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Abst rac t 

This paper describes DIDO, a system we have developed 
to carry out exploratory learning of unfamiliar domains 
without assistance from an external teacher. The 
program incorporates novel approaches to experience 
generation and representation generation. The 
experience generator uses a heuristic based on Shannon's 
uncertainty function to find informative examples. The 
representation generator makes conjectures on the basis 
of small amounts of evidence and retracts them if they 
prove to be wrong or useless. A number of 
experiments arc described which demonstrate that the 
system can distribute its learning resources to steadily 
acquire a good representation of the whole of a domain, 
and that the system can readily acquire both disjunctive 
and conjunctive concepts even in the presence of noise. 

1 . I n t r oduc t i on 

This paper gives an account of DIDO, a learning system we 
have developed to carry out exploratory learning of 
unfamiliar domains*. We define the exploratory learning 
problem as follows: 

Situation: An intelligent agent is placed in a novel domain 
comprised of a large number of entities. The agent has two 
types of interaction with the domain. It is equipped with a 
finite set of motor operations which can be applied to 
entities in the domain. It is also equipped with a finite set 
of perceptual operations which enable it to perceive the 
current state of any entities present in its locality. The 
agent has no prior knowledge of the effect of any of its 
motor operations on any entity. 

Task: The agent knows that it may eventually have to solve 
problems in the domain but does not have any prior 
knowledge of what those problems might be. The agent 
must try to discover what effect its possible actions will 
have in any circumstances. More specifically, its task is to 
build a representation of the domain which will enable it to 
predict the outcomes of each of its motor operations in any 
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situation. This is the basic knowledge the agent would need 
to engage in problem solving. 
Constraints: The domain is very large and the behavior of 
entities may be non-deterministic and exhibit change over 
time. No other agent is available to provide assistance in 
this knowledge acquisition task. The agent has only limited 
resources of time and memory available. Since it is not 
known when problem solving wil l be necessary, it is 
desirable that the quality of the representation should rise 
steadily as learning proceeds. 

This problem is significantly different from those 
addressed by other machine learning programs. The absence 
of prior knowledge means that deductive learning methods 
cannot be applied. Any solution must be based on inductive 
inference. The most widely studied type of inductive 
inference problem is that of learning concepts from sets of 
classified examples (eg.Winston, 1975; Michalski & 
Dietterich, 1983; Quinlan, 1983, 1986). The problem stated 
above differs from this type of problem in two respects: 
there is no external agent to supply classifications of 
examples, and there is no predefined classification scheme 
that the agent is trying to discover. A number of learning 
programs have been written which do not require such a 
predefined classification scheme (eg. Michalski & Stepp, 
1983; Fisher & Langley, 1986). The task performed by 
such systems, which is commonly termed 'conceptual 
clustering', involves developing a classification scheme for a 
set of examples. Such programs attempt to construct a 
parsimonious taxonomy to cover the example set on the 
basis of similarity between examples. The learning problem 
considered here resembles conceptual clustering in that the 
learning system must develop its own classification scheme. 
On the other hand it differs significantly in that the basis for 
forming classes is not similarity between examples but 
rather similarity of their behavior when subject to the 
agent's motor operations. Thus the classification scheme 
developed is determined both by characteristics of the domain 
and by characteristics of the agent. In this sense the agent's 
task is to build an egocentric representation of its world. 

Learning involves two distinct but interrelated search 
processes (Shalin et aly 1987): a search for a good 
representation in the space of possible representations 
(Simon & Lea, 1974; Mitchell, 1977, 1979), and a search 
for informative examples in the space of possible 

Scott and Markovitch 669 



experiences (Scott & Vogt 1983). The information obtained 
from the experiences is used to guide the search for a better 
representation, while the current state of the representation 
may be used to guide the search for informative experiences. 

The component of a learning system responsible for 
searching experience space is the experience generator. 
Section 2 describes DIDO's experience generator which is 
based on a formalization of the concept of curiosity. The 
search of representation space is carried out by the 
representation generator. DIDO's representation generator is 
described in Section 3. Section 4 describes results obtained 
running an implementation of DIDO. Finally, Section 5 
contains a discussion of the implications of this work. 

