the search to one component at any step. 
At each step, through extensive testing only those com­
ponents with output 0 are explored. However, this strategy 
is non optimal in the number of measurements performed. 
For example, problem 1(P1) in session 1 required 6 
measurements, whereas optimally it can be solved with at-
most 3 measurements. 

While solving each of these problems, the subject verified 
his result by tracing the outputs of the faulty component to 
the 0 outputs at the terminal nodes. For example in P2 he 
traces the output of the faulty component (32) to all the 
terminal nodes with 0 outputs (43, 44, 45, 46, 47). We 
present a section of his protocol to illustrate this: 

17.S:there are no inputs into 32, then 32 is at fault! 
18.S:that should explain all the other zeroes, let's see, 37 
has output 41 , it that a 0 [yes] 
19:S:37to46?fa0] 
20.S:32 to 39?[a0] 
21.S:39 to 45 must be a 0, and 39 to 46 must be a zero 
and 38 to 47 must be a 0 
22.S;okay 32 is at fault! 

From solving this set of problems the subject retained two 
pieces of information in the long-term memory. These are: 
(a) a faulty component has all inputs as 1 and outputs as 0, 
and (b)the outputs from a faulty component can be ul­
timately traced to the 0 outputs at the terminal components. 

In figure 2, we provide a set of productions which can 
simulate this strategy2. 

In enumerating the productions, we have assumed that we 
have a structural description of the network available. This 

2We enumerate only those productions which are vital for 
explicating each strategy 

Kalagnanam and Subrahmanian 557 



implies that for any given node: 
• Al l the predecessor and successor nodes can be 

generated. Hence functions like find-inputs are 
capable of generating all nodes which have in­
puts to a given node. Similarly, the nodes con­
nected to the outputs of a given node are avail­
able and hence functions like trace-output can 
apply recursively to find paths from a given 
node to the terminal nodes. These functions 
have not been described here. 

• The value of the connections between any two 
nodes can also be checked. Functions like 
input and output can check if the value of the 
output from a node, or the values on the input 
of the node are 0,1 or unknown. 

From the definition of the productions, the reader can verify 
that this executes the depth-first strategy. 

4.2 Refined Depth-First Search 
The strategy used during this episode is what we call the 
refined depth-first strategy. This strategy was used for only 
problems P5, P8, P9 and P10. This indicates that the subject 
remembered this strategy in his long-term memory which he 
was able to recall later. 

This strategy is similar to the depth-first strategy in that 
the subject begins the search from the first component with 
output 0 (from top, refer to figure 4-1). For this component 
he identifies all the inputs and their corresponding com­
ponents. At this point, he departs from depth-first. Instead 
of measuring each input, he picks one component at a time 
(generally top to bottom) and traces the output of that com­
ponent to all the terminal nodes. If none of the components 
have outputs that trace to all the terminal 0s, then he picks 
the first component and generates all the inputs. The same 
procedure is Continued. However, when a component is 
identified whose output traces to all the 0s, then he 
measures the inputs and the outputs to verify that the com­
ponent is faulty. When the above strategy is followed it 
always leads to the correct solution and even though the 
number of measurements is less than the "depth-first 
strategy", they are not minimized. 

The subject first used this strategy for P5 and then for P8. 
In both these problems all the terminal nodes are 0, which 
prompted him to remember at each step, that any component 
under consideration has to ultimately explain all the ter­
minal 0s. He also used this strategy for P9, P10. He clearly 
states this strategy while solving P9: "so basically my 
strategy is to locate that node from where there are paths to 
all five (terminal 0s),...". 

The main piece of information retained in this stage is a 

perceptual one. As the subject traced the outputs of 
suspected candidate, he discovered visually that a path from 
a given node to a terminal node is equivalent to a path from 
a terminal node to a given node in the network. The 
productions for this strategy are shown in figure 3. 