2. C u r i o s i t y D r i v e n Search of 
Experience Space 

The task of an inductive learning system's experience 
generator is to select informative examples from the 
experience space and supply them to the representation 
generator. An example is informative only if it leads to 
some change in the representation. The informativeness of 
an example is not an inherent property of the example since 
it depends on both the domain and the current representation. 
Unfortunately examples are not equally informative and 
some may carry no information at all. 

A large number of learning systems avoid the need for a 
built in experience generator by requiring an external agent 
(usually human) to serve this role (See Michalski & 
Dietterich, 1983 for review). Winston (1975) demonstrated 
that such an external teacher can greatly speed the learning 
process by selecting examples which are highly informative. 

DIDO has no such external assistance. Furthermore 
DIDO has no preassigned class of problems to solve and so 
cannot make use of successes and failures at problem 
solving to guide the search for informative experiences (eg 
LEX (Mitchell et al, 1983); PRODIGY (Carbonell & Gill, 
1987)). What DIDO needs is a method of exploring 
domains which is analogous to human curiosity. One 
program which attempts to generate its own experiences 
under similar constraints is AM (Lenat 1982). Lenat's 
formalization of curiosity was a set of 54 heuristic rules for 
assessing the 'interestingness' of objects. The objection to 
using such an elaborate implementation of curiosity is that 
it is not clear either how much each rule contributes, or how 
domain specific they were. We have provided DIDO with a 
simple domain independent method for selecting new 
experiences. 

Given the analogy with human curiosity it might seem 
reasonable to build an experience generator which favored 
highly novel objects. However, further consideration shows 
that such a system would not be very effective. It would 
provide the system with a large number of highly dissimilar 
experiences. These would form a poor foundation for a 
coherent and integrated representation of the domain. Such a 
system would learn very little about a lot. 

The weakness of the novelty heuristic suggests that its 
opposite might be effective. That is the generator would 

supply experiences which were as similar as possible to 
those already encountered. The argument in favor of this 
approach is that it would seem to have the potential to 
generate 'near misses' (Winston 1975) quite frequently. 
However further consideration shows that this familiarity 
heuristic is likely to be as ineffective as novelty. The 
experience generator would have no tendency to move 
outside one small region of the space of possible 
experiences. Hence such a system would learn a lot about 
very little. 

Clearly what is needed is something that falls somewhere 
between novelty and familiarity. Such a heuristic would 
supply experiences which could be related to previous 
experiences without becoming trapped in a small region of 
the experience space. This behavior is produced by using a 
heuristic based on uncertainty. The fundamental idea is that 
subsequent experiences should be generated in order to 
resolve uncertainties created through earlier experiences. 

DIDO is attempting to build a representation which 
predicts the outcomes of applying operations to entities with 
a maximum likelihood of being correct. This representation 
takes the form of an inheritance network of classes. Each 
class contains a number of practical conditionals. Each 
practical conditional represents the knowledge that DIDO has 
acquired about the consequences of applying a particular 
operation to entities which are members of that class. The 
form of a practical conditional is as follows: 

(Op ((Outcome1 P1)(Outcome2 P2).(OutcomeN PN)) ) 
where each Pj is an estimate, based on experiences, of the 
probability that the corresponding outcome wil l occur. 
Probabilities are estimated using an exponential lag and 
outcomes with very small probability estimates arc 
discarded. If there is more than one outcome in the list 
DIDO is uncertain of the outcome. This uncertainty can be 
expressed precisely using the Shannon uncertainty function 
(Shannon & Weaver, 1949) which is defined as: 

where the sum is taken over all alternative outcomes. (Note 
that ID3 (Quinlan, 1983, 1986) also uses this uncertainty 
function but for a very different purpose. ID3 uses it as part 
of the representation generator to determine which subclasses 
to add to the current representation. DIDO uses it as part of 
the experience generator to determine what new experiences 
to select.) 

There is thus an uncertainty associated with every 
practical conditional in every class in DIDO's current 
representation. DIDO's experience generator finds the 
highest of these uncertainties, and selects a small number of 
entities that are members of the class concerned. The 
operation appearing in the most uncertain practical 
conditional is then applied to each of these entities and the 
outcomes noted. This procedure is termed a round of 
experiments. Normally the outcomes wi l l change the 
probabilities and hence lead to a change in uncertainty. 
DIDO attempts to build a class network in which the 
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uncertainties are minimized. The way this happens is 
described in the next section. 