The productions in figure 3 similar to the one's for depth-
first. The production Rl is common to all strategies. For 
each strategy the productions that are presented are replace­
ments of the productions with the same number in the pre­
vious strategy. For example, the production R2 in the 
"refined depth-first" is intended as a replacement of R2 in 
the "depth-first". The function generate-suspect-list 
provides a list of components which feed inputs into a given 
node. This list is called "suspect-list". The function 
trace-output is the same as before. If it succeeds for any 
node on the suspect-list it is returned as a "suspected-faulty-
node" else it returns the first node on the "suspect-list" 
which triggers R2 to recurse. Once the suspect is isolated, 
R4 triggers measurements. 

The control structure for this strategy is as follows: Once 
a suspect-list is generated, it becomes the immediate goal. 
This ensures that the suspect-list of the first 0 is explored. 
Similarly, as soon as R2 generates a suspected-faulty-node 
or a suspect-node, these are treated as immediate goals 
which take precedence over other productions. 

4.3 Simultaneous Propagation 
The use of the "simultaneous propagation" strategy is first 
apparent in PI 1. This strategy involves tracing the inputs of 
all the terminal nodes with 0 outputs, one level at a time. 
Once the input components for each terminal 0 are iden­
tified, the subject checks to see if there are one or more 
components which are common to all sets of inputs. If such 
a node(s) is found, then a faulty component is identified. It 
is only after identifying such a root node that any measure­
ments are made. If a root node is not identified at a given 
level, then all the inputs to each of the suspect components 
are generated and the same check is performed, else if a 
single root node is identified then the subject measures the 
inputs to verify that it is indeed the faulty component. If a 
set of nodes are identified, then the outputs are first 
measured to identify which component in the set produces a 
0 output. Once this is done the inputs are measured to 
verify the faulty component This strategy minimizes the 
number of measurements. 

This strategy is clearly and succinctly stated by the sub­
ject in PI3: "I just trace the arcs backwards from the nodes I 
want (terminal 0s) and see if they converge at some point 
(node) someplace". The subject also solved P11,P12 and 

558 Cognitive Models 



The control structure here is slightly different from pre­
vious strategies. When R2 is fired and a suspect-list is 
produced, this list is not marked as an immediate goal. In­
stead the input components of all the nodes with Os are 
generated in the suspect-list, which is a list of lists. Only 
when all Os are exhausted does R2 fire again. The function 
find-common-roots finds all the nodes common between all 
the lists of the suspect-list. If there is none, then R3 is fired 
and recursed to the next level. However, if common-roots 
are found then the inputs and outputs are measured to iden­
tify the faulty component. 

4.4 Refined Simultaneous Propagation 
This strategy is very similar to simultaneous propagation. 
The only difference is the fact that each step some ad­
ditional information is used to eliminate some of the 
suspects. We call this refined simultaneous propagation. 
This strategy is also optimal in the number of measure­
ments, but is computationally more efficient since some of 
the suspects are eliminated at each step. 

In this strategy, as before, the inputs to each of the ter­
minal nodes with a 0 output are identified. Simultaneously 
all the input nodes with terminal 1 are also traced. Since all 
the inputs to a node with output 1 should be functioning 
normally, the corresponding nodes are eliminated from each 
list of suspected faulty components. This reduces the num­
ber of suspects that need to be examined at each step. Once 
this done, the subject examines the suspect-list to determine 
if there are one or more components which are common to 
all the suspect lists. If none is found, the same procedure is 
repeated at the next level and so on. Only when a root 
node(s) is identified are any measurements made. 

The first use of information from an output of 1 is in­
dicated in P14. The explanation for this is provided in 
protocol, a segment of which we provide below: 

105.S: That means the node I am looking for cannot be 
38 or any nodes that precede 38. 
106.S: Because 38 has an input into to 43 and also other 
nodes, and 43 shows a 1. 

This strategy is also used in P16, but since PI5 has all Os at 
the terminal nodes, the subject could not use this strategy. 

To characterize the strategy described, two productions 
R3B and R3A (figure 5) are added to the list from the 
"simultaneous propagation" strategy. R3B generates the list 

5 Learning 

In the preceding sections, we characterized four different 
strategies that the subject used to solve the diagnostic 
problem. We also showed that the subject started with the 
simpler strategies and over time evolved to using more 
sophisticated strategies. This is the learning process. We 
have yet to indicate how this process occurs. In this part of 
the paper, we provide a description of how the subject 
moves from one strategy to another based on the protocol. 