The use of uncertainty to guide the search of experience 
space has a number of advantages. First it is simple and 
domain independent. It can be applied in any system in 
which it is possible to estimate probabilities of assertions 
being correct. Second, it generates highly informative 
experiences. Al l the experiences produced are examples of 
classes of experience about which the learning system is 
doubtful. Third, it makes efficient and effective use of 
resources. Because the system is continually directing its 
attention to the area of highest uncertainty in the current 
representation, the level of uncertainty remains 
approximately uniform across the whole representation. 
This means that the system is steadily reducing its 
uncertainty about the whole of the experience space. 

It is also worth noting that this was achieved because the 
representation included sets of contradictory assertions 
(alternative outcomes in this case) together with estimates of 
the likelihood that they were correct. This enabled DIDO to 
both identify and quantify the degree of doubt associated with 
what appears to be known. While the need to include 
measures of uncertainty in representations of uncertain 
domains has been recognized and explored for many years, 
the primary use of uncertainty in DIDO is to represent the 
system's uncertainty about the domain. Such uncertainty 
can arise either because the domain is inherently uncertain 
or, as is more commonly the case, because the current 
representation is inadequate. 

3. C o n j e c t u r e Based Search of 
Representation Space 

DIDO builds an object based representation of a domain. 
The major feature of this is an inheritance network of 
classes. The members of each class are the entities which 
occur in the domain. Every entity is a member of at least 
one class because DIDO begins with a representation 
comprising a single class , Things, which includes all 
entities. 

Classes have two important components, the intension 
and the practical conditional set. The intension is a 
conjunctive predicate whose terms are built up from DIDO's 
set of sensory operations. Any entity which satisfies the 
intension is a member of the class. Practical conditionals 
were described in the preceding section. The practical 
conditional set represents DIDO's current knowledge of how 
members of the class behave when an operation is applied to 
them. It is unnecessary for there to be a practical 
conditional corresponding to every action in every class 
because practical conditionals can be inherited from 
superclasses. A practical conditional for a particular action 
only appears in a class when it is needed to shadow the 
practical conditional for the same action in a superclass. 
Classes may have more than one immediate superclass. 
Multiple inheritance conflicts do not occur because of the 
way in which the network is built. 

Two different approaches to representation generation are 
possible. The first is to be very cautious about making 
changes to the representation and only make changes when 
enough evidence has been accumulated to establish that they 
arc highly likely to be correct. The advantage of this 
approach is that it is unnecessary to retract any changes. 
The disadvantage is that the system is precluded from 
making and using conjectures for which there is only limited 
evidence. DIDO uses the opposite approach. Changes are 
made tentatively on the basis of small amounts of evidence. 
If the conjectures prove to be wrong or of no value, they are 
rapidly discarded. We call such readily retracted changes 
conjectures. (See Markovitch & Scott (1988) for discussion 
of knowledge which is not beneficial.) 

The representation generation process is basically one of 
learning by specialization (sometimes termed 'discrimination 
learning'). At the conclusion of each round of experiments, 
DIDO will have two samples of entities: successes, defined 
as those that gave the most probable outcome; and failures, 
that gave some other outcome. Typically these samples are 
small. DIDO finds the sensory attribute value which 
correlates most highly with the most probable outcome and 
forms a new subclass having this as its intension. This 
subclass may already exist, since it might have been created 
previously as part of an attempt to reduce the uncertainty of 
a different practical conditional. If it does not exist DIDO 
creates it. DIDO then adds the practical conditional to this 
specialization class. If the specialization class has no other 
ancestors but the class in which the round of experiments 
was performed, this is straightforward. DIDO simply copies 
the practical conditional from the parent class. However, it 
may be that the specialization class has other ancestors. If 
there is more than one ancestor containing the practical 
conditional, the practical conditional with the highest 
probability for its expected outcome is copied into the 
specialization class. 

This specialization process serves to extend the network 
to ever more specialized classes. It is balanced by two 
processes: retraction and generalization. Retraction is the 
process by which incorrect or useless conjectures are 
discarded. Every time the probabilities of a practical 
conditional are updated it is checked for usefulness. A 
practical conditional is deemed useless if removing it would 
not lead either to different predictions or to predictions with 
lower confidence. Useless practical conditionals are 
removed. Classes which have neither subclasses nor 
practical conditionals are also deemed useless and removed. 

Practical conditionals containing only one outcome 
(which must have a probability of 1.0 and zero uncertainty) 
are said to be fixated. No experiments are performed 
regarding fixated practical conditionals. Hence DIDO's 
learning process is complete when all practical conditionals 
in the representation have fixated. 

Generalization is a process which guards against 
overspecialization. Whenever a class fixates, DIDO 
attempts to form a generalization by searching for other 
similar classes which contain non-fixated practical 
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conditionals having the same expected outcomes as the 
fixated practical conditional. If such a class is found a 
generalization class is formed which is the most specific 
superclass of the two classes being generalized. The non-
fixated practical conditional is copied into this new class. If 
the fixated practical conditional was an overspecialization it 
will become useless and be discarded when fixation occurs in 
the more general class. 

DIDO also makes use of a number of other methods for 
changing the representation. These handle contingencies 
which only arise occasionally (eg formation of redundant 
partitions of a class). (See Scott & Markovitch (1988) for 
details). 

4. Experimental Runs 

We have implemented DIDO and conducted a large 
number of experiments, using various domains. Here we 
describe a selection of these. 

A Typical Run 
This example, which illustrates DIDO's ability to 

discover the consequences of each member of the set of 
motor operations, involves a domain which might be part of 
an Adventure type game. The entities DIDO may encounter 
have 5 attributes whose possible values are as follows: 
Property: Possible Values 
Type: Dwarf, Magician, Pirate 
Size: Small, Medium, Large 
Vitality: Alive, Dead 
Coat Color: Red, Blue, Green, Yellow, Black, White, Gold 
Shoes: Leather, Boots, Slippers, Sandals, None 

The actions available are Hit-With-Axe, Wave-Wand, and 
Rub-Lamp. Their consequences are: 

Hit-With-Axe: Kills any living thing wearing slippers. 
Wave-Wand: Kills any living thing wearing boots. 

Turns any magician into a dwarf. 
Rub-Lamp: Turns any dwarf into a pirate. 

Turns any pirate into a magician. 
Turns any magician into a dwarf. 

Figure 1 shows the final representation DIDO achieved after 
417 trials, at which point all the classes shown had fixated. 
As can be seen, this is a complete, consistent, and correct 
representation of the domain. Furthermore, it is minimal in 
the sense that no representation with fewer classes is 
possible. 
Figure 2 shows the steady progress of the system during 
learning. Figure 2a shows the 'exam score'. During an 
exam, the learning is turned off and a random batch of 100 
entities is shown to the system. The score is the percentage 
of outcomes predicted correctly. Exams arc administered at 
regular intervals to monitor the progress of learning. Note 
that 100% score is reached long before learning is complete. 
Figure 2b shows the steady decline in average uncertainty. 
This figure also shows why learning is not complete when 
DIDO starts scoring 100% in exams. Although the 
representation is correct, DIDO is not yet certain it is 
correct. During the last 300 trials DIDO is discovering that 
the representation achieved by trial 120 is a correct one. 

Classification — Conjunction and Disjunction 
As we noted in the introduction, the task DIDO performs is 
different from that performed by other concept learning 
programs. In particular it differs from those that learn 
concepts from classified examples since there is no teacher 
to provide classified examples. This makes it hard to 
compare DIDO's performance with that of other systems. 
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Since DIDO's representation generator involves a 
modified form of learning by specialization, a comparison 
with other programs which also learn by specializing general 
concepts (See Langley 1987 for review) would seem 
pertinent. In order to achieve this we ran DIDO with a 
single motor operation Ask-For-Category. The outcome of 
applying this operation to an entity is a string which is the 
name of the category to which the entity belongs. In this 
way it is possible to get DIDO to learn a predefined 
classification scheme and hence compare the performance of 
its representation generator with those incorporated in other 
learning programs. 