As we noted before, the subject when presented with the 
first problem began solving it immediately. This search is 
far from random and suggests that the subject has available 
some prior knowledge of some general problem-solving 
strategies. As he solves problems he is able to gather new 
information which he combines with his prior knowledge to 
improve his problem-solving strategies. This implies that 
the subject has also available some learning capabilities in 
his long-term memory. 

In this section we describe four ways in which the subject 
combined new knowledge with prior knowledge to improve 
his problem-solving skills. From the protocol we have iden­
tified the different pieces of information which provided the 
subject with cues to develop new strategies. We also 
provide operators which combine this new information with 
prior knowledge to produce new strategies. 

5-1 Knowledge from Depth-First Search 
In the depth-first strategy, the subject used two characteriza­
tions of a faulty component. First the subject realized that a 
faulty component has inputs that are all 1 and outputs that 
are 0. Another necessary condition for a component to be 
faulty is that it's inputs should lead to all the terminal nodes 
with a 0. The subject started by using the first definition as 
a goal for search. But as is apparent, this strategy requires 
extensive measurements. After he located the faulty com­
ponent, he used the second characterization to verify his 
hypothesis. 

The two characterizations are equivalent in terms of their 
ability to guide the search to the correct solution. However, 
using only the first definition (of a faulty component) is not 
optimal in terms of the number of measurements required to 
reach a solution. The subject realizes that the use of the 
second definition does not require any measurements to 
identify a faulty component and it would be more efficient 
to use this definition to check for each suspect before 
making any spurious measurements. 

This learning process can be implemented simply in 
terms of re-ordering the firing of productions (Figure 2). 
For any given node with output 0, R3 fires and generates all 

Kalagnanam and Subrahmanian 559 



nodes with outputs leading to the given node. Each of these 
nodes are potentially faulty. In the depth first strategy, the 
outputs of each of these are measured to identify which 
node might have a 0 output. This is done by firing R4. 
Instead one could fire R2 to check if any of the nodes can 
explain all Os. Hence flipping the order in which R4, R2 
fires leads to a more optimal solution. This process 
provides the mechanism by which the transition from depth-
first to refined depth-first occurs. 

5.2 Knowledge from Refined Depth-First 
During the stage when the subject is using the refined depth-
first strategy, he gathers an important piece of perceptual 
information. While checking for a suspect component by 
tracing the output to a terminal 0, he discovers pictorially 
that tracing a path from a given node (in the network) is 
equivalent to tracing back a path from a terminal 0 to given 
node. 

The prior knowledge he brings to bear, is the fact that 
tracing the inputs from a terminal 0 generates a tree of 
suspects. Consequently at each level in the network, there is 
a set of suspects for each terminal 0 output. Since for each 
suspect, the output has to be traced to all the terminal 0 
outputs, the fault-tree for each terminal 0 is generated. 
Moreover, at each level the subject checks to see if there is a 
set of components which are common to all the suspect-lists 
for each terminal 0. This set contains the faulty component 
and no further discrimination can be done without measure­
ments. 

(current-state suspect-node) 
(goal (trace-output suspect-node terminal-0)) 
-» (set-goal (member suspect-node 

(fault-tree terminal-0))) 

Figure 6: Adaptive Productions for Learning 

The use of the perceptual information is represented by 
the production shown in figure 6. This production replaces 
the trace-output by a fault-tree of the terminal 0 output and 
the suspect node is checked to see if it is a member of this 
tree. This can be generalized to generate the fault-trees of 
all the terminal Os, and then find the set of nodes common to 
all these trees at each level. 

Hence we infer that the visual cue provides a pointer 
which indicates that the problem can be solved by tracing 
back the fault-tree from all the Os simultaneously. But the 
new strategy could not have evolved without the realization 
that at each level, the suspects are found by finding the 
intersection of all the set of suspects for each terminal 0. 

53 Knowledge from Simultaneous Propagation 
Since all the terminal 0 outputs are propagated backward to 
generate a fault-tree, a natural extension is to propagate 
back from terminal 1 outputs. Since all inputs to such com­
ponents have to be 1, all the components on the tree 
generated by back-propagating a terminal 1 output have to 
be functioning properly. Hence at each level, the subject 
eliminates all the components on the suspect-lists which 
also lie on the functioning-tree. This makes the search more 
efficient in terms of computations. This learning process 
can be implemented by providing adaptive productions 
which remove all the nodes, on the trees generated from 
terminal 1 outputs, from suspect lists. 

560 Cognitive Models 

5.4 Chunking 
The use of chunking3 is clearly illustrated in problems P8 
and PI 3. The subject has stored in long-term memory the 
information that the node that ultimately explains all ter­
minal 0 outputs is 17. This information was gathered in P5 
and stored in long-term memory. It was later recalled in P8 
and PI3 where all the terminal nodes have 0 outputs, and 
used effectively to reduce search. But this piece of chunked 
information was insufficient as there is another component 
(18) which can also results in a 0 at all terminal nodes. This 
caused the subject some trouble in PI5, when the faulty 
component was 18. Any search path that provides a set of 
root nodes that explain all the terminal 0 outputs is remem­
bered for future use. For example the fact that 17, 18 are 
two nodes that can explain all terminal Os is remembered 
and used later. 

In our experiments this is the only example of chunking 
that is apparent. The case mentioned above is remembered 
since it is related to the unusual set of all 0 outputs. It is 
expected that with increased practice, other symptoms 
would be chunked to their faulty component set and remem­
bered. In general, for any symptom one can generate the set 
of faulty components which explain all the outputs and this 
information can be chunked and stored in long-term 
memory. 

5.5 Computer Simulation 
Based on the analysis of protocols presented in the previous 
sections, we have implemented a production system which 
simulates the learning process. The production system, im­
plemented in OPS5, incorporates the four strategies used by 
the subject in successive problems. Each of the strategics 
are implemented independently and are executable indepen­
dently as well. In addition, we have implemented the learn­
ing process in terms of the four "learning operators" 
described in this section. These operators are implemented 
as productions which gather additional pieces of infor­
mation to evolve a better strategy with respect to the current 
strategy. For example, in the evolution of the refined depth-
first from depth-first strategy (described in section 5.1), the 
information on the number of measurements required by the 
two characterizations of a faulty component is used in the 
reordering of the productions. This reordering results in 
reducing the number of measurements required for diag­
nosis. The implemented system simulates the strategy shifts 
from depth first to refined simultaneous-propagation 
strategy. The system, in simulating the strategy shifts, uses 
the same information as used by the subject but does not 
account for the temporal course of the subject's learning. 
The simulation ensures that the operators identified are suf­
ficient to explain the learning process. 

6 Discussion 

The subject has available in long term memory some 
general problem solving strategies. This supported by the 
fact that he is able to solve the first problem successfully as 
soon as it is posed by using the depth first strategy. The 
depth first strategy can be roughly approximated as means-

3chunking has been proposed as a learning mechanism which 
records goal-based experience [Laird, Rosenbioom and Newell, 
1984]. 



ends analysis [Newell and Simon, 1972]4. Although this 
strategy leads to the correct solution it is not optimal in 
terms of the problem objective of minimizing the number of 
measurements for a diagnosis. However, the computational 
requirements of the depth-first strategy are small. As the 
subject moves from the depth-first strategy to simultaneous 
propagation strategy, he is able to decrease the number of 
measurements to a diagnosis. However, the computational 
requirements of the corresponding strategics increase. We 
illustrate this by an example. 

Consider the network in figure 1 with the following 
symptom: (1, 0, 0, 0, 0, 0, 0). Each digit in the vector 
corresponds to the output of the terminal node, from top to 
bottom. The faulty component is 20. The depth-first 
strategy requires 11 measurements, refined depth-first re­
quires 6, simultaneous propagation and it's refined version 
require 5 (which is a minimum). Hence the diagnostic ef­
ficiency improves as we move from depth-first to simul­
taneous propagation. On the other hand, the computational 
load increases. In order to characterize the computational 
requirements of various strategies, we define the number of 
rows as n and the number of columns as d in figure 1. The 
computational complexity of the depth first and its refined 
version is of 0(nxd), and that of simultaneous propagation 
is of 0(n2xd). 