Figure 3 shows the results obtained when DIDO learned 
conjunctive and disjunctive concepts. Every entity had 5 
attributes, and each of these took one of 5 possible values. 
Relevant attributes were those that formed part of the 
definition of the category to be discovered. The graphs show 
the number of trials needed to reach 100% exam scores. As 
can be seen, both conjunctive and disjunctive concepts are 
readily discovered and, at least over the range considered, the 
number of examples needed seems to increase linearly with 

the number of relevant attributes. Furthermore DIDO takes 
slightly longer to discover disjunctive concepts. This result 
is in marked contrast to the results reported by Langley 
(1987) on PRISM, a program which learns by 
specialization. He found that conjunctive concepts took 
much longer to discover than disjunctions, and that the 
number of examples per relevant attribute increased non-
linearly for conjunctions. 

Noise And Change 
In order to test DIDO's ability to operate successfully in 

non-deterministic domains, we performed a series of 
classification tasks using varying levels of noise. Various 
authors have defined noise level in different ways (eg 
Langley, 1987; Quinlan, 1986). In our experiments noise 
level is simply a measure of the probability that the 
classification of an example wil l be inverted. This is 
equivalent to combining positive and negative noise 
following Langley's (1987) definition. The concept to be 
learned was a conjunction with 2 relevant attributes. 
Various noise levels between zero and 30% were tried. To 
test the system, exams were run with zero noise. 

For noise levels up to 15% the effect was simply to slow 
down the speed at which DIDO converged on the best 
approximate representation. For noise levels of 20% and 
above DIDO did not achieve the best approximation in 1000 
trials. She did however achieve a non-fixated representation 
in which the error level in exams (which were noise free) 
was considerably less than the noise level in the training 
examples. Thus in the worst case, 30% noise level, she 
achieved a representation which produced only 11% exam 
errors. At these higher levels of noise the uncertainty in 
DIDO's final representation was the same as the inherent 
uncertainty of the domain. 

5. Discussion 

How successful is DIDO at solving exploratory problems 
as defined in the introductory section of this paper? Our 
original purpose in developing DIDO was to determine 
whether the concept of uncertainty could form a simple basis 
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for implementing curiosity. The results of our experiments 
show that using this heuristic to explore experience space 
does lead to a sensible choice of experiences and a 
consequent convergence on a good representation. The 
heuristic leads to efficient use of resources as is clearly 
shown in Figure 2. DIDO achieves 100% exam scores long 
before all the practical conditionals have fixated. This 
happens because learning resources are switched between the 
operations available so that the amount of remaining 
uncertainty regarding each is about the same. The success is 
achieved quickly. There are 6 rules to discover and DIDO 
achieves 100% success after performing only 6% of the 
experiments possible in the domain. Complete certainty is 
achieved after performing 21%. DIDO also uses space 
parsimoniously. Individual experiences are not retained 
beyond the round of experiments in which they are 
generated. The number of classes in the network seldom 
exceeds double the number in the final solution. 

The results obtained in classification experiments and in 
noisy domains show that the conjecture based method of 
learning, in which changes in the representation can be made 
rather freely because mistakes are readily discovered and 
retracted, may be of use in other types of concept learning. 
Of particular interest is the absence of any marked non-
linearity in the time taken to learn progressively more 
complex conjunctions and disjunctions. However, there arc 
limitations to this method of representation generation. 
DIDO performs poorly at finding exclusive disjunctions and 
cannot solve multiplexor problems (Wilson 1987). 
Interestingly, people also find such concepts difficult to 
discover. In DIDO, these limitations arise as a direct 
consequence of the features which give rise to the speed at 
which correct answers are found for conjunction and 
disjunction. Exclusive disjunction and the multiplexor 
problems are hard because partial solutions do not yield 
better than chance results. DIDO's readiness to retract 
apparently useless conjectures, which is the necessary price 
of making conjectures freely, leads to the abandonment of 
partially elaborated correct solutions. 

DIDO's learning procedures could be applied to practical 
problems. In particular DIDO could be used to analyze 
empirical data such as very large databases composed of case 
histories paired with their eventual outcomes. The set of 
case histories would constitute DIDO's problem domain. 
Using uncertainty guided search, case histories would be 
sampled in an attempt to learn to predict associated 
outcomes. The distinctive feature of DIDO's uncertainty 
guided search is that the sampling of the data set would 
concentrate on those areas about which remaining 
uncertainty was highest Thus, once DIDO has learned the 
commonly occurring cases, resources will not be wasted 
considering further examples of those types, but wi l l 
concentrate on seeking out and learning to predict the less 
common types. 
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