The observation leads us propose that learning of new 
strategies is driven by competing objectives. The problem 
objective guides the subject to evolve strategies which min­
imize the number of measurements. The learning operators 
which transform the depth-first strategy to it's refined ver­
sion and subsequently to the simultaneous propagation 
strategy fall into this category. As the strategies that min­
imize the number of measurements impose larger computa­
tional requirements, the subject devises ways of alleviating 
these requirements in order to reduce the cognitive load. 
For example, the shift from simultaneous propagation to it's 
refined version does not improve the the number of 
measurements but reduces the computational effort. At each 
step, the refined simultaneous propagation strategy prunes 
all the components on the suspect list which have outputs to 
a 1. This reduces the number of hypotheses that need to be 
considered at each step. Moreover, the number of 
hypothesis generated in the next step is also reduced. 
Chunking is yet another learning operator that provides a 
means to improve problem solving by utilizing previously 
recorded goal-based experiences. From our observation of 
the protocols, we think chunking also provides a means to 
generate structural abstractions on the device network. 

In conclusion, this experiment has pointed out to us that 
the learning process is shaped by the interaction between the 
cognitive load and the problem objectives. Further, each 
dimension has its own set of learning operators. 

7 Further Remarks 

This work is proposed as a first step towards identifying 
computational mechanisms which can explain the genera­
tion of expertise from fundamental knowledge. Fundamen­
tal knowledge is concerned with the first principles of the 
domain and is described in terms of a model of a device. 
Typically, novices in an area start out with this kind of 
knowledge. On the other hand, expertise consists of 
knowledge gained through experience. It provides "short 

4pp. 415-416 

cuts" through the knowledge which enables experts to solve 
the problems faster and more efficiently. The experiential 
knowledge consists of productions or rules which encode 
knowledge compiled from the first principles. This question 
is of special interest in machine diagnosis, where much 
research is directed towards integrating the use of model 
based systems with expert rule based systems. 

Design of tutoring systems concentrate on the identifica­
tion of student models as means to develop didactic 
strategies. A variety of techniques for characterizing stu­
dent models have been proposed in the literature [Wenger, 
1987]. In this study, we have explored the process of trans­
formation of a novice to an expert. This process is charac-
terizable in terms of information that the novice uses to 
evolve better strategies. This model of evolution could 
provide a basis for intervention to improve novice strategies 
for solving problems in a tutoring context. 

Acknowledgements 

We thank the reviewers for their comments. 

References 

lAnzai and Simon, 1979] Y. Anzai and H. A. Simon. The 
Theory of Learning by Doing. Psychological Review, 
86(2):124-140,1979. 

[Ericsson and Simon, 1980] K. A. Ericsson, H. A. Simon. 
Verbal Reports as Data. Psychological Review, 
87:215-251,1980. 

[Laird, Rosenbloom and Newell, 1984] J. E. Laird, 
P. S. Rosenbloom and A. Newell. Towards Chunking as 
a General Learning Mechanism. In Proceedings of the 
Fourth National Conference on Artificial Intelligence, 
Austin, Texas, August, 1984. American Association for 
Artificial Intelligence. 

[Newell and Simon, 1972] A. Newell and H. A. Simon. 
Human Problem Solving. Prentice-Hall Inc., Englewood 
Cliffs, NJ, 1972. 

[Rouse and Hunt, 1984] W. B. Rouse and R. M. Hunt. 
Human Problem Solving in Fault Diagnosis Tasks. 
Advances in Man-Machine Systems Research. Academic 
Press, Vol. 1., 1984, pages 195-222. 

[Wenger, 1987] Etienne Wenger. Artificial Intelligence and 
Tutoring Systems. Morgan Kaufmann, Palo Alto, CA, 
1987. 

Kalagnanam and Subrahmanian 561 


